Characterization of the Nozzle Ablation Rate Based on 3D Laser Scanning System
Abstract
:1. Introduction
2. Test and Measurement
2.1. Physical Model
2.2. 3D Reconstruction
2.3. Analysis of Test Results
3. Prediction of Ablation Rate
3.1. Numerical Simulation
3.2. Inverse Fitting Method
3.3. Fitting Results
4. Conclusions
- A high-precision model can be obtained by using the non-contact 3D laser scanning system to reconstruct the ablated nozzle. Compared with traditional methods, this method is simpler, more economical, larger scanning size, and can obtain a complete 3D model of ablated nozzle. This 3D model makes it unnecessary to cut the actual specimen for the analysis.
- From the inlet to the end of the nozzle, the ablation rate generally shows a trend from severe to slight, which is basically consistent with the changes in pressure, temperature and surface convective heat transfer coefficient obtained from numerical simulation. The conclusion is the same as that of the references, so the accuracy of the ablation rate measured in the paper is verified.
- The empirical formula can accurately predict the ablation rate under pressure, temperature, and convection heat transfer coefficient, without complex and expensive tests. Additionally, this empirical formula can provide theoretical guidance for nozzle size design and optimization.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cross, P.G.; Boyd, I.D. Conjugate Analyses of Ablation in Rocket Nozzles. J. Spacecr. Rocket. 2019, 56, 1593–1610. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Wang, R.; Lu, C.; Yu, R.; Tian, H. Numerical simulation of chemical ablation and mechanical erosion in hybrid rocket nozzle. Acta Astronaut. 2022, 192, 82–96. [Google Scholar] [CrossRef]
- Sciti, D.; Zoli, L.; Silvestroni, L.; Cecere, A.; Di Martino, G.; Savino, R. Design, fabrication and high velocity oxy-fuel torch tests of a Cf-ZrB2- fiber nozzle to evaluate its potential in rocket motors. Mater. Des. 2016, 109, 709–717. [Google Scholar] [CrossRef]
- Liu, Y.; Pei, J.-Q.; Li, J.; He, G.-Q. Ablation characteristics of a 4D carbon/carbon composite under a high flux of combustion products with a high content of particulate alumina in a solid rocket motor. New Carbon Mater. 2017, 32, 143–150. [Google Scholar] [CrossRef]
- Bianchi, D.; Nasuti, F.; Onofri, M.; Martelli, E. Thermochemical Erosion Analysis for Chraphite/Carbon-Carbon Rocket Nozzles. J. Propuls. Power 2011, 27, 197–205. [Google Scholar] [CrossRef]
- Liu, H.; Kang, P.; Yang, W.; Zhang, N.; Sun, Y.; Wu, G. Ablation behavior of Al20Si/graphite composite nozzle-throats in a solid rocket motor environment. Ceram. Int. 2020, 46, 13317–13323. [Google Scholar] [CrossRef]
- Kim, K.-S.; Lee, S.-H.; Nguyen, V.Q.; Yun, Y.; Kwon, S. Ablation characteristics of rocket nozzle using HfC-SiC refractory ceramic composite. Acta Astronaut. 2020, 173, 31–44. [Google Scholar] [CrossRef]
- Farhan, S.; Li, K.-Z.; Guohua, L.; Gao, Q.-M.; Lan, F.-T. Effect of density and fibre orientation on the ablation behaviour of carbon-carbon composites. New Carbon Mater. 2010, 25, 161–167. [Google Scholar] [CrossRef]
- Yin, J.; Xiong, X.; Zhang, H.; Huang, B. Microstructure and ablation performances of dual-matrix carbon/carbon composites. Carbon 2006, 44, 1690–1694. [Google Scholar] [CrossRef]
- Zhu, Y.; Cui, H.; Yan, L.-S. Morphology and anti-ablation properties of composites nozzles under the Φ100 mm H2O2-polyethylene hybrid rocket motor test. Ceram. Int. 2021, 47, 6554–6561. [Google Scholar] [CrossRef]
- Li, K.-Z.; Shen, X.-T.; Li, H.-J.; Zhang, S.-Y.; Feng, T.; Zhang, L.-L. Ablation of the carbon/carbon composite nozzle-throats in a small solid rocket motor. Carbon 2011, 49, 1208–1215. [Google Scholar] [CrossRef]
- Peng, L.-N.; He, G.-Q.; Li, J.; Wang, L.; Qin, F. Effect of combustion gas mass flow rate on carbon/carbon composite nozzle ablation in a solid rocket motor. Carbon 2012, 50, 1554–1562. [Google Scholar] [CrossRef]
- Pástor, M.; Živčák, J.; Puškár, M.; Lengvarský, P.; Klačková, I. Application of Advanced Measuring Methods for Identification of Stresses and Deformations of Automotive Structures. Appl. Sci. 2020, 10, 7510. [Google Scholar] [CrossRef]
