Flood Vulnerability Analysis in Urban Context: A Socioeconomic Sub-Indicators Overview
Abstract
:1. Introduction
2. The Definition of Vulnerability and Risk
3. Methods
3.1. Terms of Search and Literatura Database Used
3.2. Paper Selection Processes
3.3. Threshold Identification for Sub-Indicators Retention
4. Results and Discussion
4.1. Study Selection
4.2. Brief Review: Risk Analysis Studies Selection Process
4.3. Content Analysis
4.4. Discussion on the Sub-Indicators Selected
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
EXPOSURE | ||
GROUP | SUB-INDICATORS | REFERENCES |
Topography/geography | Imperviousness/vertical permeability | [67,89,90] |
Urbanized area, built-up area | [27,35,47,91,92,93,94] | |
Rural area | [91,92] | |
Degraded area | [27,92] | |
Topography (elevation) | [35,52,53,60,67,92,94,95] | |
Vegetation cover | [65,67,90] | |
Green spaces/urban green coverage | [14,35,59,76,90,96,97] | |
Slope | [27,52,59,66] | |
Forested area | [27,57,91] | |
Land use | [14,27,53,65,95] | |
River/flood | Distance from the river | [52] |
River network | [52,53] | |
Flooded area/submerged area/inundation area | [50,67,96,97,98] | |
Water depth/inundation depth | [27,50,66] | |
Flood duration | [27,50,66,98] | |
Runoff | [57,96] | |
Sedimentation load | [27] | |
River discharge | [27,57,66] | |
Return period | [14,27,59,63,66] | |
Rainfall | Comprehensive rainfall value | [39] |
Flood seasonal rainfall | [45,52,94] | |
Continuous rainfall day | [35,53] | |
Monthly average precipitation/monthly total precipitation | [35,53] | |
Maximum rainfall in 24 h | [35,53,94] | |
Annual maximum precipitation | [95] | |
Average annual rainfall | [52,57,59,72,96] | |
Heavy rainfall | [27,35] | |
Other physical factors | Evaporation | [27,57] |
Population | Total Population | [64,71] |
Population in flooded area | [27,35,45,66] | |
Unpopulated area | [27] | |
Population density | [27,28,38,39,43,47,52,55,57,60,61,62,63,65,67,69,71,90,91,92,93,95,97,99,100,101] | |
Rural population | [27,28] | |
Household composition | Inhabitants aged 0–4/5 | [61,64,65,67,68,71,90,91,95,98] |
Inhabitants aged 5–13 | [14,38,39,60,61,63,68,69,71,72,90,91,93,95,99,100,102,103] | |
Inhabitants aged 15–64 | [14,28,63,71,72,90,91] | |
Inhabitants aged 65 or older | [14,28,38,39,60,61,63,64,65,66,67,68,69,71,72,89,90,91,93,95,98,99,100,102,103,104] | |
Household where people aged 65 or older live | [61,63,71,100,105] | |
Household size | [50,58,63,66,90,91,97,98,99,100] | |
SENSITIVITY | ||
GROUP | SUB-INDICATORS | REFERENCES |
Social point of interest | Kindergartens | [61,64,69,71,106] |
Elementary schools | [61,64,69,71,106] | |
Secondary schools | [64,69,71,106] | |
Retirement homes | [71,106] | |
Health centers, hospitals | [27,57,64,69,71] | |
Church | [64] | |
Facilities | Electrical transformers in flood prone area | [39,89,106] |
Bridges and overpasses located in flood prone area | [39] | |
Length of street at flood prone area | [106] | |
Parks and gardens at flood prone area | [106] | |
Roads | [39] | |
Water network | [69,89] | |
Residential/commercial building | Productivity land | [65] |
% Buildings with no residential function | [89,91] | |
Number of dwellings located at flood prone area | [58,64,66,89,91,92,99,106] | |
Main houses | [89,91,106] | |
Damages to building (use, type) | [39,43] | |
Secondary houses | [89,105] | |
Social characteristics | Dependency rate | [50,71,97,98,100,104] |
Population projections/growth | [27,57,71,90] | |
Population changes over time (past) | [62] | |
Illiterate people | [61,69,71,98,99,100] | |
Population with low education level (<9 years) | [28,59,61,64,91,104] | |
Population with high education level (>university degree) | [61,91] | |
Education level | [27,38,43,50,58,60,66,67,97,98,99,100] | |
Child mortality | [27,57] | |
Foreigners | [59,61,63,69,71,100] | |
Minorities | [93,102,103] | |
Institutionalized groups (e.g., correctional institutions, nursing homes) | [50] | |
% People with disabilities | [27,38,50,57,60,65,69,71,89,95,97,98,100,104] | |
% Population living under poverty level | [27,60,65,100] | |
Household economic characteristics | Unemployment rate | [14,27,28,50,57,60,63,67,76,90,93,98,100,106] |
People without permanent income | [76,97] | |
Long-term unemployed people | [71] | |
Household where unemployed people live | [71] | |
Benefit claimants | [70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98] | |
Low-income households | [62,68,104] | |
Dependency on public infrastructure | [14,58,68,90,93,97] | |
HH responsible that earn at least twice the min salary | [64] | |
Income gap between urban and rural residents | [105] | |
Building characteristics | Permanent households | [71] |
Vacant households | [71] | |
Type of utilization | [38,43,50,52,95,100] | |
Percentage of homes rented/owned | [50,60,61,90,91,97] | |
One- or two-family homes | [28] | |
Age of construction | [43,50,52,59,61,71,91,97,99,103] | |
Underground built-up area/entries | [71,95] | |
Building condition (quality/type of the materials) | [14,38,39,43,50,60,66,71,76,90,92,96,97,100] | |
Households with 1 story above ground level and/or 1 story below ground level | [14,43,50,71,76,90,91,95,97,103,106] | |
