Effects of Local Greenhouse Gas Abatement Strategies on Air Pollutant Emissions and on Health in Kuopio, Finland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Greenhouse Gas Emission
2.3. Abatement Strategies and Scenarios
2.4. Scenario Data
2.5. Population and Residences
2.6. Heat Demand and Production
2.7. Traffic
2.8. Health Effects
2.9. Modelling Emissions and Dispersion
3. Results
3.1. Pollutant Emissions
3.2. Local Concentrations and Exposures
3.3. Health Effects
3.4. Socio-Demographic Differences
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- IPCC. Climate Change: The IPCC Scientific Assessment; Houghton, J.T., Jenkins, G.J., Ephraums, J.J., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1990. [Google Scholar]
- Gupta, J. The multi-level governance challenge of climate change. Environ. Sci. 2007, 4, 131–137. [Google Scholar] [CrossRef]
- Haines, A.; McMichael, A.J.; Smith, K.R.; Roberts, I.; Woodcock, J.; Markandya, A.; Armstrong, B.G.; Campbell-Lendrum, D.; Dangour, A.D.; Davies, M.; et al. Public health benefits of strategies to reduce greenhouse-gas emissions: overview and implications for policy makers. Lancet 2009, 374, 2104–2114. [Google Scholar] [CrossRef]
- Cifuentes, L.; Borja-Aburto, V.H.; Gouveia, N.; Thurston, G.; Davis, D.L. Hidden Health Benefits of Greenhouse Gas Mitigation. Science 2001, 293, 1257–1259. [Google Scholar] [CrossRef] [PubMed]
- Nemet, G.F.; Holloway, T.; Meier, P. Implications of incorporating air quality co-benefits into climate change policymaking. Environ. Res. Lett. 2010, 5, 014007. [Google Scholar] [CrossRef]
- Pittel, K.; Rübbelke, D.T.G. Climate policy and ancillary benefits: A survey and integration into the modelling of international negotiations on climate change. Ecolog Econom 2008, 68, 210–220. [Google Scholar] [CrossRef]
- Sabel, C.E.; Hiscock, R.; Asikainen, A.; Bi, J.; Depledge, M.; van den Elshout, S.; Freiedrich, R.; Huang, G.; Hurley, F.; Jantunen, M.; et al. Public Health impacts of city policies to reduce climate change: findings from the URGENCHE EU-China project. Environ. Health 2016, 15, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Benviroc Oy. Kuopion Kasvihuonekaasupäästöt 2006, 2008–2010; Benviroc Oy: Espoo, Finland, 2011. [Google Scholar]
- LIPASTO—A Calculation System for Traffic Exhaust Emissions and Energy Use in Finland. VTT Technical Research Centre of Finland Ltd. LIISA Modelling System 2010. Road Traffic Exhaust Emissions Calculation Model module. Available online: http://www.lipasto.vtt.fi/en/liisa/index.htm (accessed on 2 February 2017).
- Koskinen, A.-L.; Olkinuora, J.; Elo, J.; Perttula, S.; Ruotsalainen, A.; Sevander, V. Kuopion Kasvihuonekaasupäästöjen Vähentämismahdollisuudet v 2020 Mennessä; Raportti 16WWE0924; Pöyry Finland Oy: Vantaa, Finland, 2011. [Google Scholar]
- Kalenoja, H.; Keränen, M. KUOMA-raportti. Kuopion alueen liikennemalli 2012. Tampereen teknillinen yliopisto. Liikenteen tutkimuskeskus Verne. Tutkimusraportti 80, Tampere Finland 2012. Available online: http://www.tut.fi/verne/wp-content/uploads/Kuoma_raportti2012_1009.pdf (accessed on 2 February 2017).
- Regulation (ec) No. 715/2007 of the European parliament and of the council of 20 June 2007 on type approval of motor vehicles with respect to emissions from light pas senger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and maintenance information. Official Journal of the European Union. 2007. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:171:0001:0016:EN:PDF (accessed on 8 June 2017).
