Assessment of Climatic Parameters for Future Climate Change in a Major Agricultural State in India
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area Description and Agricultural Dataset for Crop Modeling
2.2. Climatic Datasets and Correction Methodology
2.3. Ensemble Mean Method
2.4. Statistical Analysis of Climate Data
2.4.1. Box and Whisker Diagram (Variation in Historical Simulated Data)
2.4.2. Mean Absolute Error (Evaluation of Models’ Performance)
2.4.3. Taylor Diagram (Association between Observed and Simulated Climate Data)
2.4.4. Mann–Kendall Trend Test (Establishing a Trend in Future Climate Data)
2.4.5. Double Mass Curve (Consistency Between Observed and Simulated Climate Data)
2.4.6. Projected Climate Change
3. Results
3.1. Variability in Historical Data
3.2. Evaluation of Models’ Performance
3.3. Association between Observed and Simulated Climate Data
3.4. Establishing Climatic Variables Trend for All the GCMs
3.5. Consistency between Observed and Simulated Climate Data
3.6. Projected Climate Change during 2020–2059
3.6.1. Precipitation
3.6.2. Maximum Temperature
3.6.3. Minimum Temperature
3.6.4. Solar Radiation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Awal, R.; Bayabil, H.K.; Fares, A. Analysis of Potential Future Climate and Climate Extremes in the Brazos Headwaters Basin, Texas. Water 2016, 8, 603. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Gautam, H.R. Climate Change and Its Impact on Agricultural Productivity in India. J. Climatol. Weather Forecast. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Jena, P.; Azad, S.; Rajeevan, M.N. CMIP5 Projected Changes in the Annual Cycle of Indian Monsoon Rainfall. Climate 2016, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC) Working Group II. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects, Polar Regions; Cambridge University Press: New York, NY, USA, 2014; pp. 1567–1612. [Google Scholar] [CrossRef]
- Gehne, M.; Hamill, T.M.; Kiladis, G.N.; Trenberth, K.E. Comparison of Global Precipitation Estimates across a Range of Temporal and Spatial Scales. J. Clim. 2016, 29, 7773–7795. [Google Scholar] [CrossRef]
- Bosello, F.; Zhang, J. Assessing Climate Change Impacts: Agriculture; FEEM Working Paper No. 94.05; CMCC Research Paper No. 2; Elsevier: New York, NY, USA, 2005; Available online: https://ssrn.com/abstract=771245 (accessed on 31 May 2021).
- Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; et al. The RCP Greenhouse Gas Concentrations and Their Extensions from 1765 to 2300. Clim. Chang. 2011, 109, 213–241. [Google Scholar] [CrossRef] [Green Version]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The Representative Concentration Pathways: An Overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Budhathoki, N.K.; Zander, K.K. Nepalese Farmers’ Climate Change Perceptions, Reality and Farming Strategies. Clim. Dev. 2020, 12, 204–215. [Google Scholar] [CrossRef]
- Dasgupta, P.; Morton, J.F.; Dodman, D.; Karapinar, B.; Meza, F.; Rivera-Ferre, M.G.; Toure Sarr, A.; Vincent, K.E. Rural areas. In Climate Change 2014: Impacts, Adaptation, and Vulnerability; Part A: Global andSectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 613–657. [Google Scholar]
- Fróna, D.; Szenderák, J.; Harangi-Rákos, M. The Challenge of Feeding the World. Sustainability 2019, 11, 5816. [Google Scholar] [CrossRef] [Green Version]
- Jha, R.K.; Kalita, P.K.; Cooke, R.A.; Kumar, P.; Davidson, P.C.; Jat, R. Predicting the Water Requirement for Rice Production as Affected by Projected Climate Change in Bihar, India. Water 2020, 12, 3312. [Google Scholar] [CrossRef]
