Time Series Analysis of Climatic Variables in Peninsular Spain. Trends and Forecasting Models for Data between 20th and 21st Centuries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and General Climate Characteristics
2.2. Statistical Analyses
3. Results
3.1. Homogeneity Tests
3.2. Trend Analysis
3.3. ARIMA Modeling and Forecasting
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vinnikov, K.Y.; Groisman, P.Y.; Lugina, K.M. Empirical Data on Contemporary Global Climate Changes (Temperature and Precipitation). J. Clim. 1990, 3, 662–677. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.D.; Raper, S.C.B.; Wigley, T.M.L. Southern Hemisphere Surface Air Temperature Variations: 1851–1984. J. Clim. Appl. Meteorol. Climatol. 1986, 25, 1213–1230. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Lebedeff, S. Global Trends of Measured Surface Air Temperature. J. Geophys. Res. 1987, 92, 345–372. [Google Scholar] [CrossRef] [Green Version]
- Visser, H.; Molenar, J. Trend Estimation and Regression Analysis in Climatological Time Series: An application of Structural Time Series Models and Kalman Filter. J. Clim. 1995, 8, 969–979. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Basher, R.E. Structural Time Series Models and Trend Detection in Global and Regional Temperature Series. J. Clim. 1999, 12, 2347–2358. [Google Scholar] [CrossRef]
- Seater, J.J. World Temperature-Trend Uncertainties and Their Implications for Economic Policy. J. Bus. Econ. Stat. 1993, 11, 265–277. [Google Scholar] [CrossRef]
- Harvey, D.I.; Mills, T.C. Modelling Global Temperature Trends Using Cointegration and Smooth Transition. Stat. Model. 2001, 1, 143–159. [Google Scholar] [CrossRef]
- Mudelsee, M. Trend Analysis of Climate Time Series: A Review of Methods. EarthSci. Rev. 2019, 190, 310–322. [Google Scholar] [CrossRef]
- Schönwiese, C.D.; Rapp, J. Climate Trend Atlas of Europe Based on Observations 1891–1990; Kulver Academic Publishers: Dordrecht, The Netherlands, 1997; p. 235. [Google Scholar] [CrossRef]
- Klein Tank, A.M.G.; Können, G.P.; Selten, F.M. Signals of Anthropogenic Influence on European Warming as Seen in the Trends Patterns of Daily Temperature Variance. Int. J. Climatol. 2005, 25, 1–16. [Google Scholar] [CrossRef]
- Moberg, A.; Jones, P.D.; Lister, D.; Walther, A.; Brunet, M.; Jacobeit, J.; Alexander, L.V.; Della-Marta, P.M.; Luterbacher, J.; Yiou, P.; et al. Indices for Daily Temperature and Precipitation Extremes in Europe Analyzed for the Period 1901–2000. J. Geophys. Res. Atmos. 2006, 111, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Brunet, M.; Saladié, O.; Jones, P.D.; Sigró, J.; Aguilar, E.; Moberg, A.; Lister, D.; Walther, A.; López, D.; Almarza, C. The Development of a New Dataset of Spanish Daily Adjusted Temperature Series (SDATS) (1850–2003). Int. J. Climatol. 2006, 26, 1777–1802. [Google Scholar] [CrossRef]
- Prieto, L.; García Herrera, R.; Díaz, J.; Hernández, E.; del Teso, T. Minimum Extreme Temperatures over Peninsular Spain. Glob. Planet. Chang. 2004, 44, 59–71. [Google Scholar] [CrossRef]
- Peña-Angulo, D.; Brunetti, M.; González-Hidalgo, J.C.; Cortesi, N. Climatología de Alta Resolución Espacial de los Promedios de las Temperaturas Máximas y Mínimas Estacionales y Anuales de la España Peninsular (1951–2010). In Análisis Espacial y Representación Geográfica: Innovación y Aplicación; de la Riva, J., Ibarra, P., Montorio, R., Rodrigues, M., Eds.; Universidad de Zaragoza-Zaragoza. AGE: Zaragoza, España, 2015; pp. 1803–1812. ISBN 978-84-92522-95-8. [Google Scholar]
- Westra, S.; Alexander, L.V.; Zwiers, F.W. Global Increasing Trends in Annual Maximum Daily Precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef] [Green Version]
- Lau, W.K.-M.; Wu, H.-T.; Kim, K.-M. A Canonical Response of Precipitation Characteristics to Global Warming from CMIP5 Models. Geophys. Res. Lett. 2013, 40, 3163–3169. [Google Scholar] [CrossRef]
- Ren, L.; Arkin, P.; Smith, T.M.; Shen, S.S.P. Global Precipitation Trends in 1900–2005 from a Reconstruction and Coupled Model Simulations. J. Geophys. Res. Atmos. 2013, 118, 1679–1689. [Google Scholar] [CrossRef]
- Wang, B.; Li, X.; Huang, Y.; Zhai, G. Decadal Trends of the Annual Amplitude of Global Precipitation. Atmos. Sci. Lett. 2016, 17, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Klein Tank, A.M.G.; Können, G.P. Trends in indices of daily temperature and precipitation extremes in Europe, 1946–1999. J. Clim. 2003, 16, 3665–3680. [Google Scholar] [CrossRef]
- Klein Tank, A.M.G.; Wijngaard, J.B.; Können, G.P.; Böhm, R.; Demarée, G.; Gocheva, A.; Mileta, M.; Pashiardis, S.; Hejkrlik, L.; Kern-Hansen, C.; et al. Daily Dataset of 20th-Century Surface Air Temperature and Precipitation Series for the European Climate Assessment. Int. J. Climatol. 2002, 22, 1441–1453. [Google Scholar] [CrossRef]