Households with 2 or more stories above ground level | [14,71,90,91,97,99,100,103,106] | |
Economic value | [65] | |
Living space (HH space per capita) | [28,71,76,99] | |
Travel time | Distance to train station | [62] |
Distance to the nearest hospital | [71,92] | |
Travel time to the nearest hospital | [58,71] | |
Distance to the nearest health center | [71] | |
Travel time to the nearest health center | [50,71,97,98] | |
Society characteristics | Number of workers in agricultural sector | [106] |
Number of workers in industry, construction and service sector | [61,62,71,89] | |
Self employed | [62] | |
Income classes subdivision | [14,68,90,98,102] | |
% Female | [38,50,61,62,65,67,91,97,98,100,104] | |
Social level | [89] | |
Crime rate | [100] | |
Relationship between the neighbors | [58,90,97,98] | |
Industries or other economic activities | [57,59,66,96,98,105] | |
Economic indexes | Municipal debt per inhabitants | [71,106] |
Municipal available budget per inhabitant | [71,106] | |
Tax base of the property tax | [59,106] | |
Per capita income | [50,61,71,93,97,100,106] | |
GDP per capita/GDP per HH/GDP per neighborhood | [27,35,52,53] | |
Ratio between taxable income and taxpayers in each municipality | [39] | |
Fixed investment per inhabitants | [71,106] | |
Ratio of investment over the total GDP/revenue–expenditure ratio | [47,57] | |
Replacement cost for dwellings located at flood prone area | [106] | |
Transportation | Vehicle available | [39,69,89,97,106] |
Mean age of the vehicle fleet | [106] | |
Traffic volume | [95] | |
Mean duration of commute | [99] | |
Development | Per capita/city’s fixed asset investment | [47,94] |
Per capita water resources | [45] | |
Urbanization rate | [39,45,52] | |
Human Development Index | [27,57] | |
Inequality | [27,100] | |
Life expectancy index | [27,100] | |
Urban growth | [27,57] | |
Infrastructure development level | [105] | |
Natural reservation | [27] | |
Urban water area % | [35,94] | |
Other | Primary industrial output value | [94] |
Per capita secondary and tertiary industrial output value | [94] | |
Arable lands | [45,52] | |
Protected objects of historical interest | [27,39,66,71] | |
Unplanned settlements | [38,60] | |
Unplanned waste deposits | [67,68] | |
Damages from previous flood/direct economic loss from previous flood | [45,50,90,98] | |
Tourist accommodation capacity | [71,106] | |
ADAPTIVE CAPACITY | ||
GROUP | SUB-INDICATORS | REFERENCES |
Economic indexes | Investment for damage reparation | [89] |
Public disaster response capacity | [35,45] | |
Economic recovery/disaster relief investment/post disaster reconstruction capability | [27,35,94] | |
Municipal flood control investments | [45] | |
Risk insurance | [27,50,53,57,66,67,89,90] | |
Warning system | [27,57,60,64,66,70,89,97,100] | |
Warning system | Past experience | [27,50,57,58,64,66,69,90,98,105] |
Preparedness/awareness | [27,38,39,43,50,57,60,64,66,89,90,97,100] | |
Communication devices | [50] | |
Communication penetration rate | [27,100] | |
Temporary displacement to another place | [58] | |
Emergency response | Government assistance | [58] |
Road density | [43,45,52,89,92,98,99] | |
Evacuation routes | [27,57,60,66,69,97] | |
Number of people working in the emergency services | [27,57,66,69,95] | |
Reserve and distribution capacity of flood control materials | [45] | |
Emergency rescue capacity of public administration | [45] | |
Hospital beds | [47,71,100] | |
Medical staff | [47,69,71,105] | |
Reception centers | [69] | |
Investment in coping capacity | [27,64] | |
Preventive measures | Land use regulation | [60,89] |
Flood control standards/plans | [39,43,94] | |
Hydraulic infrastructures | [39] | |
Protective infrastructures | Dikes/levees | [27,57,66,100] |
Drainage network/pipelines density | [35,43,45,47,52,53,57,68,70,92,94,96] | |
Dams storage capacity/reservoir capacity | [27,52,57] | |
Protection of rivers at flood prone area | [14,66,100,106] |
References
- Zio, E.; Pedroni, N. Overview of Risk-Informed Decision-Making Processes; Fondation pour une Culture de Sécurité Industrielle; Cahiers de la Sécurité Industrielle: Toulouse, France, 2012. [Google Scholar]
- United Nations Office for Disaster Risk Reduction. Sendai Framework for Disaster Risk Reduction 2015–2030; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2015. [Google Scholar]
- IPCC. Climate Change 2014 Impacts, Adaptation, and Vulnerability Part A: Global and Sectoral Aspects Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Yuka, K.L.E., Estrada, O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; ISBN 978-1-107-05807-1. [Google Scholar]
- Quevauviller, P. Adapting to climate change: Reducing water-related risks in Europe—EU policy and research considerations. Environ. Sci. Policy 2011, 14, 722–729. [Google Scholar] [CrossRef]
- Rufat, S.; Tate, E.; Burton, C.G.; Maroof, A.S. Social vulnerability to floods: Review of case studies and implications for measurement. Int. J. Disaster Risk Reduct. 2015, 14, 470–486. [Google Scholar] [CrossRef] [Green Version]
- European Parliament; Council of the European Union. Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the Assessmentand Management of Flood Risks; European Parliament: Luxembourg, 2007.