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aryal, J.P.; Sapkota, T.B.; Khurana, R.; Khatri-Chhetri, A.; Rahut, D.B.; Jat, M.L. Climate Change and Agriculture in South Asia: Adaptation Options in Smallholder Production Systems. Environ. Dev. Sustain. 2020, 22, 5045–5075. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate Change and Livestock: Impacts, Adaptation, and Mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Arora, N.K. Impact of Climate Change on Agriculture Production and Its Sustainable Solutions. Environ. Sustain. 2019, 2, 95–96. [Google Scholar] [CrossRef] [Green Version]
- Mall, R.K.; Singh, R.; Gupta, A.; Srinivasan, G.; Rathore, L.S. Impact of Climate Change on Indian Agriculture: A Review. Clim. Chang. 2006, 78, 445–478. [Google Scholar] [CrossRef] [Green Version]
- Tesfaye, K.; Aggarwal, P.K.; Mequanint, F.; Shirsath, P.B.; Stirling, C.M.; Khatri-Chhetri, A.; Rahut, D.B. Climate Variability and Change in Bihar, India: Challenges and Opportunities for Sustainable Crop Production. Sustainability 2017, 9, 1998. [Google Scholar] [CrossRef] [Green Version]
- Joshi, P.K.; Roy, D.; Sonkar, V.; Tripathi, G. Technologies for Maize, Wheat, Rice and Pulses in Marginal Districts of Bihar and Odisha. In Technological and Institutional Innovations for Marginalized Smallholders in Agricultural Development; Gatzweiler, F.W., von Braun, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 323–367. [Google Scholar] [CrossRef] [Green Version]
- High-Resolution and Bias-Corrected CMIP5 Projections for Climate Change Impact Assessments|Scientific Data. Available online: https://www.nature.com/articles/s41597-019-0343-8 (accessed on 31 May 2021).
- Tang, X.; Zhang, J.; Gao, C.; Ruben, G.B.; Wang, G. Assessing the Uncertainties of Four Precipitation Products for Swat Modeling in Mekong River Basin. Remote Sens. 2019, 11, 304. [Google Scholar] [CrossRef] [Green Version]
- Chisanga, C.; Phiri, E.; Chinene, V.R.N. Statistical Bias Correction of Fifth Coupled Model Intercomparison Project Data from the CGIAR Research Program on Climate Change, Agriculture and Food Security-Climate Portal for Mount Makulu, Zambia. Br. J. Appl. Sci. Technol. 2017, 21, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Yaghoubi, F.; Bannayan, M.; Asadi, G.-A. Performance of Predicted Evapotranspiration and Yield of Rainfed Wheat in the Northeast Iran Using Gridded AgMERRA Weather Data. Int. J. Biometeorol. 2020, 64, 1519–1537. [Google Scholar] [CrossRef]
- Mehrotra, R.; Sharma, A. A Multivariate Quantile-Matching Bias Correction Approach with Auto- and Cross-Dependence across Multiple Time Scales: Implications for Downscaling. J. Clim. 2016, 29, 3519–3539. [Google Scholar] [CrossRef]
- Banacos, P.C. Eastern Region Technical Attachment Box and Whisker Plots for Local Climate Datasets: Interpretation and Creation Using Excel 2007/2010. Interpret. J. Bible Theol. 2011, 1, 2–20. [Google Scholar]
- Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments against Avoiding RMSE in the Literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E. Summarizing Multiple Aspects of Model Performance in a Single Diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Mann, H.B. Non-Parametric Test against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975; p. 272. [Google Scholar]
- Fraile, R. On the Statistical Analysis of Series of Observations: By R. Sneyers. World Meteorological Organization, Geneva, Technical Note N° 143, 1990, U.D.C. 551.501.45, 192 p. Atmos. Res. 1993, 29, 274. [Google Scholar] [CrossRef]
- Karpouzos, D.; Kavalieratou, S.; Babajimopoulos, C. Trend Analysis of Precipitation Data in Pieria Region (Greece). Eur. Water 2010, 30, 30–40. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mahmood, R. Impacts of Air Temperature Variations on the Boro Rice Phenology in Bangladesh: Implications for Irrigation Requirements. Agric. For. Meteorol. 1997, 84, 233–247. [Google Scholar] [CrossRef]
- Sharma, H.L.; Kumar, R. Simulating Phenology and Yield of Rice Using Ceres- Rice Model in North Western Himalayas. Indian J. Plant Physiol. 2005, 10, 280–282. [Google Scholar]
- Shi, W.; Tao, F.; Zhang, Z. A Review on Statistical Models for Identifying Climate Contributions to Crop Yields. J. Geogr. Sci. 2013, 23, 567–576. [Google Scholar] [CrossRef]
- Asare-Nuamah, P.; Botchway, E. Understanding Climate Variability and Change: Analysis of Temperature and Rainfall across Agroecological Zones in Ghana. Heliyon 2019, 5, e02654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, N.; Maharjan, K.; Piya, L. Effect of Climate Variables on Yield of Major Food-Crops in Nepal: A Time-Series Analysis. J. Contemp. Indian Stud. Space Soc. 2011, 1, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Kelkar, S.; Kulkarni, A.; KUNDETI, K. Impact of Climate Variability and Change on Crop Production in Maharashtra, India. Curr. Sci. 2020, 118, 1235–1245. [Google Scholar] [CrossRef]
- Ali, M.; Adham, A.K.M. Impact of Climate Change on Crop Water Demand and Its Implication on Water Resources Planning: Bangladesh Perspective. J. Agrometeorol. 2007, 9, 20–25. [Google Scholar]
- Rao, V.; Subbarao, A.; Rao, G.; Satyanarayana, T.; Narayanan, M.; Venkateshwarlu, B. Impact of Climate Change on Crop Water Requirements and Adaptation Strategies. In Challenges and Opportunities in Agrometeorology; Springer: Berlin/Heidelberg, Germany, 2011; pp. 311–319. [Google Scholar] [CrossRef]
- Nieuwenhuizen, W.N. The Effects of Solar Radiation and Nutrient Solution Temperature on the Uptake of Oxygen by Submerged Roots of Mature Tomato Plants. Plant Soil 1983, 70, 353–366. [Google Scholar] [CrossRef]
- Ferrante, A.; Mariani, L. Agronomic Management for Enhancing Plant Tolerance to Abiotic Stresses: High and Low Values of Temperature, Light Intensity, and Relative Humidity. Horticulturae 2018, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Praveen, B.; Talukdar, S.; Mahato, S.; Mondal, J.; Sharma, P.; Islam, A.R.M.T.; Rahman, A. Analyzing Trend and Forecasting of Rainfall Changes in India Using Non-Parametrical and Machine Learning Approaches. Sci. Rep. 2020, 10, 10342. [Google Scholar] [CrossRef]
- Naidu, C.V.; Durgalakshmi, K.; Krishna, K.; Rao, S.; Satyanarayana, G.; Lakshminarayana, P.; Rao, L. Is Summer Monsoon Rainfall Decreasing over India in the Global Warming Era? J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Gajbhiye, S.; Meshram, C.; Mirabbasi, R.; Sharma, S. Trend Analysis of Rainfall Time Series for Sindh River Basin in India. Theor. Appl. Climatol. 2015, 125, 593–608. [Google Scholar] [CrossRef]
- Rajeevan, M.; Unnikrishnan, C.K.; Bhate, J.; Niranjan Kumar, K.; Sreekala, P.P. Northeast Monsoon over India: Variability and Prediction. Meteorol. Appl. 2012, 19, 226–236. [Google Scholar] [CrossRef]
- Jaswal, A.K.; Rao, P.C.S.; Singh, V. Climatology and Trends of Summer High Temperature Days in India during 1969–2013. J. Earth Syst. Sci. 2015, 124, 1–15. [Google Scholar] [CrossRef] [Green Version]
