Translating MC2 DGVM Results into Ecosystem Services for Climate Change Mitigation and Adaptation
Abstract
:1. Introduction
2. Materials and Methods
- If herbaceous carbon stocks >200 g∙m−2 and woody carbon stocks <80 g∙m−2 we called it a grassland.
- Then if woody carbon stocks >1150 g∙m−2 we called it a forest.
- Then if woody carbon stocks >1 g∙m−2 we called it a shrubland.
- The rest was called “other.”
3. Simulation Results
3.1. Forest Area and Productivity, Relevant to Timber Supply as a Provisioning ES
3.2. Carbon Sequestration and Losses to Wildfires as a Regulating ES
3.3. Vegetation Shifts That Will Affect Wildlife Habitat, a Supporting ES
3.4. Limitations
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
1 | Undefined |
2 | Ice or Barren (or Rock) |
3 | Alpine or Arctic Tundra |
4 | Taiga-Tundra |
5 | Boreal Evergreen Needleleaf Forest |
6 | Boreal Mixed Woodland |
7 | Subalpine Forest |
8 | Maritime Evergreen Needleleaf Forest |
9 | Temperate Evergreen Needleleaf Forest |
10 | Temperate Deciduous Broadleaf Forest |
11 | Temperate Cool Mixed Forest |
12 | Temperate Warm Mixed Forest |
13 | Temperate Deciduous Broadleaf Woodland |
14 | Temperate Cool Mixed Woodland |
15 | Temperate Warm Mixed Woodland |
16 | C3-Dominated and Temperate Shrubland |
17 | C3-Dominated and Temperate Grassland |
18 | Temperate Desert |
19 | Subtropical Evergreen Needleleaf Forest |
20 | Subtropical Deciduous Broadleaf Forest |
21 | Subtropical Evergreen Broadleaf Forest |
22 | Subtropical Mixed Forest |
23 | Subtropical Evergreen Needleleaf Woodland |
24 | Subtropical Deciduous Broadleaf Woodland |
25 | Subtropical Evergreen Broadleaf Woodland |
26 | Subtropical Mixed Woodland |
27 | C4-Dominated Subtropical Shrubland |
28 | C4-Dominated Subtropical Grassland |
29 | Subtropical Desert |
30 | Tropical Evergreen Broadleaf Forest |
31 | Tropical Deciduous Woodland |
32 | Tropical Savanna |
33 | Tropical Shrubland |
34 | Tropical Grassland |
35 | Tropical Desert |
36 | Cool Needleleaf Forest |
References
- Daily, G.C.; Polasky, S.; Goldstein, J.; Kareiva, P.M.; Mooney, H.A.; Pejchar, L.; Ricketts, T.H.; Shallenberger, R. Ecosystem services in decision-making: Time to deliver. Front. Ecol. Environ. 2009, 7, 21–28. [Google Scholar] [CrossRef]
- Schmidt, K.; Sachse, R.; Walk, A. Current role of social benefits in ecosystem service assessments. Landsc. Urban Plan. 2016, 149, 49–64. [Google Scholar] [CrossRef]
- Scholes, R.J. Climate change and ecosystems. WIREs Clim. Chang. 2016. [Google Scholar] [CrossRef]
- Alkama, R.; Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 2016, 351, 600–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frey, S.J.; Hadley, A.S.; Betts, M.G. Microclimate predicts within-season distribution dynamics of montane forest birds. Divers. Distrib. 2016, 22, 944–959. [Google Scholar] [CrossRef]
- Locatelli, B.; Pavageau, C.; Pramova, E.; di Gregorio, M. Integrating climate change mitigation and adaptation in agriculture and forestry: Opportunities and trade-offs. WIREs Clim. Chang. 2015, 6, 585–598. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Chapin, F.S.; Firestone, M.K.; Field, C.B.; Chiariello, N.R. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature 2001, 40, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Ansley, R.J.; Boutton, T.W.; Skjemstad, J.O. Soil organic carbon and black carbon storage and dynamics under different fire regimes in temperate mixed-grass savanna. Glob. Biogeochem. Cycles 2006, 20, GB3006. [Google Scholar] [CrossRef]
- Ma, S.; Duggan, J.M.; Eichelberger, B.A.; McNally, B.W.; Foster, J.R.; Pepi, E.; Conte, M.N.; Daily, G.C.; Ziv, G. Valuation of ecosystem services to inform management of multiple-use landscapes. Ecosyst. Serv. 2016, 19, 6–18. [Google Scholar] [CrossRef]
- USDA (U.S. Department of Agriculture) Forest Service. National Forest System Land Management. Fed. Regist. 2012, 77, 21162–21276. [Google Scholar]
- Bagstad, K.J.; Semmens, D.; Winthrop, R.; Jaworski, D.; Larson, J. Ecosystem Services Valuation to Support Decision Making on Public Lands—A Case Study of the San Pedro River Watershed; Scientific Investigations Report 2012-5251; U.S. Geological Survey: Denver, CO, USA, 2012; p. 93.
