3D Turbulent Boundary Layer Separation Control by Multi-Discharge Plasma Actuator
Abstract
:1. Introduction
2. Multi-Discharge Actuator
3. Experimental Procedure in a Wind Tunnel
4. Experimental Results
4.1. Characteristics of Turbulent Boundary Layer and 3D Separation Images
4.2. MDA Impact at Various Free Stream Velocities
4.3. Influence of the Force Impact Direction on Separation
4.4. Influence of the Voltage Increase on Separation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cattafesta, L.N.; Sheplak, M. Actuators for Active Flow Control. Annu. Rev. Fluid Mech. 2011, 43, 247–272. [Google Scholar] [CrossRef]
- Enloe, C.L.; McLaughlin, T.E.; VanDyken, R.D.; Kachner, K.D.; Jumper, E.J.; Corke, T.C. Mechanisms and Responses of a Single Dielectric Barrier Plasma Actuator: Plasma Morphology. AIAA J. 2004, 42, 589–594. [Google Scholar] [CrossRef]
- Moreau, E. Airflow Control by Non-Thermal Plasma Actuators. J. Phys. D Appl. Phys. 2007, 40, 605–636. [Google Scholar] [CrossRef]
- Corke, T.C.; Post, M.L.; Orlov, D.M. SDBD Plasma Enhanced Aerodynamics: Concepts, Optimization and Applications. Prog. Aerosp. Sci. 2007, 43, 193–217. [Google Scholar] [CrossRef]
- Corke, T.C.; Enloe, C.L.; Wilkinson, S.P. Dielectric Barrier Discharge Plasma Actuators for Flow Control. Annu. Rev. Fluid Mech. 2010, 42, 505–529. [Google Scholar] [CrossRef]
- Wang, J.-J.; Choi, K.-S.; Feng, L.-H.; Jukes, T.N.; Whalley, R.D. Recent Developments in DBD Plasma Flow Control. Prog. Aerosp. Sci. 2013, 62, 52–78. [Google Scholar] [CrossRef]
- Benard, N.; Moreau, E. Electrical and Mechanical Characteristics of Surface AC Dielectric Barrier Discharge Plasma Actuators Applied to Airflow Control. Exp. Fluids 2014, 55, 1846. [Google Scholar] [CrossRef]
- Kriegseis, J.; Simon, B.; Grundmann, S. Towards In-Flight Applications? A Review on Dielectric Barrier Discharge-Based Boundary-Layer Control. Appl. Mech. Rev. 2016, 68, 020802. [Google Scholar] [CrossRef]
- Corke, T.C.; Bowles, P.O.; He, C.; Matlis, E.H. Sensing and Control of Flow Separation Using Plasma Actuators. Philos. Trans. R. Soc. A 2011, 369, 1459–1475. [Google Scholar] [CrossRef]
- Roth, J.R.; Sherman, D.M.; Wilkinson, S.P. Electrohydrodynamic Flow Control with a Glow-Discharge Surface Plasma. AIAA J. 2000, 38, 1166–1172. [Google Scholar] [CrossRef]
- Sato, M.; Okada, K.; Asada, K.; Aono, H.; Nonomura, T.; Fujii, K. Unified Mechanisms for Separation Control around Airfoil Using Plasma Actuator with Burst Actuation over Reynolds Number Range of 103–106. Phys. Fluids 2020, 32, 025102. [Google Scholar] [CrossRef]
- Maslov, A.; Sidorenko, A.; Zanin, B.; Postnikov, B.; Budovsky, A.; Malmuth, N. Plasma Control of Flow Separation on Swept Wing at High Angles of Attack. In Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 7 January 2008; American Institute of Aeronautics and Astronautics: Reno, NV, USA, 2008. [Google Scholar]
- Kato, K.; Breitsamter, C.; Obi, S. Flow Control over Swept Wings Using Nanosecond-Pulse Plasma Actuator. Int. J. Heat Fluid Flow 2016, 61, 58–67. [Google Scholar] [CrossRef]
- Kato, K.; Breitsamter, C.; Obi, S. Flow Separation Control over a Gö 387 Airfoil by Nanosecond Pulse-Periodic Discharge. Exp. Fluids 2014, 55, 1795. [Google Scholar] [CrossRef]
- Zhao, G.; Li, Y.; Liang, H.; Han, M.; Wu, Y. Flow Separation Control on Swept Wing with Nanosecond Pulse Driven DBD Plasma Actuators. Chin. J. Aeronaut. 2015, 28, 368–376. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Wang, X.; Wang, W.; Tang, K.; Li, H. Turbulent Boundary Layer Separation Control Using Plasma Actuator at Reynolds Number 2000000. Chin. J. Aeronaut. 2016, 29, 1237–1246. [Google Scholar] [CrossRef]
- Nelson, R.; Corke, T.; Othman, H.; Patel, M.; Vasudevan, S.; Ng, T. A Smart Wind Turbine Blade Using Distributed Plasma Actuators for Improved Performance. In Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 7 January 2008; American Institute of Aeronautics and Astronautics: Reno, NV, USA, 2008. [Google Scholar]
- Benard, N.; Mizuno, A.; Moreau, E. A Large-Scale Multiple Dielectric Barrier Discharge Actuator Based on an Innovative Three-Electrode Design. J. Phys. D Appl. Phys. 2009, 42, 235204. [Google Scholar] [CrossRef]