GCMs | bcc_csm1_1 | csiro_mk3_6_0 | ipsl_cm5a_mr | miroc_miroc5 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Climate Change Scenarios | Sen’s Slope | p-Value | Significance | Sen’s Slope | p-Value | Significance | Sen’s Slope | p-Value | Significance | Sen’s Slope | p-Value | Significance |
RCP 2.6 | 3.721 | 0.048 | Yes | –1.038 | 0.412 | No | –1.872 | 0.042 | Yes | –0.983 | 0.316 | No |
RCP 4.5 | 7.623 | 0.326 | No | –0.925 | 0.215 | No | –1.743 | 0.043 | Yes | –1.559 | 0.041 | Yes |
RCP 6.0 | 6.227 | 0.031 | Yes | –1.067 | 0.046 | Yes | 0.841 | 0.215 | No | –3.192 | 0.323 | No |
RCP 8.5 | 9.810 | 0.005 | Yes | 1.723 | 0.265 | No | 3.483 | 0.118 | No | –0.824 | 0.275 | No |
GCMs | bcc_csm1_1 | csiro_mk3_6_0 | ipsl_cm5a_mr | miroc_miroc5 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Climate Change Scenarios | Sen’s Slope | p-Value | Significance | Sen’s Slope | p-Value | Significance | Sen’s Slope | p-Value | Significance | Sen’s Slope | p-Value | Significance |
RCP 2.6 | 0.009 | 0.206 | No | 0.013 | 0.211 | No | –0.035 | 0.101 | No | –0.014 | 0.022 | Yes |
RCP 4.5 | 0.008 | 0.214 | No | 0.041 | 0.025 | Yes | –0.019 | 0.251 | No | 0.005 | 0.372 | No |
RCP 6.0 | 0.013 | 0.029 | Yes | 0.046 | 0.024 | Yes | –0.006 | 0.196 | No | 0.004 | 0.214 | No |
RCP 8.5 | 0.027 | 0.001 | Yes | 0.052 | 0.142 | No | –0.013 | 0.048 | Yes | –0.014 | 0.022 | Yes |
GCMs | bcc_csm1_1 | csiro_mk3_6_0 | ipsl_cm5a_mr | miroc_miroc5 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Climate Change Scenarios | Sen’s Slope | p-Value | Significance | Sen’s Slope | p-Value | Significance | Sen’s Slope | p-Value | Significance | Sen’s Slope | p-Value | Significance |
RCP 2.6 | 0.007 | 0.214 | No | 0.025 | 0.009 | Yes | 0.019 | 0.001 | Yes | 0.015 | 0.270 | No |
RCP 4.5 | 0.024 | 0.002 | Yes | 0.048 | 0.001 | Yes | 0.026 | 0.000 | Yes | 0.034 | 0.001 | Yes |
RCP 6.0 | 0.021 | 0.014 | Yes | 0.035 | 0.012 | Yes | 0.023 | 0.003 | Yes | 0.025 | 0.000 | Yes |
RCP 8.5 | 0.032 | 0.000 | Yes | 0.059 | 0.001 | Yes | 0.077 | 0.001 | Yes | 0.041 | 0.002 | Yes |
GCMs | bcc_csm1_1 | csiro_mk3_6_0 | ipsl_cm5a_mr | miroc_miroc5 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Climate Change Scenarios | Sen’s Slope | p-Value | Significance | Sen’s Slope | p-Value | Significance | Sen’s Slope | p-Value | Significance | Sen’s Slope | p-Value | Significance |
RCP 2.6 | –0.009 | 0.032 | Yes | 0.016 | 0.211 | No | –0.035 | 0.101 | No | –0.014 | 0.022 | Yes |
RCP 4.5 | –0.011 | 0.020 | Yes | 0.014 | 0.025 | Yes | –0.019 | 0.251 | No | 0.005 | 0.372 | No |
RCP 6.0 | –0.019 | 0.003 | Yes | 0.000 | 0.024 | Yes | –0.006 | 0.196 | No | 0.004 | 0.214 | No |
RCP 8.5 | –0.025 | 0.002 | Yes | 0.000 | 0.142 | No | –0.013 | 0.048 | Yes | –0.014 | 0.022 | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jha, R.K.; Kalita, P.K.; Cooke, R.A. Assessment of Climatic Parameters for Future Climate Change in a Major Agricultural State in India. Climate 2021, 9, 111. https://doi.org/10.3390/cli9070111
Jha RK, Kalita PK, Cooke RA. Assessment of Climatic Parameters for Future Climate Change in a Major Agricultural State in India. Climate. 2021; 9(7):111. https://doi.org/10.3390/cli9070111
Chicago/Turabian StyleJha, Ranjeet Kumar, Prasanta K. Kalita, and Richard A. Cooke. 2021. "Assessment of Climatic Parameters for Future Climate Change in a Major Agricultural State in India" Climate 9, no. 7: 111. https://doi.org/10.3390/cli9070111
APA StyleJha, R. K., Kalita, P. K., & Cooke, R. A. (2021). Assessment of Climatic Parameters for Future Climate Change in a Major Agricultural State in India. Climate, 9(7), 111. https://doi.org/10.3390/cli9070111