The Significance of Scope 3 GHG Emissions in Construction Projects in Korea: Using EIA and LCA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Existing Methodologies
2.2. Proposal for Korea’s EIA Method on GHG Emission
2.3. Selection of Target Project
2.4. EIA on GHG Emissions
2.4.1. Primary Data Collection
2.4.2. Primary Data Calculation
2.4.3. Applying Carbon Emission Factors (CEFs)
3. Results and Discussion
3.1. GHG EMISSIONs by Scenarios 1 and 2
3.1.1. Scenario 1
3.1.2. Scenario 2
3.1.3. Comparison between Scenario 1 and Scenario 2
3.2. Sensitivity Analysis
3.2.1. Key-issue Identification
3.2.2. Sensitivity Analysis of Electricity
3.2.3. Sensitivity Analysis on LNG
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iberdrola. The Big Global Environmental Issues We Need to Resolve by 2030. Available online: https://www.iberdrola.com/environment/most-important-environmental-issues (accessed on 15 January 2021).
- Net Zero: Why is it Necessary? Energy & Climate. Available online: https://eciu.net/analysis/briefings/net-zero/net-zero-why (accessed on 15 January 2021).
- Korea GHG Emission Trading System. Available online: https://www.gihoo.or.kr/portal/kr/biz/kyoto.do (accessed on 15 January 2021).
- Korea Carbon Footprint of Products (CFP) Certification System. Available online: http://www.epd.or.kr/eng/cfp/carbonIntro00.do (accessed on 19 November 2020).
- Korea Carbon Point System. Available online: https://cpoint.or.kr/ (accessed on 19 November 2020).
- Kim, K.T. A Study on Developing the Methodology for Climate & Environmental Impact Assessment Using LCA Techniques. Ph.D. Thesis, Sejong University, Seoul, Korea, 2021. [Google Scholar]
- Modak, P.; Biswas, A.K. Conducting Environmental Impact Assessment on Developing Countries; United Nations University: Tokyo, Japan, 1999. [Google Scholar]
- Ranganathan, J.; Corbier, L.; Bhatia, P.; Schmitz, S.; Gage, P.; Oren, K. The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard. In World Business Council for Sustainable Development and World Resource Institute; World Business Council for Sustainable Development: Geneva, Switzerland, 2004. [Google Scholar]
- It’s a Crisis, Not a Change: The Six Guardian Language Changes on Climate. Available online: https://www.theguardian.com/environment/2019/oct/16/guardian-language-changes-climate-environment (accessed on 15 January 2021).
- Bhatia, P.; Cummis, C.; Brown, A.; Rich, D.; Draucker, L.; Lahd, H. The Greenhouse Gas Protocol: Corporate Value Chain (Scope 3) Accounting and Reporting Standard; World Business Council for Sustainable Development and World Resource Institute: Geneva, Switzerland, 2011; Available online: https://ghgprotocol.org/sites/default/files/standards/Corporate-Value-Chain-Accounting-Reporing-Standard_041613_2.pdf (accessed on 19 November 2020).
- Alexander, G.; Bowen, J.; Church, I.; Burgess, S.; Calder, B.; Cleary, B.; Daly, C.; Dufresne, A.; Ehrlich, A.; Glen, M.; et al. Incorporating Climate Change Considerations in Environmental Assessment: General Guidance for Practitioners, the Federal-Provincial Territorial Committee on Climate Change and Environmental Assessment; Canadian Environmental Assessment Agency: Toronto, Canada, 2003.
- Geissler, G.; Köppel, J.; Odparlik, L.F. Addressing Greenhouse Gas Emissions in Environmental Impact Assessments–The Discursive Making of Guidance in the United States. UVP Rep. 2011, 25, 215–221. [Google Scholar]
- McGuinn, J.; Hernandez, G.; Eales, R.; Sheate, W.; Baker, J.; Dusik, J.; Partidario, M.; Byron, H. Guidance on Integrating Climate Change and Biodiversity into Environmental Impact Assessment; European Union: Brussel, Belgium, 2013; Available online: http://ec.europa.eu/environment/eia/pdf/EIA%20Guidance.pdf (accessed on 20 November 2020).