- Plate, E.J. Flood risk and flood management. J. Hydrol. 2002, 267, 2–11. [Google Scholar] [CrossRef]
- Merz, B.; Hall, J.; Disse, M.; Schumann, A. Fluvial flood risk management in a changing world. Nat. Hazards Earth Syst. Sci. 2010, 10, 509–527. [Google Scholar] [CrossRef] [Green Version]
- Blaikie, P.M.; Cannon, T.; Wisner, B.; Davis, I. At Risk: Natural Hazards, People’s Vulnerability and Disasters, 2nd ed.; Routledge: London, UK, 2004; ISBN 0415252156. [Google Scholar]
- Kelly, P.M.; Adger, W.N. Theory and practice in assessing vulnerability to climate change and facilitating adaptation. Clim. Chang. 2000, 47, 325–352. [Google Scholar] [CrossRef]
- Birkmann, J. Measuring vulnerability to natural hazards: Conceptual framework and definitions. In Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient Societies; Birkmann, J., Ed.; United Nations University Press: New York, NY, USA, 2006; pp. 9–54. ISBN 8179931226. [Google Scholar]
- Cutter, S.L.; Mitchell, J.T.; Scott, M.S. Revealing the vulnerability of people and places: A Case study of Georgetown county, South Carolina. Ann. Assoc. Am. Geogr. 2000, 90, 713–737. [Google Scholar] [CrossRef]
- Adger, W.N.; Kelly, P.M. Social vulnerability to climate change and the architecture of entitlements. Mitig. Adapt. Strateg. Glob. Chang. 1999, 4, 253–266. [Google Scholar] [CrossRef]
- Krellenberg, K.; Welz, J. Assessing urban vulnerability in the context of flood and heat hazard: Pathways and challenges for indicator-based analysis. Soc. Indic. Res. 2017, 132, 709–731. [Google Scholar] [CrossRef]
- Hajar, N.; Yusof, M.J.M.; Ahmad Mohammad Ali, T. An overview to flood vulnerability assessment methods. Sustain. Water Resour. Manag. 2016, 2, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Carreño, M.L.; Cardona, O.D.; Barbat, A.H. A disaster risk management performance index. Nat. Hazards 2007, 41, 1–20. [Google Scholar] [CrossRef]
- Cardona, O.-D.; van Aalst, M.K.; Birkmann, J.; Fordham, M.; McGregor, G.; Perez, R.; Pulwarty, R.S.; Lisa Schipper, E.F.; Tan Sinh, B.; Décamps, H.; et al. Determinants of risk: Exposure and vulnerability. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B.V., Barros, T.F., Stocker, D., Qin, D.J., Dokken, K.L., Ebi, M.D., Mastrandrea, K.J., Mach, G.-K., Plattner, S., Eds.; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 65–108. [Google Scholar]
- Rehman, S.; Sahana, M.; Hong, H.; Sajjad, H.; Ahmed, B. Bin A systematic review on approaches and methods used for flood vulnerability assessment: Framework for future research. Nat. Hazards 2019, 96, 975–998. [Google Scholar] [CrossRef]
- Salas, J.; Yepes, V.V. Urban vulnerability assessment: Advances from the strategic planning outlook. J. Clean. Prod. 2018, 179, 544–558. [Google Scholar] [CrossRef]
- Gouldby, B.; Samuels, P.G. Language of Risk—Project Definitions, 2nd ed.; FLOODsite: Wallingford, UK, 2009. [Google Scholar]
- Klijn, F.; Kreibich, H.; de Moel, H.; Penning-Rowsell, E. Adaptive flood risk management planning based on a comprehensive flood risk conceptualisation. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 845–864. [Google Scholar] [CrossRef] [Green Version]
- Merz, B.; Thieken, A.H.; Gocht, M. Flood risk mapping at the local scale: Concepts and challenges. In Advances in Natural and Technological Hazards Research; Springer: Dortrech, The Netherlands, 2007; Volume 25, pp. 231–251. [Google Scholar]
- Borbor-Cordova, M.J.; Ger, G.; Valdiviezo-Ajila, A.A.; Arias-Hidalgo, M.; Matamoros, D.; Nolivos, I.; Menoscal-Aldas, G.; Valle, F.; Pezzoli, A.; Cornejo-Rodriguez, M.D.P. An operational framework for urban vulnerability to floods in the Guayas estuary region: The Duran case study. Sustainability 2020, 12, 10292. [Google Scholar] [CrossRef]
- Klijn, F.; Samuels, P.; Van Os, A. Towards flood risk management in the EU: State of affairs with examples from various European countries. Int. J. River Basin Manag. 2008, 6, 307–321. [Google Scholar] [CrossRef]
- Samuels, P.; Wallingford, H.R. Language of Risk. Project Definitions; FLOODsite: Wallingford, UK, 2005. [Google Scholar]
- Tchórzewska-Cieślak, B.; Pietrucha-Urbanik, K.; Zygmunt, A.; Eng, M. Implementation of matrix methods in flood risk analysis and assessment. Ekon. I Sr. 2018, 3, 8–24. [Google Scholar]