- Gao, J.; Chen, X.; Yilmaz, O.; Gindy, N. An integrated adaptive repair solution for complex aerospace components through geometry reconstruction. Int. J. Adv. Manuf. Technol. 2008, 36, 1170–1179. [Google Scholar] [CrossRef]
- Liu, E.; Cheng, X.; Cheng, X.; Zhou, T.; Huang, Y. Application of Three-Dimensional Laser Scanning in the Protection of Multi-Dynasty Ceramic Fragments. IEEE Access 2020, 8, 139771–139780. [Google Scholar] [CrossRef]
- Alontseva, D.L.; Ghassemieh, E.; Krasavin, A.L.; Kadyroldina, A.T. Development of 3D scanning system for robotic plasma processing of medical products with complex geometries. J. Electron. Sci. Technol. 2020, 18, 100057. [Google Scholar] [CrossRef]
- Wirzberger, H.; Yaniv, S. Prediction of Erosion in a Solid Rocket Motor by Alumina Particles. In Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference Exhibit, Tucson, AZ, USA, 10–13 July 2013. AIAA 2005–4496. [Google Scholar] [CrossRef]
- Babu, G.V.; Murthy, V.B. Prediction of thermal ablation in rocket nozzle using CFD and FEA. Int. J. Comput. Mater. Sci. Eng. 2020, 9, 2050014. [Google Scholar] [CrossRef]
- Li, Q.; Li, J.; He, G.-Q.; Liu, P.-J. Erosion of carbon/carbon composites using a low-velocity, high-particle-concentration two-phase jet in a solid rocket motor. Carbon 2014, 67, 140–145. [Google Scholar] [CrossRef]
- Thakre, P.; Yang, V. Chemical Erosion of Carbon-Carbon/Graphite Nozzles in Solid-Propellant Rocket Motors. J. Propuls. Power 2008, 24, 822–833. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Tian, H.; Wang, P.; Yu, N.; Cai, G. Steady-state coupled analysis of flowfields and thermochemical erosion of C/C nozzles in hybrid rocket motors. Sci. China Technol. Sci. 2015, 58, 574. [Google Scholar] [CrossRef]
- Wang, L.; Tian, W.; Chen, L.; Guo, Y. Investigation of Carbon–Carbon Nozzle Throat Erosion in a Solid Rocket Motor Under Acceleration Conditions. Int. J. Aeronaut. Space Sci. 2021, 22, 42–51. [Google Scholar] [CrossRef]
- Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2005. [Google Scholar] [CrossRef]
- Kuo, K.K.; Keswani, S.T. A Comprehensive Theoretical Model for Carbon-Carbon Composite Nozzle Recession. Combust. Sci. Technol. 2007, 42, 145–164. [Google Scholar] [CrossRef]
- Borie, V.; Brulard, J.; Lengelle, G. Aerothermochemical analysis of carbon-carbon nozzle regression in solid-propellant rocket motors. J. Propuls. Power 1989, 5, 665–673. [Google Scholar] [CrossRef]
- Bianchi, D.; Nasuti, F.; Martelli, E. Coupled Analysis of Flow and Surface Ablation in Carbon-Carbon Rocket Nozzles. J. Spacecr. Rocket. 2009, 46, 492–500. [Google Scholar] [CrossRef]
- Shimada, T.; Sekiguchi, M.; Sekino, N. Flow Inside a Solid Rocket Motor with Relation to Nozzle Inlet Ablation. AIAA J. 2007, 45, 1324–1332. [Google Scholar] [CrossRef]
- Liu, H.; Xu, S.; Wang, X.; Wu, J.; Song, Y. A global optimization algorithm for simulation-based problems via the extended DIRECT scheme. Eng. Optim. 2015, 47, 1441–1458. [Google Scholar] [CrossRef]
- Gilmore, P.; Kelley, C.T. An Implicit Filtering Algorithm for Optimization of Functions with Many Local Minima. SIAM J. Optim. 1995, 5, 269–285. [Google Scholar] [CrossRef]
- Hooke, R.; Jeeves, T.A. “Direct Search” Solution of Numerical and Statistical Problems. J. ACM 1961, 8, 212–229. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Wang, C.; Li, Q.; Wang, Z. Characterization of the Nozzle Ablation Rate Based on 3D Laser Scanning System. Aerospace 2023, 10, 172. https://doi.org/10.3390/aerospace10020172
Zhang K, Wang C, Li Q, Wang Z. Characterization of the Nozzle Ablation Rate Based on 3D Laser Scanning System. Aerospace. 2023; 10(2):172. https://doi.org/10.3390/aerospace10020172
Chicago/Turabian StyleZhang, Kaining, Chunguang Wang, Qun Li, and Zhihong Wang. 2023. "Characterization of the Nozzle Ablation Rate Based on 3D Laser Scanning System" Aerospace 10, no. 2: 172. https://doi.org/10.3390/aerospace10020172
APA StyleZhang, K., Wang, C., Li, Q., & Wang, Z. (2023). Characterization of the Nozzle Ablation Rate Based on 3D Laser Scanning System. Aerospace, 10(2), 172. https://doi.org/10.3390/aerospace10020172