- Madhu, K.; Pauliuk, S. Integrating Life Cycle Assessment into the Framework of Environmental Impact Assessment for Urban Systems: Framework and Case Study of Masdar City, Abu Dhabi. Environments 2019, 6, 105. [Google Scholar] [CrossRef] [Green Version]
- Rybaczewska-Blażejowska, M.; Palekhov, D. Life Cycle Assessment (LCA) in Environmental Impact Assessment (EIA): Principles and practical implications for industrial projects. Management 2018, 22, 138–153. [Google Scholar] [CrossRef] [Green Version]
- ISO. ISO TS 14072: Environmental Management–Life Cycle Assessment–Requirements and Guidelines for Organizational Life Cycle Assessment; International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- Pelletier, N.; Allacker, K.; Manfredi, S.; Chomkhamsri, K.; Maia de Souza, D. Organizational Environmental Footprint Guide; European Commission Joint Research Centre: Brussel, Belgium, 2012. [Google Scholar]
- Environmental Impact Assessment of Projects: Guidance on the preparation of the Environmental Impact Assessment Report; European Commission: Brussel, Belgium, 2017.
- Environmsental Impact Assessment (EIA). Guide on Greenhouse Gas Items; Ministry of Environment: Sejong, Korea, 2015.
- ISO. ISO 14040: Environmental Management-Life Cycle Assessment-Principles and Framework; ISO: Geneva, Switzerland, 1997. [Google Scholar]
- Bhatia, P.; Cummis, C.; Brown, A.; Draucker, L.; Rich, D.; Lahd, H. GHG Protocol: Product Life Cycle Accounting and Reporting Standard. In World Resource Institute and World Business Council for Sustainable Development; World Business Council for Sustainable Development: Geneva, Switzerland, 2011. [Google Scholar]
- 2018 Jeollanam-do Statistical Yearbook, Jeollanam-do, Muan. Korea. 2019. Available online: https://www.jeonnam.go.kr/M4687/boardView.do?seq=1890191&infoReturn=&menuId=jeonnam0508090000&displayHeader=&searchType=&searchText=&pageIndex=1&boardId=M4687&displayHeader= (accessed on 19 November 2020).
- 2013 National GHG Emissions and Absorption Coefficients; Korea GHG Inventory and Research Center: Seoul, Korea, 2014.
- Korea Environmental Product Declarations (EPD). Guide, Korea Environmental Industry and Technology Institute; Environmental Declaration Office: Seoul, Korea, 2018.
- Specifications of the Call for Tenders Relating to the Construction and Operation of Installations for the Production of Electricity from Solar Photovoltaic or Wind Energy Located in the Mainland; The French Energy Regulatory Commission: Paris, French, 2018.
- Gómez, D.; Watterson, J.D.; Americano, B.B.; Ha, C. 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Chapter 2 Stationary Combustion. In Intergovernmental Panel on Climate Change; World Business Council for Sustainable Development: Geneva, Switzerland, 2006. [Google Scholar]
- Korea LNG Bunkering Industry Association: Energy Conversion. Available online: http://www.kolbia.org/contents/sub02_03.php?unit=2 (accessed on 19 November 2020).
