Prediction of Transonic Flow over Cascades via Graph Embedding Methods on Large-Scale Point Clouds
Abstract
:1. Introduction
- A novel framework has been devised to predict flow fields over the cascade, combining GCN with point clouds to enhance prediction accuracy;
- This innovative framework facilitates swift and precise predictions across an extensive grid containing 295,035 flow-field points, ensuring large-scale flow-field analysis efficiency;
- A detailed investigation has been conducted to unravel the underlying mechanisms of GCN in the context of flow-field prediction, shedding light on its intricate understanding and application.
2. Numerical Methods and Dataset Generation
2.1. Cascade Geometry Generation
2.2. CFD Simulation and Dataset Generation
3. Deep-Learning GCN-Based Framework and Model Training
3.1. The Structure of the Framework
3.2. Training
4. Results
4.1. Fields Prediction Performance
4.2. Prediction of the Trained Model on Cascade with Different Nodes Selection Approach
4.3. Explanation of Graph Embedding Approach Based on the Framework
5. Discussion and Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bloch, G.S.; Copenhaver, W.W.; O’Brien, W.F. A Shock Loss Model for Supersonic Compressor Cascades. J. Turbomach. 1999, 121, 28–35. [Google Scholar] [CrossRef]
- Kusters, B.; Schreiber, H. Compressor cascade flow with strong shock-wave/boundary-layer interaction. AIAA J. 1998, 36, 2072–2078. [Google Scholar] [CrossRef]
- Lengani, D.; Simoni, D.; Ubaldi, M.; Zunino, P.; Bertini, F.; Michelassi, V. Accurate Estimation of Profile Losses and Analysis of Loss Generation Mechanisms in a Turbine Cascade. J. Turbomach. 2017, 139, 121007. [Google Scholar] [CrossRef]
- Hammer, F.; Sandham, N.D.; Sandberg, R.D. The Influence of Different Wake Profiles on Losses in a Low Pressure Turbine Cascade. Int. J. Turbomach. Propuls. Power 2018, 3, 10. [Google Scholar] [CrossRef]
- Li, S.-M.; Chu, T.-L.; Yoo, Y.-S.; Ng, W.F. Transonic and Low Supersonic Flow Losses of Two Steam Turbine Blades at Large Incidences. J. Fluids Eng. 2005, 126, 966–975. [Google Scholar] [CrossRef]
- Wang, Z.; Chang, J.; Li, Y.; Kong, C. Investigation of shock wave control by suction in a supersonic cascade. Aerosp. Sci. Technol. 2021, 108, 106382. [Google Scholar] [CrossRef]
- Schreiber, H.A.; Starken, H. An Investigation of a Strong Shock-Wave Turbulent Boundary Layer Interaction in a Supersonic Compressor Cascade. J. Turbomach. 1992, 114, 494–503. [Google Scholar] [CrossRef]
- Xu, L.; Denton, J.D. The Base Pressure and Loss of a Family of Four Turbine Blades. J. Turbomach. 1988, 110, 9–17. [Google Scholar] [CrossRef]
- Denton, J.D.; Xu, L. The Trailing Edge Loss of Transonic Turbine Blades. J. Turbomach. 1990, 112, 277–285. [Google Scholar] [CrossRef]
- Wu, H.; Liu, X.; An, W.; Chen, S.; Lyu, H. A deep learning approach for efficiently and accurately evaluating the flow field of supercritical airfoils. Comput. Fluids 2020, 198, 104393. [Google Scholar] [CrossRef]
- Rabault, J.; Ren, F.; Zhang, W.; Tang, H.; Xu, H. Deep reinforcement learning in fluid mechanics: A promising method for both active flow control and shape optimization. J. Hydrodyn. 2020, 32, 234–246. [Google Scholar] [CrossRef]