- Karp, D.S.; Tallis, H.; Sachse, R.; Halpern, B.; Thonicke, K.; Cramer, W.; Mooney, H.; Polasky, S.; Tietjen, B.; Waha, K.; et al. National indicators for observing ecosystem service change. Glob. Environ. Chang. 2015, 35, 12–21. [Google Scholar] [CrossRef]
- Bachelet, D.; Ferschweiler, K.; Sheehan, T.; Sleeter, B.; Zhu, Z. Projected carbon stocks in the conterminous US with land use and variable fire regimes. Glob. Chang. Biol. 2015, 21, 4548–4560. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Bergamaschi, B.; Bernknopf, R.; Clow, D.; Dye, D.; Faulkner, S.; Forney, W.; Gleason, R.; Hawbaker, T.; Liu, J. (Eds.) A Method for Assessing Carbon Stocks, Carbon Sequestration and Greenhouse-Gas Fluxes in Ecosystems of the United States under Present Conditions and Future Scenarios; Scientific Investigations Report 2010–5233; U.S. Geological Survey: Reston, VA, USA, 2010; p. 188.
- Liu, S.; Tan, Z.; Chen, M.; Liu, J.; Wein, A.; Li, Z.; Huang, S.; Oeding, J.; Young, C.; Verma, S.B.; et al. The General Ensemble Biochemical Modeling System (GEMS) and its applications to agricultural systems in the United States. In Managing Agricultural Greenhouse Gases—Coordinated Agricultural Research through GRACEnet to Address Our Changing Climate; Liebig, M.A., Franzluebbers, A.J., Follett, R.F., Eds.; Academic Press: London, UK, 2012; pp. 309–323. [Google Scholar]
- Sheehan, T.; Bachelet, D.; Ferschweiler, K. Projected major fire and vegetation changes in the Pacific Northwest of the conterminous United States under selected CMIP5 climate futures. Ecol. Model. 2015, 317, 16–29. [Google Scholar] [CrossRef]
- Daly, C.; Bachelet, D.; Lenihan, J.M.; Neilson, R.P. Dynamic simulation of tree-grass interactions for global change studies. Ecol. Appl. 2000, 10, 449–469. [Google Scholar]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; USDA Forest Service Research Paper INT-115; Department of Agriculture, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1972. [Google Scholar]
- Peterson, D.L.; Ryan, K.C. Modeling postfire conifer mortality for long-range planning. Environ. Manag. 1986, 10, 797–808. [Google Scholar] [CrossRef]
- Van Wagner, C. Prediction of crown fire behavior in two stands of jack pine. Can. J. For. Res. 1993, 23, 442–449. [Google Scholar] [CrossRef]
- Lenihan, J.M.; Daly, C.; Bachelet, D.; Neilson, R.P. Simulating broad-scale fire severity in a dynamic global vegetation model. Northwest Sci. 1998, 72, 91–101. [Google Scholar]
- Van Wagner, C.E.; Pickett, T.L. Equations and FORTRAN Program for the Canadian Forest Fire Weather Index System; Forestry Technical Report 33; Canadian Forestry Service, Petawawa National Forestry Institute: Chalk River, ON, Canada, 1985; p. 18. [Google Scholar]
- Bradshaw, L.S.; Deeming, J.E.; Burgan, R.E.; Cohen, J.D. The 1978 National Fire Danger Rating System: A Technical Documentation; General Technical Report INT-169; USDA Forest Service: Ogden, UT, USA, 1983.