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and cardio- respiratory mortality: A review. Environ. Health 2013, 12, 43. Available online: http://www.ehjournal.net/content/12/1/43 (accessed on 7 February 2017).
- Hurley, F.; Hunt, A.; Cowie, H.; Holland, M.; Miller, B.; Pye, S.; Watkiss, P. Methodology Paper (Volume 2) for Service Contract for carrying out cost-benefit analysis of air quality related issues, in particular in the clean air for Europe (CAFE) programme. AEAT/ED51014/Methodology Volume 2: Issue 2. AEA Technology Environment: United Kingdom, 2005. Available online: http://ec.europa.eu/environment/archives/cafe/pdf/cba_methodology_vol2.pdf (accessed on 7 February 2017).
- Héroux, M.E.; Anderson, H.R.; Atkinson, R.; Brunekreef, B.; Cohen, A.; Forastiere, F.; Hurley, F.; Katsouyanni, K.; Krewski, D.; Krzyzanowski, M.; et al. Quantifying the health impacts of ambient air pollutants: Recommendations of a WHO/Europe project. Int. J. Pub. Health 2015, 60, 619–627. [Google Scholar] [CrossRef]
- Sotkanet.fi. Statistical information on welfare and health in Finland. Causes of death 2010 in Kuopio area. Available online: https://www.sotkanet.fi/sotkanet/en (accessed on 7 February 2017).
- Statistical database Kelasto. Existing, new and withdrawn entitlements to reimbursement of drug expenses. Available online: http://www.kela.fi/web/en/statistical-database-kelasto (accessed on 7 February 2017).
- Eurostat. Hospital discharges by diagnosis, in-patients, per 100 000 inhabitants. Available online: http://ec.europa.eu/eurostat/web/products-datasets/-/hlth_co_disch2 (accessed on 8 February 2017).
- Motiva Oy. CO2-Laskentaohje Energiankulutuksen Hiilidioksidipäästöjen Laskentaan. Available online: https://www.motiva.fi/ratkaisut/energiankaytto_suomessa/co2-laskentaohje_energiankulutuksen_hiilidioksidipaastojen_laskentaan (accessed on 8 February 2017).
- Komppula, B.; Salmi, J.; Rasila, T.; Kauhaniemi, M.; LovLovénn, K. Biopolttoaineiden Käytön Lisäyksen Vaikutus Kuopion Ilmanlaatuun Vuonna 2020. Autoliikenteen, Haapaniemen Voimalaitoksen ja Kiinteistökohtaisen Lämmityksen Päästöjen Leviämismallinnus. Ilmatieteen Laitos—Ilmanlaadun Asiantuntijapalvelut: Helsinki Finland, 2013. Available online: http://expo.fmi.fi/aqes/public/Biopolttoaineiden_kayton_lisayksen_vaikutus_Kuopion_ilmanlaatuun_vuonna_2020.pdf (accessed on 3 May 2017).
- Karppinen, A. Meteorological Pre-Processing and Atmospheric Dispersion Modeling of Urban Air Quality and Applications in the Helsinki Metropolitan Area. Academic Dissertation, University of Helsinki, Helsinki Finland, 2001. Finnish Meteorological Institute, Contributions No. 33, Helsinki. [Google Scholar]
- Härkönen, J.; Valkonen, E.; Kukkonen, J.; Rantakrans, E.; Lehtinen, K.; Karppinen, A.; Jalkanen, L. A Model for the Dispersion of Pollution from a Road Network; Finnish Meteorological Institute: Helsinki, Finland, Yliopistopaino, 1996. [Google Scholar]
- Härkönen, J. Regulatory Dispersion Modelling of Traffic-Originated Pollution; University of Helsinki: Helsinki, Finland, 2002. [Google Scholar]
- Kauhaniemi, M.; Kukkonen, J.; Härkönen, J.; Nikmo, J.; Kangas, L.; Omstedt, G.; Ketzel, M.; Kousa, A.; Haakana, M.; Karppinen, A. Evaluation of a road dust suspension model for predicting the concentrations of PM10 in street canyon in Helsinki. Atmos. Environ. 2011, 45, 3646–3654. [Google Scholar] [CrossRef]
- Omstedt, G.; Bringrelt, B.; Johansson, C. A model for vehicle-induced nontailpipe emissions of particles along Swedish roads. Atmosph Environ. 2005, 39, 6088–6097. [Google Scholar] [CrossRef]
- Alaviippola, B.; Pietarila, H. Ilmanlaadun arviointi Suomessa. Pienhiukkaset (PM2,5). Ilmatieteen laitos, Ilmanlaadun asiantuntijapalvelut. Available online: http://www.ilmanlaatu.fi/ilmansaasteet/julkaisu/pdf/pienhiukkasten_alustava_arviointi_2011_2.pdf (accessed on 2 February 2017).
