Next Article in Journal
On-Farm Evaluation of the Potential Use of Greenhouse Gas Mitigation Techniques for Rice Cultivation: A Case Study in Thailand
Previous Article in Journal
Evaluation of Small-Scale Fishers’ Perceptions on Climate Change and Their Coping Strategies: Insights from Lake Malawi
Open AccessArticle

Simulating the Impacts of Tree, C3, and C4 Plant Functional Types on the Future Climate of West Africa

1
West African Science Service Center on Climate Change and Adapted Land Use (WASCAL), Federal University of Technology Akure, P.M.B. 704, Akure 340001, Ondo State, Nigeria
2
Department of Agricultural and Environmental Engineering, Federal University of Technology Akure, P.M.B. 704, Akure 340001, Ondo State, Nigeria
3
Rossby Centre, Swedish Meteorological and Hydrological Institute, SE-601 76 Norrköping, Sweden
*
Author to whom correspondence should be addressed.
Climate 2018, 6(2), 35; https://doi.org/10.3390/cli6020035
Received: 11 January 2018 / Revised: 10 April 2018 / Accepted: 27 April 2018 / Published: 2 May 2018
This study investigates the future climatic impacts of different percentages of trees/shrubs, C4 and C3 plant functional types (PFTs) over the West Africa region. The ratio of co-existence among the different PFTs was done as a representation of agri-silviculture practices over the region. Nine sensitivity experiments of different percentages of trees/shrubs, and C4 and C3 PFTs were carried out with a regional climate model (RegCM4) driven by Global Climate Model (HADGEM2-ES) outputs. These experiments were carried out along the Guinea Savana zone of West Africa using both prescribed and dynamic vegetation options of the model. The model simulated the seasonal evolution of precipitation and temperature fields quite well, with correlations greater than 0.8, but exhibited cold and wet biases of about 1–2 °C and 1–4 mm/day, respectively. Widespread warming (1–3 °C) and drying (1–2 mm/day) is projected in the near future across most parts of West Africa all year round. The West African future climate change associated with the different percentages of trees/shrubs, and C4 and C3 PFTs varied with the vegetation state (prescribed or dynamic) and model domain sizes. The prescribed vegetation experiments induced cooling of about 0.5–2 °C in most areas along the designated agri-silviculture zone, except Liberia and Sierra Leone. Similarly, enhanced precipitation occurred over most parts of Ghana and coastal parts of Nigeria (0.5–3 mm/day). On the other hand, the dynamic vegetation option did not exhibit pronounced changes in temperature and precipitation, except with a larger domain size. This study suggests the implementation of agri-silviculture as a mitigation and adaptation land-use practice across West Africa if drought-tolerant crops and the deciduous trees are adopted. View Full-Text
Keywords: agri-silviculture; mitigation and adaptation; future climate; regional climate model; West Africa; plant functional types agri-silviculture; mitigation and adaptation; future climate; regional climate model; West Africa; plant functional types
Show Figures

Figure 1

MDPI and ACS Style

Olusegun, C.F.; Oguntunde, P.G.; Gbobaniyi, E.O. Simulating the Impacts of Tree, C3, and C4 Plant Functional Types on the Future Climate of West Africa. Climate 2018, 6, 35.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop