Observed Spatiotemporal Trends in Intense Precipitation Events across United States: Applications for Stochastic Weather Generation
Abstract
:1. Introduction
2. Definition and Categorical Classifications of Intense Precipitation Events
2.1. Categorization of Intense Precipitation Events: Definition and Thresholds
- 15–20 mm, 35–45 mm, and >55 mm, respectively, for heavy, very heavy, and extreme precipitation categories in the southwest.
- 30–40 mm, 75–105 mm, and >130 mm, respectively, for heavy, very heavy, and extreme precipitation categories in the south.
- 30–45 mm, 75–105 mm, and >130 mm, respectively, for heavy, very heavy, and extreme precipitation categories in the southeast.
2.2. Fixed Numerical versus Percentile-Defined Thresholds: Pros and Cons
3. Categorical Trends in Intense Precipitation
4. Precipitation Projections Using Stochastic Weather Generators
5. Need for Adjustments in Precipitation Projections
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 2003, 84, 1205–1218. [Google Scholar] [CrossRef]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Changnon, S.A.; Kunkel, K.E.; Andsager, K. Causes for record high flood losses in the central United States. Water Int. 2001, 26, 223–230. [Google Scholar] [CrossRef]
- Changnon, S.A.; Westcott, N.E. Heavy Rainstorms in Chicago: Increasing Frequency, Altered Impacts, and Future Implications. JAWRA J. Am. Water Resour. Assoc. 2002, 38, 1467–1475. [Google Scholar] [CrossRef]
- Nearing, M.A.; Jetten, V.; Baffaut, C.; Cerdan, O.; Couturier, A.; Hernandez, M.; le Bissonnais, Y.; Nichols, M.H.; Nunes, J.P.; Renschler, C.S.; et al. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 2005, 61, 131–154. [Google Scholar] [CrossRef]
- Pruski, F.F.; Nearing, M.A. Runoff and soil-loss responses to changes in precipitation: A computer simulation study. J. Soil Water Conserv. 2002, 57, 7–16. [Google Scholar]
- Delpla, I.; Jung, A.-V.; Baures, E.; Clement, M.; Thomas, O. Impacts of climate change on surface water quality in relation to drinking water production. Environ. Int. 2009, 35, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, P.G.; Wilby, R.; Battarbee, R.W.; Kernan, M.; Wade, A.J. A review of the potential impacts of climate change on surface water quality. Hydrol. Sci. J. 2009, 54, 101–123. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.-Z.; Wu, Y.; Chambers, R.G.; Schmoldt, D.L.; Gao, W.; Liu, C.; Liu, Y.; Sun, C.; Kennedy, J.A. Determining climate effects on US total agricultural productivity. Proc. Natl. Acad. Sci. USA 2017, 114, E2285–E2292. [Google Scholar] [CrossRef] [PubMed]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Tank, A.M.G.K.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Karl, T.R.; Knight, R.W.; Easterling, D.R.; Quayle, R.G. Indices of climate change for the United States. Bull. Am. Meteorol. Soc. 1996, 77, 279–292. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Karl, T.R.; Easterling, D.R.; Knight, R.W.; Jamason, P.F.; Hennessy, K.J.; Suppiah, R.; Page, C.M.; Wibig, J.; Fortuniak, K.; et al. Changes in the probability of heavy precipitation: Important indicators of climatic change. Weather Clim. Extrem. 1999, 42, 243–283. [Google Scholar]
- Easterling, D.R.; Evans, J.L.; Groisman, P.Y.; Karl, T.R.; Kunkel, K.E.; Ambenje, P. Observed variability and trends in extreme climate events: A brief review. Bull. Am. Meteorol. Soc. 2000, 81, 417–426. [Google Scholar] [CrossRef]
- Tatsuya, I.; Yamamoto, R. Notes and correspondence: A statistical analysis of the extreme events: Long-term trend of heavy daily precipitation. J. Meteorol. Soc. Jpn. Ser. II 1993, 71, 637–640. [Google Scholar]
- Karl, T.R.; Knight, R.W. Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Am. Meteorol. Soc. 1998, 79, 231–242. [Google Scholar] [CrossRef]
- Alpert, P.; Ben-Gai, T.; Baharad, A.; Benjamini, Y.; Yekutieli, D.; Colacino, M.; Diodato, L.; Ramis, C.; Homar, V.; Romero, R.; et al. The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys. Res. Lett. 2002, 29, 31–34. [Google Scholar] [CrossRef]
- Seth, W.; Alexander, L.V.; Zwiers, F.W. Global increasing trends in annual maximum daily precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2016, 6, 508. [Google Scholar] [CrossRef]
- Panthou, G.; Lebel, T.; Vischel, T.; Quantin, G.; Sane, Y.; Ba, A.; Ndiaye, O.; Diongue-Niang, A.; Diopkane, M. Rainfall intensification in tropical semi-arid regions: The Sahelian case. Environ. Res. Lett. 2018, 13, 064013. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Andsager, K.; Easterling, D.R. Long-term trends in extreme precipitation events over the conterminous United States and Canada. J. Clim. 1999, 12, 2515–2527. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Easterling, D.R.; Redmond, K.; Hubbard, K. Temporal variations of extreme precipitation events in the United States: 1895–2000. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Knight, R.W.; Karl, T.R. Heavy precipitation and high streamflow in the contiguous United States: Trends in the twentieth century. Bull. Am. Meteorol. Soc. 2001, 82, 219–246. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Knight, R.W.; Karl, T.R.; Easterling, D.R.; Sun, B.; Lawrimore, J.H. Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations. J. Hydrometeorol. 2004, 5, 64–85. [Google Scholar] [CrossRef]