- Fecht, D.; Fischer, P.; Fortunato, L.; Hoek, G.; de Hoogh, K.; Marra, M.; Kruize, H.; Vienneau, D.; Beelen, R.; Hansell, A. Associations between air pollution and socioeconomic characteristics, ethnicity and age profile of neighbourhoods in England and the Netherlands. Environ. Pollut. 2015, 198, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Havard, S.; Zmirou-navier, D.; Schillinger, C.; Bard, D. Traffic-related air pollution and socioeconomic status. Epidemiology 2009, 20, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Brochu, P.J.; Yanosky, J.D.; Paciorek, C.J.; Schwartz, J.; Chen, J.T.; Herrick, R.F.; Suh, H.H. Particulate air pollution and socioeconomic position in rural and urban areas of the northeastern United States. Am. J. Public Health 2011, 101, S224–S230. [Google Scholar] [CrossRef] [PubMed]
- Hajat, A.; Diez-Roux, A.V.; Adar, S.D.; Auchincloss, A.H.; Lovasi, G.S.; O’Neill, M.S.; Sheppard, L.; Kaufman, J.D. Air pollution and individual and neighborhood socioeconomic status: Evidence from the Multi-Ethnic Study of Atherosclerosis (MESA). Environ. Health Perspect. 2013, 121, 1325–1333. [Google Scholar] [CrossRef] [PubMed]
- Fargione, J.; Hill, J.; Tilman, D.; Polasky, S.; Hawthorne, P. Land Clearing and the Biofuel Carbon Debt. Science 2008, 319, 1235–1238. [Google Scholar] [CrossRef] [PubMed]
- Searchinger, T.; Heimlich, R.; Houghton, R.A.; Dong, F.; Elobeid, A.; Fabiosa, J.; Tokgoz, S.; Hayes, D.; Yu, T.-H. Use of U.S. Croplands for Biofuels Increases Greenhouse Gases through Emissions from Land-Use Change. Science 2008, 319, 1238–1240. [Google Scholar] [CrossRef] [PubMed]
- GGómezmez, D.R.; Watterson, J.D.; Americano, B.B.; Ha, C.; Marland, G.; Matsika, E.; Namayanga, L.N.; Osman-Elasha, B.; Kalenga Saka, J.D.; Treanton, K. Stationary Combustion, Chapter 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Available online: http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_2_Ch2_Stationary_Combustion.pdf (accessed on 2 February 2017).
- Statistics Finland. Fuel Classification 2016. Available online: http://www.stat.fi/tup/khkinv/khkaasut_polttoaineluokitus.html (accessed on 9 February 2017).