- Kern, J.S. Spatial patterns of soil organic carbon in the contiguous United States. Soil Sci. Soc. Am. J. 1994, 58, 439–455. [Google Scholar] [CrossRef]
- Kern, J.S. Geographic patterns of soil water-holding capacity in the contiguous United States. Soil Sci. Soc. Am. J. 1995, 59, 1126–1133, Erratum in 2000, 64, 382. [Google Scholar] [CrossRef]
- Daly, C.; Halbleib, M.; Smith, J.I.; Gibson, W.P.; Doggett, M.K.; Taylor, G.H.; Curtis, J.; Pasteris, P.P. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 2008, 28, 2031–2064. [Google Scholar] [CrossRef]
- Gordon, H.B.; Rotstayn, L.D.; McGregor, J.L.; Dix, M.R.; Kowalczyk, E.A.; O’Farrell, S.P.; Waterman, L.J.; Hirst, A.C.; Wilson, S.G.; Collier, M.A.; et al. The CSIRO Mk3 Climate System Model; Technical Paper No. 60; CSIRO Atmospheric Research: Victoria, Australia, 2002. [Google Scholar]
- Boer, G.J. A hybrid moisture variable suitable for spectral GCMs. In Research Activities in Atmospheric and Oceanic Modelling; Report No. 21, WMO/TD-No. 665; World Meteorological Organization: Geneva, Switzerland, 1995. [Google Scholar]
- Hasumi, H.; Emori, S. (Eds.) K-1 Coupled GCM (MIROC) Description; K-1 Tech. Rep. 1; Center for Climate System Research: Tokyo, Japan, 2004. [Google Scholar]
- Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modeling. Int. J. Climatol. 2007, 27, 1547–1578. [Google Scholar] [CrossRef]
- Küchler, A. Potential Natural Vegetation of the United States, 2nd ed.; American Geographical Society: New York, NY, USA, 1975. [Google Scholar]
- Leenhouts, B. Assessment of biomass burning in the conterminous United States. Conserv. Ecol. 1998, 2, 1. [Google Scholar] [CrossRef]
- Kellndorfer, J.; Walker, W.; LaPoint, E.; Kirsch, K.; Bishop, J.; Fiske, G. Statistical fusion of lidar, InSAR, and optical remote sensing data for forest stand height characterization: A regional-scale method based on LVIS, SRTM, Landsat ETM+, and ancillary data sets. J. Geophys. Res. Biogeosci. 2010, 115. [Google Scholar] [CrossRef]
- Kellndorfer, J.; Walker, W.; Kirsch, K.; Fiske, G.; Bishop, J.; Lapoint, L.; Hoppus, M.; Westfall, J. NACP Aboveground Biomass and Carbon Baseline Data, V.2 (NBCD 2000), U.S.A., 2000; ORNL DAAC: Oak Ridge, TN, USA, 2013. Available online: https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1161 (accessed on 26 December 2017).
- Sleeter, B.M.; Sohl, T.L.; Bouchard, M.A.; Reker, R.R.; Soulard, C.E.; Acevedo, W.; Griffith, G.E.; Sleeter, R.R.; Auch, R.F.; Sayler, K.L.; et al. Scenarios of land use and land cover change in the conterminous United States: Utilizing the special report on emission scenarios at ecoregional scales. Glob. Environ. Chang. 2012, 22, 896–914. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate change 2007: Impacts, adaptation and vulnerability. In Contribution of Working Group II to the Fourth Assessment Report; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Rogers, B.M.; Neilson, R.P.; Drapek, R.; Lenihan, J.M.; Wells, J.R.; Bachelet, D.; Law, B.E. Impacts of climate change on fire regimes and carbon stocks of the U.S. Pacific Northwest. J. Geophys. Res. 2011, 116, G03037. [Google Scholar] [CrossRef]
- EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2011; EPA430-R-13-001; EPA: Washington, DC, USA, 2013.