- Murata, T.; Fukami, K.; Fukagata, K. Nonlinear mode decomposition with convolutional neural networks for fluid dynamics. J. Fluid Mech. 2020, 882, A13. [Google Scholar] [CrossRef]
- Fukami, K.; Nakamura, T.; Fukagata, K. Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data. Phys. Fluids 2020, 32, 095110. [Google Scholar] [CrossRef]
- Han, R.; Wang, Y.; Zhang, Y.; Chen, G. A novel spatial-temporal prediction method for unsteady wake flows based on hybrid deep neural network. Phys. Fluids 2019, 31, 127101. [Google Scholar] [CrossRef]
- Chen, T.; Chu, Q.; Tan, Z.; Liu, B.; Yu, N. BAUENet: Boundary-Aware Uncertainty Enhanced Network for Infrared Small Target Detection. In Proceedings of the ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–5. [Google Scholar]
- Berenjkoub, M.; Chen, G.; Günther, T. Vortex boundary identification using convolutional neural network. In Proceedings of the 2020 IEEE Visualization Conference (VIS), Virtual, 25–30 October 2020; pp. 261–265. [Google Scholar]
- Jogin, M.; Mohana; Madhulika, M.S.; Divya, G.D.; Meghana, R.K.; Apoorva, S. Feature Extraction using Convolution Neural Networks (CNN) and Deep Learning. In Proceedings of the 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 18–19 May 2018; pp. 2319–2323. [Google Scholar]
- Li, Y.; Chang, J.; Kong, C.; Wang, Z. Flow field reconstruction and prediction of the supersonic cascade channel based on a symmetry neural network under complex and variable conditions. AIP Adv. 2020, 10, 065116. [Google Scholar] [CrossRef]
- Sekar, V.; Jiang, Q.; Shu, C.; Khoo, B.C. Fast flow field prediction over airfoils using deep learning approach. Phys. Fluids 2019, 31, 057103. [Google Scholar] [CrossRef]
- Hui, X.; Bai, J.; Wang, H.; Zhang, Y. Fast pressure distribution prediction of airfoils using deep learning. Aerosp. Sci. Technol. 2020, 105, 105949. [Google Scholar] [CrossRef]
- Wu, M.-Y.; Wu, Y.; Yuan, X.-Y.; Chen, Z.-H.; Wu, W.-T.; Aubry, N. Fast prediction of flow field around airfoils based on deep convolutional neural network. Appl. Sci. 2022, 12, 12075. [Google Scholar] [CrossRef]
- Kashefi, A.; Rempe, D.; Guibas, L.J. A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries. Phys. Fluids 2021, 33, 027104. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Afshar, Y.; Pan, S.; Duraisamy, K.; Kaushik, S. Prediction of aerodynamic flow fields using convolutional neural networks. Comput. Mech. 2019, 64, 525–545. [Google Scholar] [CrossRef]
- Gui, X.; Teng, J.; Liu, B. Compressor Aerothermodynamics and Its Applications in Aircraft Engines; Shanghai Jiao Tong University Press: Shanghai, China, 2014; pp. 21–26. [Google Scholar]
- Shen, Y.; Fu, H.; Du, Z.; Chen, X.; Burnaev, E.; Zorin, D.; Zhou, K.; Zheng, Y. GCN-Denoiser: Mesh Denoising with Graph Convolutional Networks. ACM Trans. Graph. 2022, 41, 8. [Google Scholar] [CrossRef]
- Peng, J.-Z.; Wang, Y.-Z.; Chen, S.; Chen, Z.-H.; Wu, W.-T.; Aubry, N. Grid adaptive reduced-order model of fluid flow based on graph convolutional neural network. Phys. Fluids 2022, 34, 087121. [Google Scholar] [CrossRef]
- Li, X.; Saúde, J. Explain graph neural networks to understand weighted graph features in node classification. In Proceedings of the International Cross-Domain Conference for Machine Learning and Knowledge Extraction, Dublin, Ireland, 25–28 August 2020; pp. 57–76. [Google Scholar]
- Belbute-Peres, F.D.A.; Economon, T.; Kolter, Z. Combining differentiable PDE solvers and graph neural networks for fluid flow prediction. In Proceedings of the International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 2402–2411. [Google Scholar]
- Wang, X.; Xu, C.; Gao, X.; Li, W.; Zhu, D. Research on the Role of Hybrid Mesh Warm-up in Flow Prediction Based on Deep Learning. In Proceedings of the 2021 5th International Conference on Electronic Information Technology and Computer Engineering, Xiamen, China, 22–24 October 2021; pp. 752–759. [Google Scholar]
- Strönisch, S.; Meyer, M.; Lehmann, C. Flow field prediction on large variable sized 2D point clouds with graph convolution. In Proceedings of the Platform for Advanced Scientific Computing Conference, Basel, Switzerland, 27–29 June 2022; pp. 1–10. [Google Scholar]
- Du, J.; Lin, F.; Chen, J.; Nie, C.; Biela, C. Flow Structures in the Tip Region for a Transonic Compressor Rotor. J. Turbomach. 2013, 135, 031012. [Google Scholar] [CrossRef]
- Lepicovsky, J. Investigation of flow separation in a transonic-fan linear cascade using visualization methods. Exp. Fluids 2008, 44, 939–949. [Google Scholar] [CrossRef]
- Ying, R.; Bourgeois, D.; You, J.; Zitnik, M.; Leskovec, J. GNNExplainer: Generating Explanations for Graph Neural Networks. Adv. Neural Inf. Process. Syst. 2019, 32, 9240–9251. [Google Scholar] [PubMed]
- Yuan, H.; Yu, H.; Wang, J.; Li, K.; Ji, S. On Explainability of Graph Neural Networks via Subgraph Explorations. In Proceedings of the 38th International Conference on Machine Learning, Proceedings of Machine Learning Research, Virtual, 18–24 July 2021; pp. 12241–12252. [Google Scholar]
- Li, Q.; Zhang, Z.; Diao, B.; Xu, Y.; Li, C. Towards Understanding the Effect of Node Features on the Predictions of Graph Neural Networks. In Proceedings of the International Conference on Artificial Neural Networks, Bristol, UK, 6–9 September 2022; Springer Nature: Cham, Switzerland, 2022; pp. 706–718. [Google Scholar]
- Luo, D.; Cheng, W.; Xu, D.; Yu, W.; Zong, B.; Chen, H.; Zhang, X. Parameterized explainer for graph neural network. Adv. Neural Inf. Process. Syst. 2020, 33, 19620–19631. [Google Scholar]
- Yuan, H.; Tang, J.; Hu, X.; Ji, S. Xgnn: Towards model-level explanations of graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual, 6–10 July 2020; pp. 430–438. [Google Scholar]
- Shen, Y.; Huang, W.; Wang, Z.-g.; Xu, D.-f.; Liu, C.-Y. A deep learning framework for aerodynamic pressure prediction on general three-dimensional configurations. Phys. Fluids 2023, 35, 107111. [Google Scholar] [CrossRef]
- Kashefi, A.; Mukerji, T. Physics-informed PointNet: A deep learning solver for steady-state incompressible flows and thermal fields on multiple sets of irregular geometries. J. Comput. Phys. 2022, 468, 111510. [Google Scholar] [CrossRef]
- Xiong, F.; Zhang, L.; Xiao, H.; Chengkun, R. A point cloud deep neural network metamodel method for aerodynamic prediction. Chin. J. Aeronaut. 2023, 36, 92–103. [Google Scholar] [CrossRef]
- Menter, F.R.; Langtry, R.B.; Likki, S.R.; Suzen, Y.B.; Huang, P.G.; Völker, S. A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation. J. Turbomach. 2004, 128, 413–422. [Google Scholar] [CrossRef]