- Kivinen, S.; Rasmus, S.; Jylhä, K.; Laapas, M. Long-Term Climate Trends and Extreme Events in Northern Fennoscandia (1914–2013). Climate 2017, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Argueso, D.; Hidalgo-Muñoz, J.M.; Gamiz-Fortis, S.R.; Esteban-Parra, M.J.; Castro-Diez, Y. Evaluation of WRF Mean and Extreme Precipitation over Spain: Present Climate (1970–1999). Am. Meteorol. Soc. 2012, 25, 4883–4897. [Google Scholar] [CrossRef]
- Esteban-Parra, M.; Rodrigo, F.; Castro, M.Y. Spatial and Temporal Patterns of Precipitation in Spain for the Period 1880–1992. Int. J. Climatol. 1998, 18, 1557–1574. [Google Scholar] [CrossRef]
- Goodess, C.M.; Jones, P.D. Links between Circulation and Changes in the Characteristics of Iberian Rainfall. Int. J. Climatol. 2002, 22, 1593–1615. [Google Scholar] [CrossRef]
- Rodrigo, F.S.; Trigo, R.M. Trends in Daily Rainfall in the Peninsular Spain from 1951 to 2002. Int. J. Climatol. 2007, 27, 513–529. [Google Scholar] [CrossRef]
- Ayuga, E.; González, C.; Montero, M.J.; Robredo, J.C. Modelos Estadísticos de Predicción ARIMA de Precipitaciones en Dos Estaciones Españolas Representativas de dos Grupos con Diferentes Características Climáticas. In Cambio Climático Regional y Sus Impactos; Rodríguez, J.S., India, M.B., Anfrons, E.A., Eds.; Sociedad Española de Climatología (AEC): Tarragona, Spain, 2008; pp. 15–24, Serie A nº 6; 823p, ISBN 978-84-612-6051-5. [Google Scholar]
- González-Hidalgo, J.C.; Brunetti, M.; de Luis, M. Precipitation Trends in Spanish Hydrological Divisions, 1946–2005. Clim. Res. 2010, 43, 215–228. [Google Scholar] [CrossRef]
- González-Hidalgo, J.C.; Brunetti, M.; de Luis, M. A New Tool for Monthly Precipitation Analysis in Spain: MOPREDAS Database (Monthly Precipitation Trends December 1945 November 2005). Int. J. Climatol. 2011, 31, 715–731. [Google Scholar] [CrossRef]
- Navar, J.; Lizarraga-Mendiola, L. Hydro-Climatic Variability and Forest Fires in Mexico’s Northern Temperate Forests. GeofísicaInt 2013, 52, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Mulomba Mukadi, P.; Gonzalez-Garcia, C. Study Trends and Modelling of Historical Series of Precipitation and Temperatures in Andalucía (Spain). In International Work-Conference on Time Series Analysis (ITISE 2016). Proceedings of the ITISE 2016 International Work-Conference on Time Series, Granada, Spain, 27–29 June 2016; Depósito Legal: Gr-820/2016; Wiley: Hoboken, NJ, USA, 2016; pp. 841–850. ISBN 978-84-16478-93-4. [Google Scholar]
- Ruiz-Sinoga, J.D.; Garcia-Marin, R.; Gabarron-Galeote, M.A.; Martinez-Murillo, J.F. Analysis of Dry Periods along a Pluviometric Gradient in Mediterranean Southern Spain. Int. J. Climatol. 2012, 32, 1558–1571. [Google Scholar] [CrossRef]
- Paul, R.K.; Paul, A.K.; Bhar, L.M. Wavelet-Based Combination Approach for Modeling Sub-Divisional Rainfall in India. Theor. Appl.Climatol. 2020, 139, 949–963. [Google Scholar] [CrossRef]
- Murat, M.; Malinowska, I.; Gos, M.; Krzyszczak, J. Forecasting Daily Meteorological Time Series Using ARIMA and Regression Models. Int. Agrophys. 2018, 32. [Google Scholar] [CrossRef]
- Available online: www.juntadeandalucia.es/medioambiente/site/portalweb/menuitem.7e1cf46ddf59bb227a9ebe205510e1ca/?vgnextoid=3beae207c1935310VgnVCM2000000624e50aRCRD&vgnextchannel=871e4d0e54345310VgnVCM1000001325e50aRCRD (accessed on 22 March 2020).
- Serrano, S.M.V.; Beguería, S.; López-Moreno, J.I.; García-Vera, M.A.; Stepanek, P. A Complete Daily Precipitation Database for Northeast Spain: Reconstruction, Quality Control, and Homogeneity. Int. J. Climatol. 2010, 30, 1146–1163. [Google Scholar] [CrossRef] [Green Version]
- González Rouco, J.F.; Jiménez, J.L.; Quesada, V.; Valero, F. Quality Control and Homogeneity of Precipitation Data in Southwest of Europe. Int. J. Climatol. 2001, 14, 964–978. [Google Scholar] [CrossRef] [Green Version]
- Alexandersson, H. A Homogeneity Test Applied to Precipitation Data. J. Climatol. 1986, 6, 661–675. [Google Scholar] [CrossRef]
- Lilliefors, H.W. On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. J. Am. Stat. Assoc. 1967, 62, 399–402. Available online: www.jstor.org/stable/2283970 (accessed on 6 April 2021). [CrossRef]
- González-Hidalgo, J.C.; Peña-Angulo, D.; Celia, S.S.; Azucena, J.C.; Brunetti, M. Variaciones Recientes de las Temperaturas en España: El Efecto del Periodo Elegido en las Tendencias de las Series Estacionales de Promedios de Máximas y Mínimas. In Clima, Sociedad, Riesgos y Ordenación del Territorio; Cantos, J.O., Amorós, A.R., Antonio, M., Mantero, E.M., Eds.; Alicante: Instituto Interuniversitario de Geografía, Universidad de Alicante; Asociación Española de Climatología: Sevilla, Spain, 2016; pp. 471–481. Available online: hdl.handle.net/10045/58013 (accessed on 15 April 2017)ISBN 978-84-16724-19-2.
- Mann, H.B. Non Parametric Tests against Trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar]
- Kendall, M.G. Rank Correlation Methods, 2nd ed.; Hafner: New York, NY, USA, 1975. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M. Times Series Analysis, Forecasting and Control; Taylor & Francis on behalf of the American Statistical Association (USA): San Francisco, CA, USA, 1976; ISBN 13: 9780816211043. [Google Scholar]
- González-García, C. AnálisisEstadísticoComparativo de Series Cronológicas de Parámetros de Calidad del Agua; Valoración de Diferentes Modelos de Predicción. Ph.D. Thesis, Universidad Politécnica de Madrid, 1989. Available online: oa.upm.es/1887/1/CONCEPCION_GONZALEZ_GARCIA_a.pdf (accessed on 16 September 2017).
- Ayuga-Téllez, E.; García-Angulo, C.; González-García, C.; Martín-Fernández, S.; Martínez-Falero, E. Gestión de Conocimiento y Toma de Decisiones; Falero, M., Ed.; FUCOVASA: Madrid, Spain, 2013. [Google Scholar]
- Bladé, I.; Castro Díez, Y. Tendencias Atmosféricas en la Península Ibérica Durante el Periodo Instrumental en el Contexto de la Variabilidad Natural. In Climaen España: Pasado, Presente y Futuro; Pérez, F., Boscolo, R., Eds.; Ministerio de Ciencia e Innovación (España): Madrid, Spain, 2010; pp. 25–42. [Google Scholar]
- Box, G.E.P.; Pierce, D.A. Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models. J. Am. Stat. Assoc. 1970, 65, 1509–1526, JSTOR 2284333. [Google Scholar] [CrossRef]
- Toreti, A.; Kuglitsch, F.G.; Xoplaki, E.; Della-Marta, P.; Aguilar, E.; Prohom, M.; Luterbacher, J. A Note on the Use of the Standard Normal Homogeneity Test (SNHT) to Detect Inhomogeneities in Climatic Time Series. Int. J. Climatol. 2011, 31, 630–632. [Google Scholar] [CrossRef]
- González-Hidalgo, J.C.; Peña-Angulo, D.; Brunetti, M.; Cortesi, C. Recent Trend in Temperature Evolution in Spanish Mainland (1951–2010): From Warming to Hiatus. Int. J. Climatol. 2016, 36, 2405–2416. [Google Scholar] [CrossRef]
- Cruz, R.; Lage, A. Análisis de la Evolución de la Temperatura y Precipitación en el Periodo1973–2004 en Galicia. In Clima, Sociedad y Medio Ambiente; Cuadrat, J.M., Saz, M.A., Vicente Serrano, S.M., Lanjeri, S., de Luis, M., González-Hidalgo, J.C., Eds.; Asociación Española de Cimatología. serie A, nº5; Zaragoza, Spain, 2006; pp. 113–124. Available online: aeclim.org/wp-content/uploads/2016/02/0009_PU-SA-V-2006-R_CRUZ.pdf (accessed on 17 April 2016).
- Brunet, M.; Jones, P.D.; Sigró, J.; Saladié, O.; Aguilar, E.; Moberg, A.; Della-Marta, P.; Lister, D.; Walther, A.; López, D. Temporal and Spatial Temperature Variability and Change over Spain during 1850–2005. J. Geophys. Res. 2007, 112, D12117. [Google Scholar] [CrossRef] [Green Version]
- Del Río, S.; Herrero, L.; Pinto-Gomes, C.; Penas, A. Spatial Analysis of Mean Temperature Trends in Spain over the Period 1961–2006. Glob. Planet. Chang. 2011, 78, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Fasullo, J.T. An apparent hiatus in global warming? Earth’s Future 2013, 1, 19–32. [Google Scholar] [CrossRef]
- Meehl, G.A. Decadal Climate Variability and the Early-2000s Hiatus. Newsl. US Clivar. Var. 2015, 13, 1–6. Available online: pdfs.semanticscholar.org/9873/68d6a3f52a72bad264843b65f81f3524a1b3.pdf (accessed on 11 July 2016).
- Morales, C.G.; Labajo Salazar, J.L.; Piorno Hernández, A.; Ortega, M.T. Recent Trends and Temporal Behavior of Thermal Variables in the Region of Castilla-León (Spain). Atmósfera 2005, 18, 71–90. [Google Scholar]
- Del Río, S.; Fraile, R.; Herrero, L. Analysis of Recent Trends in Mean Maximum and Minimum Temperatures in a Region of the NW of Spain (Castilla Y León). Theor. Appl. Climatol. 2007, 90, 1–12. [Google Scholar] [CrossRef]
- Labajo, J.L.; Piorno, A. Comportamiento de Variables Climáticas en Castilla y León: Temperatura Mínima Media Anual. In La Climatología Española en Los Albores del SigloXXI; Raso, J.M., Martín-Vide, J., Eds.; Publicaciones de la A. E. C. Serie A, n° 1; Scientific Research Publishing: Zaragoza, Spain, 1999; pp. 259–266. [Google Scholar]
- Del Río, S.; Penas, A.; Fraile, R. Analysis of Recent Climatic Variations in Castile and Leon (Spain). Atmos. Res. 2005, 73, 69–85. [Google Scholar] [CrossRef]
- El Kenawy, A.; López-Moreno, J.I.; Vicente-Serrano, P.S.M. An Assessment of the Role of Homogenization Protocol in the Performance of Daily Temperature Series and Trends: Applicationto Northeastern Spain. Int. J. Climatol. 2013, 33, 87–108. [Google Scholar] [CrossRef] [Green Version]
- Oñate, J.J.; Pou, A. Temperature Variations in Spain since 1901: A Preliminary Analysis. Int. J. Climatol. 1996, 16, 805–815. [Google Scholar] [CrossRef]
- Serrano, A.; Mateos, V.L.; García, J.A. Trend Analysis of Monthly Precipitation over the Iberian Peninsula for the Period 1921–1995. Phys. Chem. Earth PartBHydrol. Ocean. Atmos. 1999, 24, 85–90. [Google Scholar] [CrossRef]
- Lana, X.; Burgueño, A. Some Statistical Characteristics of Monthly and Annual Pluviometric Irregularity for the Spanish Mediterranean Coast. Theor. Appl.Climatol. 2000, 65, 79–97. [Google Scholar] [CrossRef]
- New, M.; Todd, M.; Hulme, M.; Jones, P. Precipitation Measurements and Trends in the Twentieth Century. Int. J. Climatol. 2001, 21, 1899–1922. [Google Scholar] [CrossRef]
- Douguedroit, A.; Norrant, C. Tendances Récentes des Précipitations et Des Pressions de Surface dans le BassinMéditerranéen. Ann.Géogr. 2003, 631, 298–305. Available online: www.persee.fr/doc/geo_0003-4010_2003_num_112_631_917 (accessed on 2 October 2016).
- Sotillo, M.G.; Martín, M.L.; Valero, F.; Luna, M.Y. Validation of a Homogeneous 41-Year (1961–2001) Winter Precipitation Hind Casted Dataset Over the Iberian Peninsula: Assessmentof the Regional Improvement of Global Reanalysis. Clim. Dyn. 2006, 27, 627–645. [Google Scholar] [CrossRef]
- Douguedroit, A.; Norrant, C. Monthly and Daily Precipitation Trends in the Mediterranean (1950–2000). Theor. Appl. Climatol. 2006, 83, 89–106. [Google Scholar] [CrossRef]
- Valero, F.; Martín, M.L.; Sotillo, M.G.; Morata, A.; Luna, M.Y. Characterization of the Autumn Iberian Precipitation from Long-Term Datasets: Comparisonbetween Observed and Hindcasted Data. Int. J. Climatol. 2009, 29, 527–541. [Google Scholar] [CrossRef]
- Mosmann, V.; Castro, A.; Fraile, R.; Dessens, J.; Sanchez, J.L. Detection of Statistically Significant Trends in the Summer Precipitation of Mainland Spain. Atmos. Res. 2004, 70, 43–53. [Google Scholar] [CrossRef]
- Serrano, A.; García, A.J.; Mateos, V.L.; Cancillo, M.L.; Garrido, J. Monthly Modes of Variation of Precipitation Over the Iberian Peninsula. J. Clim. 1999, 12, 2894–2919. [Google Scholar] [CrossRef]
- Cuadrat, J.M.; Serrano, R.; Saz, M.A.; Marín, J.M. PatronesTemporales y Espaciales de la Precipitación en Aragón Desde1950. Geographicalia 2011, 59–60, 85–94. [Google Scholar] [CrossRef] [Green Version]
- De Luis, M.; Longares, L.A.; Stepanek, P.; González-Hidalgo, J.C. Tendencias Estacionales de la Precipitación en la Cuenca de Ebro 1951–2000. Geographicalia 2007, 52, 53–78. [Google Scholar] [CrossRef] [Green Version]
- Cuadrat, J.M.; Serrano, R.; Saz , A.Z. Patrones temporales y espaciales de la precipitation en Aragón desde 1950. Geographicalia 2011, 59, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A.; Stocker, T.F.; Collins, W.D.; Friedlingstein, P.; Gaye, A.T.; Gregory, J.M.; Kitoh, A.; Knutti, R.; Murphy, J.M.; Noda, A.; et al. Global Climate Projections, in Climate Change: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; Available online: www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-chapter10-1.pdf (accessed on 14 May 2016).
- De Luis, M.; Vicente, S.M.; González-Hidalgo, J.C.; Raventós, J. Aplicación de las Tablas de Contingencia (Cross-Tab-Analysis) al AnálisisEspacial de TendenciasClimáticas en el Sector Oriental de la PenínsulaIbérica. Cuad. Investig. Geogr. 2003, 29, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, V.R.; Sánchez-Lorenzo, A.; Marín, R.G. Creación de Una Base de Datos con Series Largas de Precipitación en la Regiónde Murcia y Análisis Temporal de la Serie Media Anual, 1914–2013. Rev. Climatol. 2014, 14, 81–97. [Google Scholar]
- Guirado, S.G.; Bermúdez, F.L. Tendencia de las Precipitaciones y Temperaturas en Una Pequeña Cuenca Fluvial del Sureste Peninsular Semiárido. Boletín Asoc. Geógrafos Españoles 2011, 56, 349–371. [Google Scholar]
- González-Hidalgo, J.C.; Lopez-Bustins, J.A.; Stepánek, P.; Martin-Vide, J.; De Luis, M. Monthly Precipitation Trends on the Mediterranean Fringe of the Iberian Peninsula during the Second-Half of the Twentieth Century (1951–2000). Int. J. Climatol. 2009, 29, 1415–1429. [Google Scholar] [CrossRef]
- Romero, R.; Guijarro, J.A.; Alonso, S. A 30-Year (1964–1993) Daily Rainfall Data Base for the Spanish Mediterranean Regions: First Exploratory Study. Int. J. Climatol. 1998, 18, 541–560. [Google Scholar] [CrossRef]
- Lana, X.; Burgueno, A.; Martínez, M.D.; Serra, C. A Review of Statistical Analyses on Monthly and Daily Rainfall in Catalonia. Tethys 2009, 6, 15–29. [Google Scholar] [CrossRef] [Green Version]
- De Luis, M.; Raventós, J.; González-Hildago, J.C.; Sánchez, J.R.; Cortina, J. Spatial Analysis of Rainfall Trends in the Region of Valencia (East Spain). Int. J. Climatol. 2000, 20, 1451–1469. [Google Scholar] [CrossRef]
- Guijarro, J.A. Tendencias de la Precipitación en El Litoral Mediterráneo Español. In El Agua y elClima. Publicaciones de la Sociedad Española de Climatología; Pastor, J.A.G., Ed.; Palma de Mallorca, España, 2002; pp. 237–246. ISBN 84-7632-757-9. Available online: repositorio.aemet.es/bitstream/20.500.11765/9143/1/0025_PU-SA-III-2002-JA_GUIJARRO.pdf (accessed on 8 July 2016).
- Sheth, M.; Gundreddy, M.; Shah, V.; Suess, E. Spatial and Temporal Trends in Weather Forecasting and Improving Predictions with ARIMA Modeling. In Proceedings of the Joint Statistical Meeting, Vancouver, BC, Canada, July 28–August 2 2018. [Google Scholar]
- Mahsin, M.D.; Akhter, Y.; Begum, M. Modeling Rainfall in Dhaka Division of Bangladesh Using Time Series Analysis. J. Math. Model. Appl. 2012, 1, 67–73. [Google Scholar]
- Wanishsakpong, W.; Owusu, B.E. Optimal Time Series Model for Forecasting Monthly Temperature in the Southwestern Region of Thailand. Model. Earth Syst. Environ. 2020, 6, 525–532. [Google Scholar] [CrossRef]
Autonomy Community | Station | Period | Data Sample (n/num. years) | Altitude (m) | Latitude | Longitude |
---|---|---|---|---|---|---|
Aragón | Zaragoza | 1983–2013 | 372/30 | 225 | 41°43′30″ N | 00°48′39″ W |
Huesca | 1983–2013 | 372/30 | 390 | 42°01′50″ N | 00°35′05″ W | |
Teruel | 1983–2013 | 372/30 | 1043 | 40°32′30″ N | 01°01′53″ W | |
Asturias | Oviedo | 1972–2013 | 504/41 | 336 | 43°21′12″ N | 05°52′27″ W |
Cantabria | Santander | 1954–2013 | 720/59 | 5 | 43°25′45″ N | 03°49′53″ W |
La Rioja | Logroño | 1983–2013 | 372/30 | 353 | 42°27′08″ N | 02°19′52″ W |
Navarra | Pamplona | 1954–2013 | 720/59 | 450 | 42°49′04″ N | 01°38′18″ W |
Basque Country | Vizcaya | 1983–2013 | 372/30 | 29 | 43°17′26″ N | 02°52′24″ W |
Gipuzkoa | 1983–2013 | 372/30 | 251 | 43°18′23″ N | 02°02′28″ W | |
Álava | 1983–2013 | 372/30 | 563 | 42°53′20″ N | 02°40′22″ W | |
Galicia | A Coruña | 1961–2013 | 636/52 | 58 | 43°21′57″ N | 08°25′17″ W |
Pontevedra | 1963–2013 | 600/50 | 108 | 42°26′18″ N | 08°36′57″ W | |
Ourense | 1949–2013 | 780/64 | 400 | 42°25′10″ N | 08°05′12″ W | |
Lugo | 1985–2013 | 348/28 | 445 | 43°06′41″ N | 07°27′27″ W | |
Castile and León | Valladolid | 1951–2013 | 756/62 | 735 | 41°38′27″ N | 04°45′16″ W |
Ávila | 1983–2013 | 372/30 | 1130 | 40°39′33″ N | 04°40′48″ W | |
Salamanca | 1983–2013 | 372/30 | 775 | 40°57′27″ N | 05°39′44″ W | |
Palencia | 1984–2013 | 360/29 | 874 | 41°59′44″ N | 04°36′10″ W | |
Segovia | 1989–2013 | 300/24 | 1005 | 40°56′43″ N | 04°07′35″ W | |
Zamora | 1983–2013 | 372/30 | 802 | 41°13′55″ N | 05°29′52″ W | |
Burgos | 1983–2013 | 372/30 | 1001 | 42°19′20″ N | 03°27′32″ W | |
Soria | 1983–2013 | 372/30 | 1082 | 41°46′30″ N | 02°28′59″ W | |
León | 1983–2013 | 372/30 | 916 | 42°35′18″ N | 05°39′04″ W | |
Castilla–La Mancha | Albacete | 1967–2013 | 564/46 | 702 | 38°57′06″ N | 01°51′45″ W |
Ciudad real | 1971–2013 | 516/42 | 628 | 38°59′21″ N | 03°55′13″ W | |
Guadalajara | 1949–2013 | 780/64 | 639 | 40°39′33″ N | 03°10′24″ W | |
Toledo | 1975–2013 | 468/38 | 478 | 39°56′35″ N | 03°54′57″ W | |
Cuenca | 1983–2013 | 372/30 | 900 | 40°04′30″ N | 02°12′17″ W | |
Extremadura | Badajoz | 1983–2013 | 372/30 | 185 | 38°53′00″ N | 06°48′50″ W |
Cáceres | 1983–2013 | 372/30 | 362 | 39°47′20″ N | 06°23′37″ W | |
Madrid | Madrid | 1983–2013 | 372/30 | 609 | 40°28′00″ N | 03°33′20″ W |
Cataluña | Tarragona | 1984–2013 | 360/29 | 53 | 41°06′42″ N | 01°08′42″ E |
Girona | 1974–2013 | 480/39 | 143 | 41°54′42″ N | 02°45′48″ E | |
Lleida | 1972–2013 | 504/41 | 217 | 41°36′32″ N | 00°41′43″ E | |