- Woodcock, J.; Edwards, P.; Tonne, C.; Armstrong, B.G.; Ashiru, O.; Banister, D.; Beevers, S.; Chalabi, Z.; Chowdhury, Z.; Cohen, A.; et al. Public health benefits of strategies to reduce greenhouse-gas emissions: Urban land transport. Lancet 2009, 374, 1930–1943. [Google Scholar] [CrossRef]
- Woodcock, J.; Givoni, M.; Morgan, A.S. Health Impact Modelling of Active Travel Visions for England and Wales Using an Integrated Transport and Health Impact Modelling Tool (ITHIM). PLoS ONE 2013, 8, e51462. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Rueda, D.; de Nazelle, A.; Teixidó, O.; Nieuwenhuijsen, M.J. Replacing car trips by increasing bike and public transport in the greater Barcelona metropolitan area: A health impact assessment study. Environ. Int. 2012, 49, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Nitschke, M.; Zhang, Y.; Shah, P.; Crabb, S.; Hansen, A. Traffic-related air pollution and health co-benefits of alternative transport in Adelaide, South Australia. Environ. Int. 2015, 74, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Hiscock, R.; Asikainen, A.; Tuomisto, J.; Jantunen, M.; Pärjälä, E.; Sabel, C.E. City scale climate change policies: Do they matter for wellbeing? Prevent. Med. Rep. 2017, 6, 265–270. [Google Scholar] [CrossRef] [PubMed]
Action | 2010 Baseline | 2020 BAU | 2020 CO2 Interventions |
---|---|---|---|
(1a) Increased use of biomass in the Haapaniemi CHP-plant | * 4% biomass | * 4% biomass | * 50% biomass |
* Total generation as in 2010 (a) | * Total generation based on estimated need for 2020 (d) | * Total generation based on estimated need for 2020 (d) | |
(1b) Increased use of wood for residential heating | * Sources of heat as in 2010 (b) | * Share of each source for heat as in 2010 (b) | * Oil heating replaced with small scale wood burning |
* Double the use of wood for supporting heating compared to 2010 | |||
(2a) Increased use of biofuels in traffic | * 5% biofuels | * 20% biofuels | * 30% biofuels |
* Volume of used fuel as in 2010 (c) | * Volume of used fuels based on traffic volume increase (e) | * Volume of used fuels based on traffic volume increase (e) | |
(3a) Improved energy efficiency of residences | * Average annual heating need 166 kWh/m2/a (based on district heat usage in 2010) (a) | * 3% of residences renovated annually (2010–2020) (f) | * 3% of residences renovated annually (2010–2020) (f) |
* Annual heating need 70 kWh/m2/a in renovated and new buildings | * Annual heating need 25 kWh/m2/a in renovated and new buildings |
Data | 2010 Baseline | 2020 BAU | 2020 Interventions |
---|---|---|---|
Population | 80,425 (a) | 85,940 (f) | * |
Residences, total floor area | 4,480,857 (b) | 4,729,032 (g) | * |
- Residences, renovated, floor area (m2) | 1,308,905 (h) | * | |
- Residences, new, floor area (m2) | 248 175 (g) | * | |
- Residences, not renovated, floor area (m2) | 4,480,857 | 3,171,952 | * |
Residences, annual average heating need (kWh/m2/a) | 165.5 (c) | 165.5 ** | 165.5 ** |
75 *** | 25.0 *** | ||
Residences, total heat demand (GWh/a) | 742 (d) | 634 (i) | 564 (i) |
- District heat | 580 | 496 | 441 |
- Oil | 35 | 30 | 0 |
- Electricity | 98 | 84 | 75 |