- Groisman, P.Y. Trends in intense precipitation in the climate record. J. Clim. 2005, 18, 1326–1350. [Google Scholar] [CrossRef]
- Karl, T.R.; Jerry, M.M.; Peterson, T.C.; Susan, J.H. Global Climate Change Impacts in the United States; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Ya, G.P.; Knight, R.W.; Karl, T.R. Changes in intense precipitation over the central United States. J. Hydrometeorol. 2012, 13, 47–66. [Google Scholar]
- Zhang, W.; Villarini, G. Heavy precipitation is highly sensitive to the magnitude of future warming. Clim. Chang. 2017, 145, 249–257. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, W.; Villarini, G.; Scoccimarro, E.; Vecchi, G.A. Stronger influences of increased CO2 on subdaily precipitation extremes than at the daily scale. Geophys. Res. Lett. 2017, 44, 7464–7471. [Google Scholar] [CrossRef]
- Zhang, X.; Wan, H.; Zwiers, F.W.; Hegerl, G.C.; Min, S. Attributing intensification of precipitation extremes to human influence. Geophys. Res. Lett. 2013, 40, 5252–5257. [Google Scholar] [CrossRef] [Green Version]
- Fischer, E.M.; Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Chang. 2015, 5, 560–564. [Google Scholar] [CrossRef]
- Fischer, E.M.; Beyerle, U.; Knutti, R. Robust spatially aggregated projections of climate extremes. Nat. Clim. Chang. 2013, 3, 1033–1038. [Google Scholar] [CrossRef]
- Fischer, E.M.; Knutti, R. Observed heavy precipitation increase confirms theory and early models. Nat. Clim. Chang. 2016, 6, 986–991. [Google Scholar] [CrossRef]
- Pfahl, S.; O’Gorman, P.A.; Fischer, E.M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Chang. 2017, 7, 423–427. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Knight, R.W.; Zolina, O.G. Recent trends in regional and global intense precipitation patterns. Clim. Vulnerability 2013, 5, 25–55. [Google Scholar]
- Tank, A.; Können, G.P. Trends in indices of daily temperature and precipitation extremes in Europe, 1946–1999. J. Clim. 2003, 16, 3665–3680. [Google Scholar] [CrossRef]
- Hughes, P.Y.; Mason, E.H.; Karl, T.R.; Brower, W.A. United States Historical Climatology Network Daily Temperature and Precipitation Data; Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy: Oak Ridge, TN, USA, 1992.
- Wilks, D.S.; Wilby, R.L. The weather generation game: A review of stochastic weather models. Prog. Phys. Geogr. 1999, 23, 329–357. [Google Scholar] [CrossRef]
- Ailliot, P.; Allard, D.; Monbet, V.; Naveau, P. Stochastic weather generators: An overview of weather type models. Journal de la Société Française de Statistique 2015, 156, 101–113. [Google Scholar]
- Mehan, S.; Guo, T.; Gitau, M.W.; Flanagan, D.C. Comparative study of different stochastic weather generators for long-term climate data simulation. Climate 2017, 5, 26. [Google Scholar] [CrossRef]
- Verdin, A.; Rajagopalana, B.; Kleiber, W.; Podestá, G.; Bert, F. A conditional stochastic weather generator for seasonal to multi-decadal simulations. J. Hydrol. 2018, 556, 835–846. [Google Scholar] [CrossRef]
- Richardson, C.W. Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour. Res. 1981, 17, 182–190. [Google Scholar] [CrossRef]
- Richardson, C.W.; Wright, D.A. WGEN: A Model for Generating Daily Weather Variables; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1984.
- Woolhiser, D.A.; Hanson, C.L.; Richardson, C.W. Microcomputer program for daily weather simulation. USDA Agric. Res. Serv. ARS 1988, 75, 49. [Google Scholar]
- Stöckle, C.O.; Campbell, G.S.; Nelson, R. ClimGen Manual; Biological Systems Engineering Department, Washington State University: Pullman, WA, USA, 1999. [Google Scholar]
- Nicks, A.D.; Lane, L.J.; Gander, G.A. Weather generator. In USDA-Water Erosion Prediction Project: Hillslope Profile and Watershed Model Documentation; NSERL Report #10; USDA-ARS National Soil Erosion Research Laboratory: West Lafayette, IN, USA, 1995; Chapter 2. [Google Scholar]
- Chen, J.; Brissette, F.P.; Leconte, R. WeaGETS—A Matlab-based daily scale weather generator for generating precipitation and temperature. Environ. Sci. Process. Impacts 2012, 13, 2222–2235. [Google Scholar] [CrossRef]
- Semenov, M.A.; Barrow, E.M. LARS-WG A Stochastic Weather Generator for Use in Climate Impact Studies; User Manual: Hertfordshire, UK, 2002. [Google Scholar]
- Garbrecht, J.; Busteed, P. SYNTOR: A Synthetic Daily Weather Generator Version 3.5 User Manual; Grazinglands Research Laboratory: El Reno, OK, USA, 2011.