Barcelona | 1968–2013 | 552/45 | 4 | 41°17′34″ N | 02°04′12″ E | |
País Valenciano | Valencia | 1983–2013 | 372/30 | 69 | 39°29′07″ N | 00°28′28″ W |
Alicante | 1968–2013 | 552/45 | 43 | 38°16′58″ N | 00°34′15″ W | |
Castellón | 1976–2013 | 456/37 | 43 | 39°57′26″ N | 00°04′19″ W | |
Murcia | Murcia | 1983–2013 | 372/30 | 57 | 37°59′28″ N | 01°07′42″ W |
Andalucía | Jaén | 1989–2013 | 300/24 | 580 | 37°46′39″ N | 03°48′32″ W |
Sevilla | 1962–2013 | 624/51 | 34 | 37°25′00″ N | 05°52′45″ W | |
Granada | 1940–2013 | 888/73 | 690 | 37°08′10″ N | 03°38′00″ W | |
Málaga | 1951–2013 | 756/62 | 500 | 36°46′42″ N | 04°23′03″ W | |
Almería | 1968–2013 | 552/45 | 21 | 36°50′47″ N | 02°21′25″ W | |
Córdoba | 1986–2013 | 336/27 | 90 | 37°50′39″ N | 04°50′46″ W | |
Cádiz | 1983–2013 | 372/30 | 2 | 36°29′59″ N | 06°15′28″ W | |
Huelva | 1983–2013 | 372/30 | 51 | 37°16′29″ N | 06°50′17″ W |
Province | Temperature Trend | Temperature Coefficient | Temperature p-Value | Precipitation Trend | Precipitation Coefficient | Precipitation p-Value |
---|---|---|---|---|---|---|
Oviedo | T = 11.6 + 0.0027t | 0.0027 | 0.0246 | N.S. (−) | −0.0005 | 0.972 |
Santander | T = 13.0 + 0.0025t | 0.0025 | 0.0002 | T = 122 − 0.041t | −0.041 | 0.00233 |
A Coruña | T = 13.2 + 0.0028t | 0.0028 | 0.000064 | N.S. (+) | 0.0061 | 0.6424 |
Ourense | T = 6.5 + 0.0035t | 0.0035 | 0.000007 | T = 184 − 0.0476t | −0.0476 | 0.00305 |
Valladolid | T = 11.3 + 0.0022t | 0.0022 | 0.0363 | N.S. (+) | 0.0035 | 0.495 |
Salamanca | T = 8.8 + 0.0063t | 0.0063 | 0.0398 | N.S. (−) | −0.0012 | 0.9265 |
Zamora | N.S. (+) | 0.0006 | 0.8317 | T = 54.8 − 0.042t | −0.042 | 0.002665 |
Burgos | N.S. (+) | 0.001 | 0.7004 | T = 27 + 0.0428t | 0.0428 | 0.024354 |
Albacete | T = 11.7 + 0.0043t | 0.0043 | 0.0175 | N.S. (−) | −0.0033 | 0.6529 |
Ciudad real | T = 11.8 + 0.0063t | 0.0063 | 0.0027 | N.S. (+) | 0.0082 | 0.4132 |
Toledo | T = 11.5 + 0.0074t | 0.0074 | 0.0052 | N.S. (−) | −0.0074 | 0.4645 |
Girona | T = 12 + 0.0047t | 0.0047 | 0.01554 | N.S. (−) | −0.0227 | 0.1918 |
Barcelona | T = 13.7 + 0.0042t | 0.0042 | 0.003056 | N.S. (−) | −0.0248 | 0.062 |
Castellón | T = 14.5 + 0.0051t | 0.0051 | 0.007174 | N.S. (+) | 0.0042 | 0.7949 |
Jaén | N.S. (+) | 0.0016 | 0.7098 | T = 0.8 + 0.0647t | 0.0647 | 0.0369 |
Sevilla | T = 17 + 0.004t | 0.004 | 0.0028 | N.S. (−) | −0.0227 | 0.0802 |
Málaga | T = 15 + 0.004t | 0.004 | 0.000004 | N.S. (−) | −0.0166 | 0.0802 |
Almería | T = 17.5 + 0.0026t | 0.0026 | 0.0487 | N.S. (−) | −0.0019 | 0.7477 |
Province | Mann–Kendall Trend Test Temp. | Sen’s Slope Temp. | Mann–Kendall Trend Test Preci. | Sen’s Slope Preci. |
---|---|---|---|---|
Oviedo | a.h.: true | 0.0026 | ||
Santander | a.h.: true | 0.0023 | a.h.: true | −0.03 |
A Coruña | a.h.: true | 0.0028 | ||
Ourense | a.h.: true | 0.0034 | a.h.: true | −0.03 |
Valladolid | a.h.: true | 0.0055 | ||
Salamanca | a.h.: true | 0.0055 | ||
Zamora | a.h.: true | −0.022 | ||
Burgos | a.h.: true | 0.04 | ||
Albacete | a.h.: true | 0.0041 | ||
Ciudad real | a.h.: true | 0.0061 | ||
Toledo | a.h.: true | 0.0075 | ||
Girona | a.h.: true | 0.0043 | ||
Barcelona | a.h.: true | 0.0041 | ||
Castellón | a.h.: true | 0.0049 | ||
Jaén | a.h.: true | 0.03 | ||
Sevilla | a.h.: true | 0.0039 | ||