- Geothermal | 8 | 7 | 6 |
- Wood | 21 | 18 | 42 |
Total use of fuels in the Haapaniemi power plant (GWh) | 1709 (c) | 1536 (i) | 1277 (i) |
Traffic mileage (million km/a) | 514 (e) | 555 (j) | * |
Total use of traffic fuels (tons/a) | 38,135 (e) | 41 186 (k) | * |
- Diesel | 22 500 | 24 300 | * |
- Petrol | 15 635 | 16 886 | * |
Health End Point | Background Incidence | ERF (a) | PAF (b) |
---|---|---|---|
Mortality (all cause) | 732 (c) | 1.006 | 0.04 |
(1.004–1.008) (g) | (0.03–0.05) | ||
Restricted activity days (RADs) | 2.1 million in whole Finland due to PM2.5 exposure | 0.09 | |
(0.08–0.10) (h) | |||
Chronic bronchitis (>27 yr, new cases) | 230 (d) | 5.3 × 10−5 | 0.13 |
(1.7 x 10−6–1.1 × 10−4) (h) | (0.004–0.27) | ||
Cardiovascular hospital admissions | 2109 (e) | 1.001 | 0.01 |
(1.000–1.002) (i) | (0.00–0.01) | ||
Respiratory hospital admissions | 1150 (f) | 1.002 | 0.01 |
(1.000–1.004) (i) | (0.00–0.03) |
Fuel or Heating Source | 2010 Baseline | 2020 BAU | 2020 CO2 Interventions |
---|---|---|---|
District heat (g/kWh) (a) | 305 | 305 | 164 |
Oil (g/kWh) (b) | 267 | 267 | 267 |
Electricity (g/kWh) (b) | 200 | 200 | 200 |
Geothermal heat (g/kWh) (b) | 200 | 200 | 200 |
Peat (g/kWh) (b) | 381 | 381 | 381 |
Wood and biomass (g/kWh) (c) | 0 | 0 | 0 |
Diesel (g/L) (d) | 2548 * | 2101 ** | 1825 *** |
Gasoline (g/L) (d) | 2209 * | 1701 ** | 1422 *** |
Source | 2010 Baseline | 2020 BAU | 2020 CO2 Interventions |
---|---|---|---|
Traffic | 0.5 | 0.4 | 0.2 |
Haapaniemi CHP-plant | 0.0 | 0.0 | 0.0 |
Small scale combustion | 0.3 | 0.2 | 0.3 |
Total * | 6.9 | 6.7 | 6.6 |
% of intervention sources | 12% | 9% | 8% |
Health End Point | 2010 Baseline | 2020 BAU | 2020 CO2 Interventions |
---|---|---|---|
Mortality (all cause) | 29 (19–38) | 28 (19–37) | 28 (19–37) |
Restricted activity days (RADs) | 49,787 (43,716–55,749) | 48,682 (42,745–54,511) | 48,354 (42,457–54,143) |
Chronic bronchitis (>27 yr, new cases) | 29 (1–62) | 29 (1–61) | 29 (1–61) |
Cardiovascular hospital admissions | 14 (3–25) | 13 (3–24) | 13 (2–24) |
Respiratory hospital admissions | 15 (−1–30) | 14 (−1–30) | 14 (−1–29) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asikainen, A.; Pärjälä, E.; Jantunen, M.; Tuomisto, J.T.; Sabel, A.C.E. Effects of Local Greenhouse Gas Abatement Strategies on Air Pollutant Emissions and on Health in Kuopio, Finland. Climate 2017, 5, 43. https://doi.org/10.3390/cli5020043
Asikainen A, Pärjälä E, Jantunen M, Tuomisto JT, Sabel ACE. Effects of Local Greenhouse Gas Abatement Strategies on Air Pollutant Emissions and on Health in Kuopio, Finland. Climate. 2017; 5(2):43. https://doi.org/10.3390/cli5020043
Chicago/Turabian StyleAsikainen, Arja, Erkki Pärjälä, Matti Jantunen, Jouni T. Tuomisto, and And Clive E. Sabel. 2017. "Effects of Local Greenhouse Gas Abatement Strategies on Air Pollutant Emissions and on Health in Kuopio, Finland" Climate 5, no. 2: 43. https://doi.org/10.3390/cli5020043
APA StyleAsikainen, A., Pärjälä, E., Jantunen, M., Tuomisto, J. T., & Sabel, A. C. E. (2017). Effects of Local Greenhouse Gas Abatement Strategies on Air Pollutant Emissions and on Health in Kuopio, Finland. Climate, 5(2), 43. https://doi.org/10.3390/cli5020043