- Balica, S.F.; Douben, N.; Wright, N.G. Flood vulnerability indices at varying spatial scales. Water Sci. Technol. 2009, 60, 2571–2580. [Google Scholar] [CrossRef] [Green Version]
- Fekete, A. Validation of a social vulnerability index in context to river-floods in Germany. Nat. Hazards Earth Syst. Sci. 2009, 9, 393–403. [Google Scholar] [CrossRef] [Green Version]
- United Nations General Assembly. International Decade for Natural Disaster Reduction: Resolution/Adopted by the General Assembly; Resolution 44/236—85th Plenary Meeting Session from 22 December 1989; United Nations General Assembly: New York, NY, USA, 1989. [Google Scholar]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social vulnerability to environmental hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Juran, J.M.; Godfrey, B.A. Juran’s Quality Handbook, 5th ed.; McGraw-Hill: New York, NY, USA, 1998; ISBN 007034003X. [Google Scholar]
- Armenakis, C.; Du, E.X.; Natesan, S.; Persad, R.A.; Zhang, Y. Flood risk assessment in urban areas based on spatial analytics and social factors. Geosciences 2017, 7, 123. [Google Scholar] [CrossRef] [Green Version]
- Cai, T.; Li, X.; Ding, X.; Wang, J.; Zhan, J. Flood risk assessment based on hydrodynamic model and fuzzy comprehensive evaluation with GIS technique. Int. J. Disaster Risk Reduct. 2019, 35, 101077. [Google Scholar] [CrossRef]
- Huang, X.; Li, W.; Chen, Y.; Fang, G.; Yan, W. Risk assessment of floodwater resources utilization in water transfer projects based on an improved cloud model. Water Sci. Technol. Water Supply 2019, 19, 2517–2532. [Google Scholar] [CrossRef]
- Chen, J.; Chen, M.; Zhou, P. Using Multiple index comprehensive method to assess urban rainstorm disaster risk in Jiangsu province, China. Math. Probl. Eng. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Domeneghetti, A.; Carisi, F.; Castellarin, A.; Brath, A. Evolution of flood risk over large areas: Quantitative assessment for the Po river. J. Hydrol. 2015, 527, 809–823. [Google Scholar] [CrossRef]
- Edjossan-Sossou, A.M.; Deck, O.; Al Heib, M.; Verdel, T. A decision-support methodology for assessing the sustainability of natural risk management strategies in urban areas. Nat. Hazards Earth Syst. Sci. 2014, 14, 3207–3230. [Google Scholar] [CrossRef] [Green Version]
- Elboshy, B.; Kanae, S.; Gamaleldin, M.; Ayad, H.; Osaragi, T.; Elbarki, W. A framework for pluvial flood risk assessment in Alexandria considering the coping capacity. Environ. Syst. Decis. 2019, 39, 77–94. [Google Scholar] [CrossRef]
- Ellena, M.; Ricciardi, G.; Barbato, G.; Buffa, A.; Villani, V.; Mercogliano, P. Past and future hydrogeological risk assessment under climate change conditions over urban settlements and infrastructure systems: The case of a sub-regional area of Piedmont, Italy. Nat. Hazards 2020, 102, 275–305. [Google Scholar] [CrossRef]
- Geng, Y.; Zheng, X.; Wang, Z.; Wang, Z. Flood risk assessment in Quzhou City (China) using a coupled hydrodynamic model and fuzzy comprehensive evaluation (FCE). Nat. Hazards 2020, 100, 133–149. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.K.; Meng, Q. A thematic mapping method to assess and analyze potential urban hazards and risks caused by flooding. Comput. Environ. Urban Syst. 2020, 79. [Google Scholar] [CrossRef]
- Kaźmierczak, A.; Cavan, G. Surface water flooding risk to urban communities: Analysis of vulnerability, hazard and exposure. Landsc. Urban Plan. 2011, 103, 185–197. [Google Scholar] [CrossRef]
- Koc, K.; Işık, Z. A multi-agent-based model for sustainable governance of urban flood risk mitigation measures. Nat. Hazards 2020, 104, 1079–1110. [Google Scholar] [CrossRef]
- Kubal, C.; Haase, D.; Meyer, V.; Scheuer, S. Natural hazards and earth system sciences integrated urban flood risk assessment—Adapting a multicriteria approach to a city. Nat. Hazards Earth Syst. Sci. 2009, 9, 1881–1895. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Li, Q.; Wang, H.; Deng, M. A machine learning ensemble approach based on random forest and radial basis function neural network for risk evaluation of regional flood disaster: A case study of the yangtze river delta, China. Int. J. Environ. Res. Public Health 2020, 17, 49. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.; Chen, H.; Xu, C.-Y.; Yan, P.; Lan, T.; Liu, Z.; Dong, C. Assessment of flash flood risk based on improved analytic hierarchy process method and integrated maximum likelihood clustering algorithm. J. Hydrol. 2020, 584, 124696. [Google Scholar] [CrossRef]
- Lv, H.; Guan, X.; Meng, Y. Comprehensive evaluation of urban flood-bearing risks based on combined compound fuzzy matter-element and entropy weight model. Nat. Hazards 2020, 103, 1823–1841. [Google Scholar] [CrossRef]
- Maantay, J.; Maroko, A.; Culp, G. Using geographic information science to estimate vulnerable urban populations for flood hazard and risk assessment in New York city. In Geospatial Techniques in Urban Hazard and Disaster Analysis; Showalter, P.S., Lu, Y., Eds.; Springer: Dordrecht, The Netherlands, 2010; Volume 2, pp. 71–97. ISBN 978-90-481-2237-0. [Google Scholar]
- Müller, A. Flood risks in a dynamic urban agglomeration: A conceptual and methodological assessment framework. Nat. Hazards 2013, 65, 1931–1950. [Google Scholar] [CrossRef]
- Rana, I.A.; Routray, J.K. Integrated methodology for flood risk assessment and application in urban communities of Pakistan. Nat. Hazards 2018, 91, 239–266. [Google Scholar] [CrossRef]
- Ronco, P.; Bullo, M.; Torresan, S.; Critto, A.; Olschewski, R.; Zappa, M.; Marcomini, A. KULTURisk regional risk assessment methodology for water-related natural hazards—Part 2: Application to the Zurich case study. Hydrol. Earth Syst. Sci. 2015, 19, 1561–1576. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Zhai, G.; Zhou, S.; Lu, Y.; Chen, W.; Deng, J. How can cities respond to flood disaster risks under multi-scenario simulation? A case study of Xiamen, China. Int. J. Environ. Res. Public Health 2019, 16, 618. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.C.; Huang, J.; Wang, H.M.; Wang, Z.Q.; Wang, W.Q. Risk assessment of urban flood disaster in Jingdezhen City based on analytic hierarchy process and geographic information system. In Proceedings of the IOP Conference Series: Earth and Environmental Science Science and 3rd International Conference on Water Resource and Environment (WRE 2017), Qingdao, China, 26–29 June 2017; Institute of Physics Publishing: Briston, UK, 2017; Volume 82. [Google Scholar]
- Wang, G.; Liu, Y.; Hu, Z.; Lyu, Y.; Zhang, G.; Liu, J.; Liu, Y.; Gu, Y.; Huang, X.; Zheng, H.; et al. Flood risk assessment based on fuzzy synthetic evaluation method in the Beijing-Tianjin-Hebei metropolitan area, China. Sustainability 2020, 12, 1451. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.K.; Kim, J.S.; Moon, Y. Il Integrated flood risk analysis in a changing climate: A case study from the Korean Han River Basin. KSCE J. Civ. Eng. 2014, 18, 1563–1571. [Google Scholar] [CrossRef]
- Yu, C.; Liu, M.; Xu, X.; Shi, Y. The urban rain-flood risk division based on the cloud model and the entropy evaluation method—Taking Changzhou as an example. J. Phys. 2019, 1168, 032087. [Google Scholar] [CrossRef]
- Balica, S.; Wright, N.G. Reducing the complexity of the flood vulnerability index. Environ. Hazards 2010, 9, 321–339. [Google Scholar] [CrossRef]
- Sarmah, T.; Das, S.; Narendr, A.; Aithal, B.H. Assessing human vulnerability to urban flood hazard using the analytic hierarchy process and geographic information system. Int. J. Disaster Risk Reduct. 2020, 50, 101659. [Google Scholar] [CrossRef]
- Jeong, S.; Yoon, D.K. Examining vulnerability factors to natural disasters with a spatial autoregressive model: The case of South Korea. Sustainability 2018, 10, 1651. [Google Scholar] [CrossRef] [Green Version]
- Rasch, R.J. Assessing urban vulnerability to flood hazard in Brazilian municipalities. Environ. Urban. 2016, 28, 145–168. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; Du, S.; Liao, B.; Wen, J.; Wang, C.; Chen, R.; Chen, B. A hierarchical pattern of urban social vulnerability in Shanghai, China and its implications for risk management. Sustain. Cities Soc. 2018, 41, 170–179. [Google Scholar] [CrossRef]
- Kirby, R.H.; Reams, M.A.; Lam, N.S.N.N.; Zou, L.; Dekker, G.G.J.J.; Fundter, D.Q.P.P. Assessing social vulnerability to flood hazards in the Dutch province of Zeeland. Int. J. Disaster Risk Sci. 2019, 10, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Welle, T.; Depietri, Y.; Angignard, M.; Birkmann, J.; Renaud, F.; Greiving, S. Vulnerability assessment to heat waves, floods, and earthquakes using the MOVE framework: Test case cologne, Germany. Assess. Vulnerability Nat. Hazards A 2014, 91–124. [Google Scholar] [CrossRef]