Málaga | a.h.: true | 0.004 | ||
Almería | a.h.: true | 0.0024 |
Serie | Model | Estimated Coefficients (p ≤ 0.05) |
---|---|---|
Zaragoza | ARIMA (1,1,1) × (0,1,1)12 | Wt = 0.133Wt−1 + 0.922at−1 + 0.912at−12 + at 0.019 0.000 0.000 p-v |
Huesca | ARIMA (1,1,1) × (0,1,1)12 | Wt = −0.001 + 0.242Wt−1 + 0.942at−1 + 0.905at−12 + at 0.000 0.000 0.000 p-v |
Teruel | ARIMA (1,0,0) × (0,1,1)12 | Zt = 0.302Zt−1 + 0.948at−12 + at 0.000 0.000 p-v |
Oviedo | ARIMA (1,0,0) × (0,1,1)12 | Zt = 0.024 + 0.17Zt−1 + 0.948at−12 + at 0.000 0.000 p-v |
Santander | ARIMA (1,0,0) × (0,1,1)12 | Zt = 0.022 + 0.221Zt−1 + 0.964at−12 + at 0.000 0.000 p-v |
Pamplona | ARIMA (1,0,0) × (0,1,1)12 | Zt = 0.013 + 0.19Zt−1 + 0.96at−12 + at 0.000 0.000 p-v |
Vizcaya | ARIMA (1,0,1) × (0,1,1)12 | Zt = 0.632Zt−1 + 0.466at−1 + 0.939at−12 + at 0.002 0.044 0.000 p-v |
Gipuzkoa | ARIMA (1,0,0) × (0,1,1)12 | Zt = 0.139Zt−1 + 0.938at−12 + at 0.008 0.000 p-v |
Álava | ARIMA (1,0,1) × (0,1,1)12 | Zt = 0.011 + 0.686Zt−1 + 0.535at−1 + 0.935at−12 + at 0.000 0.012 0.000 p-v |
A Coruña | ARIMA (1,0,1) × (0,1,1)12 | Zt = 0.013 + 0.557Zt−1 + 0.349at−1 + 0.96at−12 + at 0.000 0.038 0.000 p-v |
Pontevedra | ARIMA (1,0,0) × (0,1,1)12 | Zt = −0.007 + 0.218Zt−1 + 0.936at−12 + at 0.000 0.000 p-v |
Ourense | ARIMA (1,1,1) × (0,1,1)12 | Wt = 0.205Wt−1 + 0.949at−1 +0.959at−12 + at 0.000 0.000 0.000 p-v |
Lugo | ARIMA (1,0,0) × (0,1,1)12 | Zt = 0.019 + 0.161Zt−1 + 0.936at−12 + at 0.03 0.00 p-v |
Valladolid | ARIMA (1,0,0) × (0,1,1)12 | Zt = 0.019 + 0.206Zt−1 + 0.963at−12 + at 0.000 0.000 p-v |
Ávila | ARIMA (1,0,0) × (0,1,1)12 | Zt = −0.05 + 0.177Zt−1 +0.937at−12 + at 0.000 0.000 p-v |
Segovia | ARIMA (1,0,0) × (0,1,1)12 | Zt = 0.209Zt−1 + 0.927at−12 + at 0.000 0.000 p-v |
Albacete | ARIMA (1,1,1) × (0,1,1)12 | Wt = 0.156Wt−1 + 0.97at−1 + 0.943at−12 + at 0.000 0.000 0.000 p-v |
Ciudad real | ARIMA (1,1,1) × (0,1,1)12 | Wt = −0.0004 + 0.25Wt−1 + 0.985at−1 + 0.918at−12 + at 0.000 0.000 0.000 p-v |
Cuenca | ARIMA (1,0,0) × (0,1,1)12 | Zt = 0.233Zt−1 + 0.923at−12 + at 0.000 0.000 p-v |
Cáceres | ARIMA (1,0,0) × (1,1,1)12 | Zt = 0.025 + 0.237Zt−1 + 0.047zt−12 + 0.941at−12 + at 0.393 0.000 p-v |
Tarragona | ARIMA (1,0,0) × (0,1,1)12 | Zt = −0.03 + 0.324Zt−1 + 0.8986at−12 + at 0.000 0.000 p-v |
Jaén | ARIMA (1,0,0) × (0,1,1)12 | Zt = 0.233Zt−1 + 0.935at−12 + at 0.000 0.000 p-v |
Sevilla | ARIMA (1,0,0) × (0,1,1)12 | Zt = 0.031 + 0.258Zt−1 + 0.921at−12 + at 0.000 0.000 p-v |
Granada | ARIMA (1,1,1) × (0,1,1)12 | Wt = 0.215Wt−1 + 0.977at−1 + 0.968at−12 + at 0.000 0.000 p-v |
Málaga | ARIMA (1,1,1) × (0,1,1)12 | Wt = 0.266Wt−1 + 0.915at−1 + 0.969at−12 + at 0.000 0.000 p-v |
Almería | ARIMA (1,1,1) × (0,1,1)12 | Wt = 0.229Wt−1 + 0.975at−1 + 0.938at−12 + at 0.000 0.000 0.000 p-v |
Córdoba | ARIMA (0,0,1) × (0,1,1)12 | Zt = 0.029−0.277at−1 + 0.933at−12 + at 0.000 0.000 p-v |
Cádiz | ARIMA (0,0,1) × (0,1,1)12 | Zt = 0.02−0.28at−1 + 0.942at−12 + at 0.000 0.000 p-v |
Huelva | ARIMA (1,0,1) × (0,1,1)12 | Zt = −0.008 + 0.7Zt−1 + 0.447at−1 + 0.942at−12 + at 0.000 0.001 0.000 p-v |
Serie | Model | Estimated Coefficients (p ≤ 0.05) |
---|---|---|
Zaragoza | ARIMA (0,0,0) × (0,1,1)12 | Zt = 0.951at−12 + at 0.000 p-v |