Step | Division | Source | Unit |
---|---|---|---|
Current | GHG removal | Tree | piece |
Land | m2 | ||
Photovoltaic | piece/300 W | ||
GHG emission | Electricity | kWh/year | |
Fuel (LNG) | Nm3/year | ||
Waste | Ton/year | ||
Construction | GHG emission | Electricity | kWh/year |
Fuel (Diesel) | L/year | ||
Construction material | Ton/year | ||
Waste | Ton/year | ||
Operation | GHG removal | Tree | piece |
Land | m2 | ||
Photovoltaic | piece/300 W | ||
GHG emission | Electricity | kWh/year | |
Fuel (LNG) | Nm3/year | ||
Fuel (Diesel) | L/year | ||
Fuel (Gasoline) | L/year | ||
Waste | Ton/year |
Source | Scenario 1 | Scenario 2 | ||||
---|---|---|---|---|---|---|
Scope 1 | Scope 2 | Scope 3 | Scope 1 | Scope 2 | Scope 3 | |
Tree | ○ | ○ | ○ | |||
Land | ○ | ○ | ||||
Photovoltaic | ○ | ○ | ○ | |||
Electricity | ○ | ○ | ○ | |||
Fuel (LNG) | ○ | ○ | ○ | |||
Fuel (Diesel) | ○ | ○ | ○ | |||
Fuel (Gasoline) | ○ | ○ | ○ | |||
Construction material | ○ | |||||
Waste | ○ |
SOCREF (tonCO2/ha) | FLU | FMG | FI | |
---|---|---|---|---|
Forest | 88 | 1.00 | 1.14 | 1.11 |
Field | 88 | 0.69 | 1.00 | 1.00 |
Rice field | 88 | 1.10 | - | - |
Park | 88 | 1.00 | 1.14 | 1.11 |
Step | Source | Unit | GHG Emission | Stock | Sub-Total |
---|---|---|---|---|---|
Current | Tree | tonCO2e/year | −118.4 | −118.4 | |
tonCO2e/piece | −1116.3 | −1116.3 | |||
Land | tonCO2e/year | ||||
tonCO2e/land | −4402.7 | −4402.7 | |||
Electricity | tonCO2e/year | 189.4 | 189.4 | ||
LNG | tonCO2e/year | 460.3 | 460.3 | ||
Sub-total | tonCO2e/year | 531.3 (0.6) | −5519.0 (−6.3%) | −4987.7 (−5.7%) | |
Construction | Electricity | tonCO2e/year | 2.8 | 2.8 | |
Diesel | tonCO2e/year | 1732.2 | 1732.2 | ||
Sub-total | tonCO2e/year | 1735.0 (2.0%) | 1735.0 (2.0%) | ||
Operation | Tree | tonCO2e/year | −141.7 | −141.7 | |
tonCO2e/piece | −2331.5 | −2331.5 | |||
Land | tonCO2e/year | ||||
tonCO2e/land | −1209.3 | −1209.3 | |||
Electricity | tonCO2e/year | 60,515.2 | 60,515.2 | ||
LNG | tonCO2e/year | 30,233.0 | 30,233.0 | ||
Diesel | tonCO2e/year | 678.6 | 678.6 | ||
Gasoline | tonCO2e/year | 3036.0 | 3036.0 | ||
Sub-total | tonCO2e/year | 94,321.1 (107.8%) | −3540.8 (−4.0%) | 90,780.3 (103.7%) | |
Total | tonCO2e/year | 96,587.4 (110.4%) | −9059.8 (−10.4%) | 87,527.6 (100.0%) |
Step | Inventory | Unit | GHG Emission | Stock | Sub-Total |
---|---|---|---|---|---|
Current | Tree | tonCO2e/year | −118.4 | −118.4 | |
tonCO2e/piece | −1116.3 | −1116.3 | |||
Land | tonCO2e/year | ||||
tonCO2e/land | −4402.7 | −4402.7 | |||
Electricity | tonCO2e/year | 201.2 | 201.2 | ||
LNG | tonCO2e/year | 564.0 | 564.0 | ||
Waste treatment | tonCO2e/year | 102.0 | 102.0 | ||
Sub-total | tonCO2e/year | 748.8 (0.6%) | −5519.0 (−4.2%) | −4770.2 (−3.6%) | |
Construction | Electricity | tonCO2e/year | 3.0 | 3.0 | |
Diesel | tonCO2e/year | 1743.0 | 1743.0 | ||
Construction materials | tonCO2e/year | 31,803.3 | 31,803.3 | ||
Waste treatment | tonCO2e/year | 485.6 | 485.6 | ||