- Jorgensen, S. Global Ecology, 1st ed.; Academic Press: Cambridge, MA, USA, 2010; p. 480. [Google Scholar]
- Waring, R.H.; Pitman, G.B. Modifying lodgepole pine stands to change susceptibility to mountain pine beetle attack. Ecology 1985, 66, 889–897. [Google Scholar] [CrossRef]
- Liquete, C.; Cid, N.; Lanzanova, D.; Grizetti, B.; Reynaud, A. Perspectives on the link between ecosystem services and biodiversity: The assessment of the nursery function. Ecol. Indic. 2016, 63, 249–257. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; MacE, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity loss and its impact on humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Lausch, A.; Bannehr, L.; Beckmann, M.; Boehm, C.; Feilhauer, H.; Hacker, J.M.; Heurich, M.; Jung, A.; Klenke, R.; Neumann, C.; et al. Linking Earth Observation and taxonomic, structural and functional biodiversity: Local to ecosystem perspectives. Ecol. Indic. 2016, 70, 317–339. [Google Scholar] [CrossRef]
- Wolf, A.; Zimmerman, N.B.; Anderegg, W.R.L.; Busby, P.E.; Christensen, J. Altitudinal shifts of the native and introduced flora of California in the context of 20th-century warming. Glob. Ecol. Biogeogr. 2016, 25, 418–429. [Google Scholar] [CrossRef]
- Conklin, D.C. Simulating Vegetation Shifts and Carbon Cycling in Yosemite National Park. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 2009. Available online: http://ir.library.oregonstate.edu/jspui/handle/1957/13510 (accessed on 26 July 2016).
- Peterman, W.; Bachelet, D.; Ferschweiler, K.; Sheehan, T. Soil depth affects simulated carbon and water in the MC2 dynamic global vegetation model. Ecol. Model. 2014, 294, 84–93. [Google Scholar] [CrossRef]
- Symstad, A.J.; Fisichelli, N.A.; Miller, B.W.; Rowland, E.; Schuurman, G.W. Multiple methods for multiple futures: Integrating qualitative scenario planning and quantitative simulation modeling for natural resource decision making. Clim. Risk Manag. 2017, 17, 78–91. [Google Scholar] [CrossRef]
- Fisichelli, N.A.; Schuurman, G.W.; Hoffman, C.H. Is ‘Resilience’ maladaptive? Towards an accurate lexicon for climate change adaptation. Environ. Manag. 2015, 57, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western US forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.B.; Donnelly, A. Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol. 2004, 164, 423–439. [Google Scholar] [CrossRef]
- Cudmore, T.J.; Björklund, N.; Carroll, A.L.; Lindgren, B.S. Climate change and range expansion of an aggressive bark beetle: Evidence of higher beetle reproduction in naïve host tree populations. J. Appl. Ecol. 2010, 47, 1036–1043. [Google Scholar] [CrossRef]
- Chapman, T.B.; Veblen, T.T.; Schoennagel, T. Spatiotemporal patterns of mountain pine beetle activity in the southern Rocky Mountains. Ecology 2012, 93, 2175–2185. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Thom, D.; Kautz, M.; Mario-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Millar, C.I.; Stephenson, N.L.; Stephens, S.L. Climate change and forests of the future: Managing in the face of uncertainty. Ecol. Appl. 2007, 17, 2145–2151. [Google Scholar] [CrossRef] [PubMed]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; DeFries, R.S.; Collatz, G.J.; Hantson, S.; Kloster, S.; et al. A human-driven decline in global burned area. Science 2017, 356, 1356–1362. [Google Scholar] [CrossRef] [PubMed]