- Andrade, M.M.N.d.; Szlafsztein, C.F. Vulnerability assessment including tangible and intangible components in the index composition: An Amazon case study of flooding and flash flooding. Sci. Total Environ. 2018, 630, 903–912. [Google Scholar] [CrossRef]
- Djamaluddin, I.; Indrayani, P.; Caronge, M.A. A GIS analysis approach for flood vulnerability and risk assessment index models at sub-district scale. In Proceedings of the IOP Conference Series: Earth and Environmental Science and 3rd International Conference on Civil and Environmental Engineering (ICCEE 2019), Bali, Indonesia, 29–30 August 2019; Institute of Physics Publishing: Bristol, UK, 2020; Volume 419. [Google Scholar]
- Erena, S.H.; Worku, H. Urban flood vulnerability assessments: The case of Dire Dawa city, Ethiopia. Nat. Hazards 2019, 97, 495–516. [Google Scholar] [CrossRef]
- Kablan, M.K.A.; Dongo, K.; Coulibaly, M. Assessment of social vulnerability to flood in urban Côte d’Ivoire using the MOVE framework. Water 2017, 9, 292. [Google Scholar] [CrossRef] [Green Version]
- Mansur, A.V.; Brondízio, E.S.; Roy, S.; Hetrick, S.; Vogt, N.D.; Newton, A. An assessment of urban vulnerability in the Amazon Delta and Estuary: A multi-criterion index of flood exposure, socio-economic conditions and infrastructure. Sustain. Sci. 2016, 11, 625–643. [Google Scholar] [CrossRef] [Green Version]
- Tascón-González, L.; Ferrer-Julià, M.; Ruiz, M.; García-Meléndez, E.; Tascon-Gonzalez, L.; Ferrer-Julia, M.; Ruiz, M.; Garcia-Melendez, E. Social vulnerability assessment for flood risk analysis. Water 2020, 12, 558. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Liu, Z.; Van Dijk, M.P. Measuring urban vulnerability to climate change using an integrated approach, assessing climate risks in Beijing. PeerJ 2019, 2019, e7018. [Google Scholar] [CrossRef] [Green Version]
- Aroca-Jimenez, E.; Bodoque, J.M.; Antonio Garcia, J.; Diez-Herrero, A. Construction of an integrated social vulnerability index in urban areas prone to flash flooding. Nat. Hazards Earth Syst. Sci. 2017, 17, 1541–1557. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Choi, H.I. Comparison of flood vulnerability assessments to climate change by construction frameworks for a composite indicator. Sustainability 2018, 10, 768. [Google Scholar] [CrossRef] [Green Version]
- Nazeer, M.; Bork, H.-R. Flood vulnerability assessment through different methodological approaches in the context of North-West Khyber Pakhtunkhwa, Pakistan. Sustainability 2019, 11, 6695. [Google Scholar] [CrossRef] [Green Version]
- Santos, P.P.; Pereira, S.; Zêzere, J.L.; Tavares, A.O.; Reis, E.; Garcia, R.A.C.; Oliveira, S.C. A comprehensive approach to understanding flood risk drivers at the municipal level. J. Environ. Manag. 2020, 260, 110127. [Google Scholar] [CrossRef]
- Liew, D.Y.C.; Che Ros, F.; Harun, A.N. Developing composite indicators for flood vulnerability assessment: Effect of weight and aggregation techniques. Int. J. Adv. Trends Comput. Sci. Eng. 2019, 8, 383–392. [Google Scholar] [CrossRef]
- Müller, A.; Reiter, J.; Weiland, U.; Mueller, A.; Reiter, J.; Weiland, U. Assessment of urban vulnerability towards floods using an indicator-based approach-a case study for Santiago de Chile. Nat. Hazards Earth Syst. Sci. 2011, 11, 2107–2123. [Google Scholar] [CrossRef] [Green Version]
- Kovačević-Majkić, J.; Panić, M.; Miljanović, D.; Miletić, R. Vulnerability to natural disasters in Serbia: Spatial and temporal comparison. Nat. Hazards 2014, 72, 945–968. [Google Scholar] [CrossRef]
- Yoon, D.K. Assessment of social vulnerability to natural disasters: A comparative study. Nat. Hazards 2012, 63, 823–843. [Google Scholar] [CrossRef]
- Reckien, D. What is in an index? Construction method, data metric, and weighting scheme determine the outcome of composite social vulnerability indices in New York City. Reg. Environ. Chang. 2018, 18, 1439–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, B.; Andrey, J. Vulnerability index construction: Methodological choices and their influence on identifying vulnerable neighbourhoods. Int. J. Emerg. Manag. 2007, 4, 269–295. [Google Scholar] [CrossRef]
- Tate, E. Social vulnerability indices: A comparative assessment using uncertainty and sensitivity analysis. Nat. Hazards 2012, 63, 325–347. [Google Scholar] [CrossRef]