Teruel | ARIMA (1,1,1) × (0,1,1)12 | Wt = 0.108Wt−1 + 0.976at−1 +0.936at−12 + at 0.042 0.000 0.000 p-v |
Oviedo | ARIMA (1,0,0) × (0,1,1) 12 | Zt = 0.015 + 0.113Zt−1 + 0.948at−12 + at 0.011 0.000 p-v |
Logroño | ARIMA (1,0,0) × (0,1,1)12 | Zt = 0.127Zt−1 + 0.909at−12 + at 0.0015 0.000 p-v |
Pamplona | ARIMA (1,0,0) × (0,1,1)12 | Zt = 0.116Zt−1 + 0.957at−12 + at 0.001 0.000 p-v |
Gipuzkoa | ARIMA (0,0,0) × (0,1,1)12 | Zt = 0.928at−12 + at 0.000 p-v |
Álava | ARIMA (0,0,0) × (0,1,1)12 | Zt = 0.925at−12 + at 0.000 p-v |
A Coruña | ARIMA (1,0,0) × (0,1,1)12 | Zt = 0.116Zt−1 + 0.957at−12 + at 0.003 0.000 p-v |
Pontevedra | ARIMA (1,0,0) × (0,1,1)12 | Zt = 0.1Zt−1 + 0.958at−12 + at 0.015 0.000 p-v |
Lugo | ARIMA (1,0,0) × (0,1,1)12 | Zt = 0.272Zt−1 + 0.94at−12 + at 0.000 0.000 p-v |
Valladolid | ARIMA (0,0,0) × (0,1,1)12 | Zt = 0.962at−12 + at 0.000 p-v |
Salamanca | ARIMA (0,0,0) × (0,1,1)12 | Zt = 0.94at−12 + at 0.000 p-v |
Segovia | ARIMA (1,0,0) × (0,1,1)12 | Zt = 0.124Zt−1 + 0.925at−12 + at 0.035 0.000 p-v |
Burgos | ARIMA (0,0,0) × (0,1,1)12 | Zt = 0.935at−12 + at 0.000 p-v |
Soria | ARIMA (1,0,0) × (0,1,1)12 | Zt = 0.167Zt−1 + 0.939at−12 + at 0.001 0.000 p-v |
Albacete | ARIMA (0,1,1) × (0,1,1)12 | Zt = 0.968at−1 + 0.945at−12 + at 0.000 0.000 p-v |
Toledo | ARIMA (0,0,1) × (0,1,1)12 | Zt = −0.176at−1 + 0.947at−12 + at 0.000 0.000 p-v |
Badajoz | ARIMA (1,0,0) × (0,1,1)12 | Zt = 0.178Zt−1 + 0.934at−12 + at 0.000 0.000 p-v |
Tarragona | ARIMA (0,0,0) × (0,1,1)12 | Zt = −0.354 + 0.935at−12 + at 0.000 p-v |
Lleida | ARIMA (0,0,0) × (0,1,1)12 | Zt = 0.953at−12 + at 0.000 p-v |
Valencia | ARIMA (0,0,0) × (0,1,1) 12 | Zt = 0.944at−12 + at 0.000 p-v |
Jaén | ARIMA (1,0,0) × (0,1,1)12 | Zt = 0.205Zt−1 + 0.921at−12 + at 0.000 0.000 p-v |
Sevilla | ARIMA (1,0,0) × (0,1,1)12 | Zt = 0.134Zt−1 + 0.964at−12 + at 0.000 0.000 p-v |
Granada | ARIMA (1,0,0) × (0,1,1)12 | Zt = 0.121Zt−1 + 0.968at−12 + at 0.000 0.000 p-v |
Málaga | ARIMA (0,0,1) × (0,1,1)12 | Zt = −0.117at−1 + 0.971at−12 + at 0.001 0.000 p-v |
Almería | SARIMA (0,1,1)12 | Zt = 0.97at−12 + at 0.000 p-v |
Córdoba | ARIMA (1,0,0) × (1,1,1)12 | Zt = 0.21 + 0.16Zt−1 + 0.12Zt−12 + 0.94at−12 + at 0.004 0.04 0.000 p-v |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mulomba Mukadi, P.; González-García, C. Time Series Analysis of Climatic Variables in Peninsular Spain. Trends and Forecasting Models for Data between 20th and 21st Centuries. Climate 2021, 9, 119. https://doi.org/10.3390/cli9070119
Mulomba Mukadi P, González-García C. Time Series Analysis of Climatic Variables in Peninsular Spain. Trends and Forecasting Models for Data between 20th and 21st Centuries. Climate. 2021; 9(7):119. https://doi.org/10.3390/cli9070119
Chicago/Turabian StyleMulomba Mukadi, Pitshu, and Concepción González-García. 2021. "Time Series Analysis of Climatic Variables in Peninsular Spain. Trends and Forecasting Models for Data between 20th and 21st Centuries" Climate 9, no. 7: 119. https://doi.org/10.3390/cli9070119
APA StyleMulomba Mukadi, P., & González-García, C. (2021). Time Series Analysis of Climatic Variables in Peninsular Spain. Trends and Forecasting Models for Data between 20th and 21st Centuries. Climate, 9(7), 119. https://doi.org/10.3390/cli9070119