- Ficetola, G.F.; Colleoni, E.; Renaud, J.; Scali, S.; Padoa-Schioppa, E.; Thuiller, W. Morphological variation in salamanders and their potential response to climate change. Glob. Chang. Biol. 2016, 22, 2013–2024. [Google Scholar] [CrossRef] [PubMed]
- Petry, W.K.; Soule, J.D.; Iler, A.M.; Chicas-Mosier, A.; Inouye, D.W.; Miller, T.E.X.; Mooney, K.A. Sex-specific responses to climate change in plants alter population sex ratio and performance. Science 2016, 353, 69–71. [Google Scholar] [CrossRef] [PubMed]
- Merilä, J.; Hendry, A.P. Climate change, adaptation and phenotypic plasticity: The problem and the evidence. Evolut. Appl. 2014, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.-C.; Hill, J.K.; Ohlemuller, R.; Roy, D.B.; Thomas, C.D. Rapid range shifts of species associated with high levels of climate warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef] [PubMed]
- He, F.T.; Hubbell, S.P. Species area relationships always overestimate extinction rates from habitat loss. Nature 2011, 473, 368e371. [Google Scholar] [CrossRef] [PubMed]
- Zurell, D.; Thuiller, W.; Pagel, J.; Cabral, J.S.; Münkemüller, T.; Gravel, D.; Dullinger, S.; Normand, S.; Schiffers, K.H.; Moore, K.A.; et al. Benchmarking novel approaches for modelling species range dynamics. Glob. Chang. Biol. 2016, 22, 2651–2664. [Google Scholar] [CrossRef] [PubMed]
- Collier, M.J.; Devitt, C. Novel ecosystems: Challenges and opportunities for the Anthropocene. Anthr. Rev. 2016, 3, 231–242. [Google Scholar] [CrossRef]
- Beever, E.; O’Leary, J.; Mengelt, C.; West, J.M.; Julius, S.; Green, N.; Magness, D.; Petes, L.; Stein, B.; Nicotra, A.B.; et al. Improving Conservation Outcomes with a New Paradigm for Understanding Species: Fundamental and Realized Adaptive Capacity. Conserv. Lett. 2016, 9, 131–137. [Google Scholar] [CrossRef]
- Naudts, K.; Chen, Y.; McGrath, M.J.; Ryder, J.; Valade, A.; Otto, J.; Luyssaert, S. Europe’s forest management did not mitigate climate warming. Science 2016, 351, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. USA 2010, 107, 5242–5247. [Google Scholar] [CrossRef] [PubMed]
Total Area (Conterminous USA) | Protected Areas (GAP 1 and 2) | Managed Lands (ag/Grasslands, Developed, Mined) | ||||
---|---|---|---|---|---|---|
Area | 7,873,389 km2 | 609,235 km2 | 2,635,585 km2 | |||
Type of Human intervention | none | Land use + fire suppression | none | fire suppression | none | Land use + fire suppression |
Carbon sequestration-NEP (g∙C∙m−2) | 70.58 | 154.62 | 67.63 | 71.40 | 74.56 | 325.24 |
Timber Supply (Gm 3 × 106 km−2) | 20.02 | 13.88 | 21.99 1 | 23.64 | 100.78 | 1.86 |
Biomass Consumed by wildfires (g∙C∙m−2) | 56.68 | 22.56 | 56.63 | 38.41 | 59.11 | 2.54 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bachelet, D.; Ferschweiler, K.; Sheehan, T.J.; Sleeter, B.M.; Zhu, Z. Translating MC2 DGVM Results into Ecosystem Services for Climate Change Mitigation and Adaptation. Climate 2018, 6, 1. https://doi.org/10.3390/cli6010001
Bachelet D, Ferschweiler K, Sheehan TJ, Sleeter BM, Zhu Z. Translating MC2 DGVM Results into Ecosystem Services for Climate Change Mitigation and Adaptation. Climate. 2018; 6(1):1. https://doi.org/10.3390/cli6010001
Chicago/Turabian StyleBachelet, Dominique, Kenneth Ferschweiler, Timothy J. Sheehan, Benjamin M. Sleeter, and Zhiliang Zhu. 2018. "Translating MC2 DGVM Results into Ecosystem Services for Climate Change Mitigation and Adaptation" Climate 6, no. 1: 1. https://doi.org/10.3390/cli6010001