- Asif, N.A.; Sarker, Y.; Chakrabortty, R.K.; Ryan, M.J.; Ahamed, M.H.; Saha, D.K.; Badal, F.R.; Das, S.K.; Ali, M.F.; Moyeen, S.I. Graph neural network: A comprehensive review on non-euclidean space. IEEE Access 2021, 9, 60588–60606. [Google Scholar] [CrossRef]
- Otsuzuki, T.; Hayashi, H.; Zheng, Y.; Uchida, S. Regularized pooling. In Artificial Neural Networks and Machine Learning–ICANN 2020, Proceedings of the 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, 15–18 September 2020, Proceedings, Part II 29; Springer International Publishing: Cham, Switzerland, 2020; pp. 241–254. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Zhou, K.; Dong, Y.; Wang, K.; Lee, W.S.; Hooi, B.; Xu, H.; Feng, J. Understanding and resolving performance degradation in deep graph convolutional networks. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Virtual, 1–5 November 2021; pp. 2728–2737. [Google Scholar]
- Wang, Q.; Ma, Y.; Zhao, K.; Tian, Y. A comprehensive survey of loss functions in machine learning. Ann. Data Sci. 2020, 9, 187–212. [Google Scholar] [CrossRef]
- Zhang, Y.; Tiňo, P.; Leonardis, A.; Tang, K. A survey on neural network interpretability. IEEE Trans. Emerg. Top. Comput. Intell. 2021, 5, 726–742. [Google Scholar] [CrossRef]
- Bau, D.; Zhu, J.-Y.; Strobelt, H.; Lapedriza, A.; Zhou, B.; Torralba, A. Understanding the role of individual units in a deep neural network. Proc. Natl. Acad. Sci. USA 2020, 117, 30071–30078. [Google Scholar] [CrossRef]
- Neshatfar, S.; Magner, A.; Sekeh, S.Y. Promise and Limitations of Supervised Optimal Transport-Based Graph Summarization via Information Theoretic Measures. IEEE Access 2023, 11, 87533–87542. [Google Scholar] [CrossRef]
- Mishra, S.; Molinaro, R. Estimates on the generalization error of physics-informed neural networks for approximating PDEs. IMA J. Numer. Anal. 2023, 43, 1–43. [Google Scholar] [CrossRef]
- Rao, C.; Sun, H.; Liu, Y. Physics-informed deep learning for incompressible laminar flows. Theor. Appl. Mech. Lett. 2020, 10, 207–212. [Google Scholar] [CrossRef]
- Tangsali, K.M. Aerodynamic Flow Field Prediction across Geometric and Physical-Fluidic Variations Using Data-Driven and Physics Informed Deep Learning Models. Master’s Thesis, Texas A&M University, College Station, TX, USA, 2020. [Google Scholar]
Number of the Nodes | η | Pst |
---|---|---|
32,573 | 0.0176191 | 85214.731 |
101,570 | 0.0163585 | 80511.061 |
174,568 | 0.0163082 | 80328.973 |
295,035 | 0.0162869 | 80060.078 |
408,914 | 0.0162905 | 80058.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, X.; Wang, L.; Wang, C.; Sun, G.; Feng, J.; Zhang, M. Prediction of Transonic Flow over Cascades via Graph Embedding Methods on Large-Scale Point Clouds. Aerospace 2023, 10, 1029. https://doi.org/10.3390/aerospace10121029
Lan X, Wang L, Wang C, Sun G, Feng J, Zhang M. Prediction of Transonic Flow over Cascades via Graph Embedding Methods on Large-Scale Point Clouds. Aerospace. 2023; 10(12):1029. https://doi.org/10.3390/aerospace10121029
Chicago/Turabian StyleLan, Xinyue, Liyue Wang, Cong Wang, Gang Sun, Jinzhang Feng, and Miao Zhang. 2023. "Prediction of Transonic Flow over Cascades via Graph Embedding Methods on Large-Scale Point Clouds" Aerospace 10, no. 12: 1029. https://doi.org/10.3390/aerospace10121029