- Garbrecht, J.D.; Zhang, J.X. Generating synthetic daily precipitation realizations for seasonal precipitation forecasts. J. Hydrol. Eng. 2012, 19, 252–264. [Google Scholar] [CrossRef]
- Hennessy, K.J.; Gregory, J.M.; Mitchell, J.F.B. Changes in daily precipitation under enhanced greenhouse conditions. Clim. Dyn. 1997, 13, 667–680. [Google Scholar] [CrossRef]
- Allen, M.R.; Ingram, W.J. Constraints on future changes in climate and the hydrologic cycle. Nature 2002, 419, 224. [Google Scholar] [CrossRef] [PubMed]
- Hegerl, G.C. Detectability of anthropogenic changes in annual temperature and precipitation extremes. J. Clim. 2004, 17, 3683–3700. [Google Scholar] [CrossRef]
- Prein, A.F.; Rasmussen, R.M.; Ikeda, K.; Liu, C.; Clark, M.P.; Holland, G.J. The future intensification of hourly precipitation extremes. Nat. Clim. Chang. 2017, 7, 48. [Google Scholar] [CrossRef]
Study | Precipitation Category | Period | ||
---|---|---|---|---|
Heavy | Very Heavy | Extreme | ||
Karl et al. [11] | >50.8 | N/A | N/A | 1910–1995 |
Easterling et al. [13] | >50.8 | N/A | N/A | 1910–1996 |
Karl and Knight [15] | 10% | N/A | N/A | 1910–1995 |
Groisman et al. [22] | 50.8–101.6 | >101.6 | N/A | 1961–1990 |
Groisman et al. [22] | 10% | 1% | N/A | 1961–1990 |
Groisman et al. [23] (a) | 10%–5% | 1%–0.3% | 0.1% | 1908–2000 |
Groisman et al. [23] (b) | 15–20 | 35–45 | >55 | 1908–2000 |
Groisman et al. [23] (c) | 30–40 | 75–105 | >130 | 1908–2000 |
Groisman et al. [23] (d) | 30–45 | 75–105 | >130 | 1908–2000 |
Groisman et al. [24] | 5% | 1% | 0.1% | 1910–1999 |
Groisman et al. [26] | 25.4–76.2 | 76.2–154.9 | >154.9 | N/A |
Study | % change in precipitation category | Period | Study Region | ||
---|---|---|---|---|---|
Heavy | Very Heavy | Extreme | |||
Karl and Knight [15] | N/A | N/A | 7 | 1910–1995 | All of US |
Karl and Knight [15] | N/A | N/A | 12 | 1910–1995 | Southern Great Plains |
Kunkel et al. [21] | N/A | N/A | 3 | 1931–1996 | All of US |
Groisman et al. [23] | 14 | 20 | 21 | 1908–2002 | All of US |
Groisman et al. [23] | N/A | N/A | 30 | 1908–2002 | Southwest |
Groisman et al. [24] | −0.1 | 0.9 | 1.5 | 1910–1970 | All of US |
Groisman et al. [24] | 4.6 | 7.2 | 14.1 | 1970–1999 | All of US |
Groisman et al. [24] | N/A | 20 | N/A | 1893–2002 | Central US |
Groisman et al. [24] | N/A | 26 | N/A | 1970–2002 | Central US |
Karl et al. [25] | 15 | N/A | N/A | 1958–2007 | Great Plains |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, S.; Garbrecht, J.; Brown, D. Observed Spatiotemporal Trends in Intense Precipitation Events across United States: Applications for Stochastic Weather Generation. Climate 2019, 7, 36. https://doi.org/10.3390/cli7030036
Joshi S, Garbrecht J, Brown D. Observed Spatiotemporal Trends in Intense Precipitation Events across United States: Applications for Stochastic Weather Generation. Climate. 2019; 7(3):36. https://doi.org/10.3390/cli7030036
Chicago/Turabian StyleJoshi, Sanjeev, Jurgen Garbrecht, and David Brown. 2019. "Observed Spatiotemporal Trends in Intense Precipitation Events across United States: Applications for Stochastic Weather Generation" Climate 7, no. 3: 36. https://doi.org/10.3390/cli7030036
APA StyleJoshi, S., Garbrecht, J., & Brown, D. (2019). Observed Spatiotemporal Trends in Intense Precipitation Events across United States: Applications for Stochastic Weather Generation. Climate, 7(3), 36. https://doi.org/10.3390/cli7030036