- Berendt, A.; Podliński, J.; Mizeraczyk, J. Multi-DBD Actuator with Floating Interelectrode for Aerodynamic Control. Nukleonika 2012, 57, 249–252. [Google Scholar]
- Debien, A.; Benard, N.; Moreau, E. Streamer Inhibition for Improving Force and Electric Wind Produced by DBD Actuators. J. Phys. D Appl. Phys. 2012, 45, 215201. [Google Scholar] [CrossRef]
- Hao, J.; Tian, B.; Wang, Y.; Song, Y.; Pan, S.; Li, W. Dielectric Barrier Plasma Dynamics for Active Aerodynamic Flow Control. Sci. China Phys. Mech. Astron. 2014, 57, 345–353. [Google Scholar] [CrossRef]
- Sato, S.; Ozawa, Y.; Komuro, A.; Nonomura, T.; Asai, K.; Ohnishi, N. Experimental Demonstration of Low-Voltage Operated Dielectric Barrier Discharge Plasma Actuators Using SiC MOSFETs. J. Phys. D Appl. Phys. 2020, 53, 43LT01. [Google Scholar] [CrossRef]
- Gamirullin, M.D.; Kuryachii, A.P.; Litvinov, V.M.; Chernyshev, S.L. Investigation of a Simplified Scheme of Multiple Plasma Actuator for Boundary Layer Control. TsAGI Sci. J. 2014, 45, 889–901. [Google Scholar] [CrossRef]
- Chernyshev, S.L.; Gamirullin, M.D.; Kuryachii, A.P.; Litvinov, V.M. Simple Design of Multiple Aerodynamic Plasma Actuator. In Proceedings of the Progress in Flight Physics; Knight, D., Bondar, Y., Lipatov, I., Reijasse, P., Eds.; EDP Sciences: Krakow, Poland, 2017; pp. 253–264. [Google Scholar]
- Baranov, S.A.; Chernyshev, S.L.; Khomich, V.Y.; Kiselev, A.P.; Kuryachii, A.P.; Moshkunov, S.I.; Rebrov, I.E.; Sboev, D.S.; Tolkachev, S.N.; Yamshchikov, V.A. Experimental Cross-Flow Control in a 3D Boundary Layer by Multi-Discharge Plasma Actuators. Aerosp. Sci. Technol. 2021, 112, 106643. [Google Scholar] [CrossRef]
- Van Den Berg, B.; Elsenaar, A.; Lindhout, J.P.F.; Wesseling, P. Measurements in an Incompressible Three-Dimensional Turbulent Boundary Layer, under Infinite Swept-Wing Conditions, and Comparison with Theory. J. Fluid Mech. 1975, 70, 127–148. [Google Scholar] [CrossRef]
- Zanin, B.Y.; Kozlov, V.V.; Pavlenko, A.M. Control of Flow Separation from a Model Wing at Low Reynolds Numbers. Fluid Dyn. 2012, 47, 403–410. [Google Scholar] [CrossRef]
- Clauser, F.H. Turbulent Boundary Layers in Adverse Pressure Gradients. J. Aeronaut. Sci. 1954, 21, 91–108. [Google Scholar] [CrossRef]
U0, m/s | δ*, mm | θ, mm | δ99, mm | H = δ*/θ | Reθ | G |
---|---|---|---|---|---|---|
8 | 1.42 | 0.95 | 8.33 | 1.49 | 671 | 7.16 |
18 | 1.49 | 0.96 | 7.56 | 1.55 | 1525 | 7.16 |
36 | 1.38 | 0.87 | 7.24 | 1.59 | 2854 | 7.81 |
U0, m/s | ΔUX, m/s | Xsep 0, mm | Xsep, mm | ΔXsep, mm | ΔXsep/δ* | |||
---|---|---|---|---|---|---|---|---|
4.5 kV | 5 kV | 4.5 kV | 5 kV | 4.5 kV | 5 kV | |||
8 | 0.025 | 527 | 549 | 557 | 22 | 30 | 15.5 | 21.1 |
18 | 0.05 | 534 | 531 | 528 | −3 | −6 | −2 | −4 |
36 | 0.1 | 518 | 518 | 518 | 0 | 0 | 0 | 0 |
U0, m/s | E, kV | f − f0, N/m | (f − f0)/f0 | E, kV | f − f0, N/m | (f − f0)/f0 |
---|---|---|---|---|---|---|
8 | 4.5 | −0.46 | −0.136 | 5 | −0.5 | −0.147 |
18 | 4.5 | −1.35 | −0.07 | 5 | −2.19 | −0.114 |
36 | 4.5 | −2.5 | −0.031 | 5 | −2.88 | −0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chernyshev, S.; Gadzhimagomedov, G.; Kuryachiy, A.; Sboev, D.; Tolkachev, S. 3D Turbulent Boundary Layer Separation Control by Multi-Discharge Plasma Actuator. Aerospace 2023, 10, 869. https://doi.org/10.3390/aerospace10100869
Chernyshev S, Gadzhimagomedov G, Kuryachiy A, Sboev D, Tolkachev S. 3D Turbulent Boundary Layer Separation Control by Multi-Discharge Plasma Actuator. Aerospace. 2023; 10(10):869. https://doi.org/10.3390/aerospace10100869
Chicago/Turabian StyleChernyshev, Sergey, Gadzhi Gadzhimagomedov, Aleksandr Kuryachiy, Dmitry Sboev, and Stepan Tolkachev. 2023. "3D Turbulent Boundary Layer Separation Control by Multi-Discharge Plasma Actuator" Aerospace 10, no. 10: 869. https://doi.org/10.3390/aerospace10100869
APA StyleChernyshev, S., Gadzhimagomedov, G., Kuryachiy, A., Sboev, D., & Tolkachev, S. (2023). 3D Turbulent Boundary Layer Separation Control by Multi-Discharge Plasma Actuator. Aerospace, 10(10), 869. https://doi.org/10.3390/aerospace10100869