- Spielman, S.E.; Tuccillo, J.; Folch, D.C.; Schweikert, A.; Davies, R.; Wood, N.; Tate, E. Evaluating social vulnerability indicators: Criteria and their application to the Social Vulnerability Index. Nat. Hazards 2020, 100, 417–436. [Google Scholar] [CrossRef] [Green Version]
- Shouyu, C.; Zhichun, X.; Li, M.; Zhu, X. Variable sets method for urban flood vulnerability assessment. Sci. China Tech. Sci. 2013, 56, 3129–3136. [Google Scholar] [CrossRef]
- Olsen, A.; Zhou, Q.; Linde, J.; Arnbjerg-Nielsen, K. Comparing methods of calculating expected annual damage in urban pluvial flood risk assessments. Water 2015, 7, 255–270. [Google Scholar] [CrossRef] [Green Version]
- Molinari, D.; Scorzini, A.R.; Arrighi, C.; Carisi, F.; Castelli, F.; Domeneghetti, A.; Gallazzi, A.; Galliani, M.; Grelot, F.; Kellermann, P.; et al. Are flood damage models converging to “reality”? Lessons learnt from a blind test. Nat. Hazards Earth Syst. Sci. 2020, 20, 2997–3017. [Google Scholar] [CrossRef]
- Rufat, S.; Tate, E.; Emrich, C.T.; Antolini, F. How valid are social vulnerability models? Ann. Am. Assoc. Geogr. 2019, 109, 1131–1153. [Google Scholar] [CrossRef]
- Tarling, H.A. Comparative Analysis of Social Vulnerability Indices: CDC’s SVI and SoVI®. Ph.D Thesis, Univesity of Lund, Lund, Sweden, 2017. [Google Scholar]
- Schmidtlein, M.C.; Deutsch, R.C.; Piegorsch, W.W.; Cutter, S.L. A sensitivity analysis of the social vulnerability index. Risk Anal. 2008, 28, 1099–1114. [Google Scholar] [CrossRef] [PubMed]
- Barroca, B.; Bernardara, P.; Mouchel, J.M.; Hubert, G. Indicators for identification of urban flooding vulnerability. Nat. Hazards Earth Syst. Sci. 2006, 6, 553–561. [Google Scholar] [CrossRef]
- Krellenberg, K.; Link, F.; Welz, J.; Harris, J.; Barth, K.; Irarrazaval, F. Supporting local adaptation: The contribution of socio-environmental fragmentation to urban vulnerability. Appl. Geogr. 2014, 55, 61–70. [Google Scholar] [CrossRef]
- Fernandez, P.; Mourato, S.; Moreira, M. Social vulnerability assessment of flood risk using GIS-based multicriteria decision analysis. A case study of Vila Nova de Gaia (Portugal). Geomat. Nat. Hazards Risk 2016, 7, 1367–1389. [Google Scholar] [CrossRef] [Green Version]
- Niyongabire, E.; Rhinane, H. Geospatial techniques use for assessment of vulnerability to urban flooding in Bujumbura city, Burundi. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII–4/W12, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.T.; Aldosary, A.S.; Nahiduzzaman, K.M.; Reza, I. Vulnerability of flash flooding in Riyadh, Saudi Arabia. Nat. Hazards 2016, 84, 1807–1830. [Google Scholar] [CrossRef]
- Li, G.F.; Xiang, X.Y.; Tong, Y.Y.; Wang, H.M. Impact assessment of urbanization on flood risk in the Yangtze River Delta. Stoch. Environ. Res. Risk Assess. 2013, 27, 1683–1693. [Google Scholar] [CrossRef]
- Lee, G.; Choi, J.; Jun, K.S. MCDM Approach for identifying urban flood vulnerability under social environment and climate change. J. Coast. Res. 2017, 33, 209–213. [Google Scholar] [CrossRef]
- Nasiri, H.; Yusof, M.J.M.; Ali, T.A.M.; Hussein, M.K.B. District flood vulnerability index: Urban decision-making tool. Int. J. Environ. Sci. Technol. 2019, 16, 2249–2258. [Google Scholar] [CrossRef] [Green Version]
- Rana, I.A.; Routray, J.K. Multidimensional model for vulnerability assessment of urban flooding: An empirical study in Pakistan. Int. J. Disaster Risk Sci. 2018, 9, 359–375. [Google Scholar] [CrossRef] [Green Version]
- Karunarathne, A.Y.A.Y.; Lee, G. Developing a multi-facet social vulnerability measure for flood disasters at the micro-level assessment. Int. J. Disaster Risk Reduct. 2020, 49. [Google Scholar] [CrossRef]
- Santos, P.P.; Tavares, A.O.; Freire, P.; Rilo, A. Estuarine flooding in urban areas: Enhancing vulnerability assessment. Nat. Hazards 2018, 93, 77–95. [Google Scholar] [CrossRef]
- Sorg, L.; Medina, N.; Feldmeyer, D.; Sanchez, A.; Vojinovic, Z.; Birkmann, J.J.; Marchese, A. Capturing the multifaceted phenomena of socioeconomic vulnerability. Nat. Hazards 2018, 92, 257–282. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhang, Q.-P.; Liu, Y.-Y.; Tong, L.-J.; Zhang, Y.-Z.; Li, X.-Y.; Li, J.-L. Characterizing the spatial distribution of typical natural disaster vulnerability in China from 2010 to 2017. Nat. Hazards 2020, 100, 3–15. [Google Scholar] [CrossRef]