Sub-total | tonCO2e/year | 34,034.9 (25.7%) | 34,034.9 (25.7%) | ||
Operation | Tree | tonCO2e/year | −141.7 | −2331.5 | −141.7 |
tonCO2e/piece | −2331.5 | −2331.5 | |||
Land | tonCO2e/year | ||||
tonCO2e/land | −1209.3 | −1209.3 | |||
Electricity | tonCO2e/year | 64,290.0 | 64,290.0 | ||
LNG | tonCO2e/year | 36,788.0 | 36,788.0 | ||
Diesel | tonCO2e/year | 693.5 | 693.5 | ||
Gasoline | tonCO2e/year | 3109.5 | 3109.5 | ||
Waste treatment | tonCO2e/year | 1836.2 | 1836.2 | ||
Sub-total | tonCO2e/year | 106,575.5 (80.5%) | −3540.8 (−2.7%) | 103,034.7 (77.9%) | |
Total | tonCO2e/year | 141,359.2 (106.8%) | −9059.8 (−6.8%) | 132,299.4 (100.0%) |
Current (tonCO2e) | Construction (tonCO2e) | Operation (tonCO2e) | Total (tonCO2e) | Ratio (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | |
Scope 1 | 341.9 | 341.9 | 33,805.9 | 33,805.9 | 1732.2 | 1732.2 | 35,880.0 | 35,880.0 | 37.1 | 25.4 |
Scope 2 | 189.4 | 189.4 | 60,515.2 | 60,515.2 | 2.8 | 2.8 | 60,707.4 | 60,707.4 | 62.9 | 42.9 |
Scope 3 | 217.5 | 12,254.4 | 32,299.9 | 44,771.8 | 31.7 |
Source | Current | Construction | Operation | Sub-Total | Ratio (%) |
---|---|---|---|---|---|
LNG | 5.64 × 105 | - | 3.93 × 107 | 3.99 × 107 | 28.3% |
Electricity | 2.01 × 105 | 2.97 × 103 | 6.43 × 107 | 6.45 × 107 | 45.8% |
Fuel | - | 1.74 × 106 | 4.41 × 105 | 2.18 × 106 | 1.6% |
Aggregate | - | 7.95 × 105 | - | 7.95 × 105 | 0.6% |
Ready-mixed concrete | - | 1.05 × 107 | - | 1.05 × 107 | 7.4% |
Cement | - | 2.05 × 107 | - | 2.05 × 107 | 14.5% |
Steel frame | - | 8.57 × 104 | - | 8.57 × 104 | 0.1% |
Waste | 1.02 × 105 | 4.86 × 105 | 1.84 × 106 | 2.42 × 106 | 1.7% |
Sub-total | 8.67 × 105 | 3.40 × 107 | 1.06 × 108 | 1.41 × 108 | 100.0% |
Source | Case 1 | Case 2 | Case 3 |
---|---|---|---|
LNG | 28.2% | 29.0% | 25.7% |
Electricity | 45.6% | 44.1% | 50.4% |
Fuel | 1.5% | 1.6% | 1.4% |
Aggregate | 0.6% | 0.6% | 0.5% |
Ready-mixed concrete | 7.4% | 7.6% | 6.8% |
Cement | 14.5% | 14.9% | 13.2% |
Steel frame | 0.1% | 0.1% | 0.1% |
Waste | 1.7% | 1.8% | 1.6% |
Case 1 | Case 2 | Case 3 | |
---|---|---|---|
LNG | 100.00% | 99.57% | 99.37% |
Total | 100.00% | 99.93% | 99.86% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.-T.; Kim, I. The Significance of Scope 3 GHG Emissions in Construction Projects in Korea: Using EIA and LCA. Climate 2021, 9, 33. https://doi.org/10.3390/cli9020033
Kim K-T, Kim I. The Significance of Scope 3 GHG Emissions in Construction Projects in Korea: Using EIA and LCA. Climate. 2021; 9(2):33. https://doi.org/10.3390/cli9020033
Chicago/Turabian StyleKim, Kyeong-Tae, and Ik Kim. 2021. "The Significance of Scope 3 GHG Emissions in Construction Projects in Korea: Using EIA and LCA" Climate 9, no. 2: 33. https://doi.org/10.3390/cli9020033
APA StyleKim, K. -T., & Kim, I. (2021). The Significance of Scope 3 GHG Emissions in Construction Projects in Korea: Using EIA and LCA. Climate, 9(2), 33. https://doi.org/10.3390/cli9020033