- Remo, J.W.F.F.; Pinter, N.; Mahgoub, M. Assessing Illinois’s flood vulnerability using Hazus-MH. Nat. Hazards 2016, 81, 265–287. [Google Scholar] [CrossRef]
- Solin, L.; Solín, Ľ. Spatial variability in the flood vulnerability of urban areas in the headwater basins of Slovakia. J. Flood Risk Manag. 2012, 5, 303–320. [Google Scholar] [CrossRef]
- Garbutt, K.; Ellul, C.; Fujiyama, T. Mapping social vulnerability to flood hazard in Norfolk, England. Environ. Hazards 2015, 14, 156–186. [Google Scholar] [CrossRef]
- Zhang, M.; Xiang, W.; Chen, M.; Mao, Z. Measuring social vulnerability to flood disasters in China. Sustainability 2018, 10, 2676. [Google Scholar] [CrossRef] [Green Version]
- Aroca-Jimenez, E.; Bodoque, J.M.; Garcia, J.A.; Diez-Herrero, A. A quantitative methodology for the assessment of the regional economic vulnerability to flash floods. J. Hydrol. 2018, 565, 386–399. [Google Scholar] [CrossRef]
Hazard | Exposure | Vulnerability | Sensitivity | Adaptive Capacity | ||
---|---|---|---|---|---|---|
2017 | Armenakis et al. [32] | x | x | x | ||
2019 | Cai et al. [33] | x | x | x | ||
2019 | Chen et al. [34] | x | x | x | x | |
2020 | Chen et al. [35] | x | x | x | x | |
2015 | Domeneghetti et al. [36] | x | x | x | ||
2014 | Edjossan-Sossou et al. [37] | |||||
2018 | Elboshy et al. [38] | x | x | x | x | |
2020 | Ellena et al. [39] | x | x | x | x | x |
2020 | Geng et al. [40] | x | x | x | ||
2020 | Hossain and Meng [41] | x | x | x | ||
2011 | Kaźmierczak and Cavan [42] | x | x | x | x | |
2020 | Koc and Ișik [43] | x | x | x | ||
2009 | Kubal et al. [44] | x | x | x | ||
2013 | Li et al. [45] | x | x | x | x | x |
2020 | Lin et al. [46] | x | x | |||
2020 | Lv et al. [47] | x | x | x | x | |
2010 | Maantay et al. [48] | x | x | x | ||
2014 | Muller [49] | x | x | x | x | |
2018 | Rana and Routray [50] | x | x | x | x | |
2015 | Ronco et al. [51] | x | x | x | ||
2019 | Shi et al. [52] | x | x | x | x | x |
2017 | Sun et al. [53] | x | x | x | x | |
2020 | Wang et al. [54] | x | x | x | ||
2014 | Yoon et al. [55] | x | x | |||
2019 | Yu et al. [56] | x | x | x |
EXPOSURE | SENSITIVITY | ADAPTIVE CAPACITY | |||
---|---|---|---|---|---|
Sub-Indicators | CC | Sub-Indicators | CC | Sub-Indicators | CC |
Population density | 29 | % People with disabilities | 14 | Preparedness/awareness | 13 |
Inhabitants aged 65 or older | 26 | Unemployment rate | 14 | Drainage network/pipelines density | 12 |
Inhabitants aged 0–4/5 | 22 | Building condition (quality/type of the materials) | 14 | Past experience | 11 |
Inhabitants aged 5–13 | 14 | Education level | 12 | Warning system | 9 |
Household size | 10 | % Female | 11 | Risk insurance | 8 |
Urbanized area, built-up area | 8 | Households with 1 story above ground level and/or 1 story below ground level | 11 | Road density | 7 |
Topography (elevation) | 8 | Age of construction | 10 | Evacuation routes | 6 |
Green spaces/Urban green coverage | 7 | Households with 2 or more stories above ground level | 9 | ||
Number of dwellings located at flood prone area | 8 | ||||
Per capita income | 7 | ||||
Dependency rate | 6 | ||||
Illiterate people | 6 | ||||
Population with low education level (<years) | 6 | ||||
Foreigners | 6 | ||||
Dependency on public infrastructure | 6 | ||||
Type of utilization (of the building) | 6 | ||||
Percentage of home rented/owned | 6 | ||||
Industries and other economic activities | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bigi, V.; Comino, E.; Fontana, M.; Pezzoli, A.; Rosso, M. Flood Vulnerability Analysis in Urban Context: A Socioeconomic Sub-Indicators Overview. Climate 2021, 9, 12. https://doi.org/10.3390/cli9010012
Bigi V, Comino E, Fontana M, Pezzoli A, Rosso M. Flood Vulnerability Analysis in Urban Context: A Socioeconomic Sub-Indicators Overview. Climate. 2021; 9(1):12. https://doi.org/10.3390/cli9010012
Chicago/Turabian StyleBigi, Velia, Elena Comino, Magda Fontana, Alessandro Pezzoli, and Maurizio Rosso. 2021. "Flood Vulnerability Analysis in Urban Context: A Socioeconomic Sub-Indicators Overview" Climate 9, no. 1: 12. https://doi.org/10.3390/cli9010012
APA StyleBigi, V., Comino, E., Fontana, M., Pezzoli, A., & Rosso, M. (2021). Flood Vulnerability Analysis in Urban Context: A Socioeconomic Sub-Indicators Overview. Climate, 9(1), 12. https://doi.org/10.3390/cli9010012