The Impacts of Changes in Near-Term Climate Forcers on East Asia’s Climate
Abstract
1. Introduction
2. Materials and Methods
2.1. AerChemMIP Experiments
2.2. PM2.5 Air Quality Index
3. Results
3.1. Contribution of NTCF and O3 Precursor Emissions to Present-Day Air Quality
3.2. Impact of Mitigation Efforts on Future PM2.5 Changes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the global burden of diseases study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef]
- World Health Organization. WHO global air quality guidelines. In Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Im, U.; Bauer, S.E.; Frohn, L.M.; Geels, C.; Tsigaridis, K.; Brandt, J. Present-day and future PM2.5 and O3-related global and regional premature mortality in the EVAv6.0 health impact assessment model. Environ. Res. 2023, 216, 114702. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Aravkin, A.Y.; Zheng, P.; Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of disease study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef] [PubMed]
- Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C.A.; Apte, J.S.; Brauer, M.; Cohen, A.; Weichenthal, S.; et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci. USA 2018, 115, 9592–9597. [Google Scholar] [CrossRef] [PubMed]
- Vohra, K.; Vodonos, A.; Schwartz, J.; Marais, E.A.; Sulprizio, M.P.; Mickley, L.J. Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem. Environ. Res. 2021, 195, 110754. [Google Scholar] [CrossRef]
- Hoffmann, B.; Boogaard, H.; Nazelle, A.D.; Andersen, Z.J.; Abramson, M.; Brauer, M.; Brunekreef, B.; Forastiere, F.; Huang, W.; Kan, H.; et al. WHO air quality guidelines 2021–Aiming for healthier air for all: A joint statement by medical, public health, scientific societies and patient representative organisations. Int. J. Public Health 2021, 66, 1604465. [Google Scholar] [CrossRef] [PubMed]
- Fiore, A.M.; Naik, V.; Leibensperger, E.M. Air quality and climate connections. J. Air Waste Manag. Assoc. 2015, 65, 645–685. [Google Scholar] [CrossRef] [PubMed]
- Jacob, D.J.; Winner, D.A. Effect of climate change on air quality. Atmos. Environ. 2009, 43, 51–63. [Google Scholar] [CrossRef]
- Karlsson, M.; Alfredsson, E.; Westling, N. Climate policy co-benefits: A review. Clim. Policy 2020, 20, 292–316. [Google Scholar] [CrossRef]
- Rao, S.; Kilmont, Z.; Smith, S.J.; Dingenen, R.V.; Dentener, F.; Bouwman, L.; Riahi, K.; Amann, M.; Bodirsky, B.L.; Vuuren, D.P.V.; et al. Future air pollution in the Shared Socio-economic Pathways. Glob. Environ. Change 2017, 42, 346–358. [Google Scholar]
- Turnock, S.T.; Butt, E.W.; Richardson, T.B.; Mann, G.W.; Reddington, C.L.; Forster, P.M.; Haywood, J.; Crippa, M.; Janssens-Maenhout, G.; Johnson, C.E.; et al. The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate. Environ. Res. Lett. 2016, 11, 024010. [Google Scholar] [CrossRef]
- Silver, B.; Conibear, L.; Reddington, C.L.; Knote, C.; Arnold, S.R.; Spracklen, D.V. Pollutant emission reductions deliver decreased PM2.5 -caused mortality across China during 2015–2017. Atmos. Chem. Phys. 2020, 20, 11683–11695. [Google Scholar]
- Wang, Y.; Hu, J.; Huang, L.; Li, T.; Yue, X.; Xie, X.; Liao, H.; Chen, K.; Wang, M. Projecting future health burden associated with exposure to ambient PM2.5 and ozone in China under different climate scenarios. Environ. Int. 2022, 169, 107542. [Google Scholar] [CrossRef]
- Wu, X.; Braun, D.; Schwartz, J.; Kioumourtzoglou, M.A.; Dominici, F. Evaluating the impact of long-term exposure to fine particulate matter on mortality among the elderly. Sci. Adv. 2020, 6, eaba5692. [Google Scholar] [CrossRef] [PubMed]
- Amann, M.; Klimont, Z.; Wagner, F. Regional and global emissions of air pollutants: Recent trends and future scenarios. Annu. Rev. Environ. Resour. 2013, 38, 31–55. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, B.; Ni, J.; Liu, L.; Niu, X.; Liu, J.; Shao, J.; Du, S.; Chu, L.; Jin, J.; et al. Global spatial and temporal patterns of fine particulate concentrations and exposure risk assessment in the context of SDG indicator 11.6.2. Ecol. Indic. 2023, 155, 111031. [Google Scholar] [CrossRef]
- Shaddick, G.; Thomas, M.L.; Mudu, P.; Ruggeri, G.; Gumy, S. Half the world’s population are exposed to increasing air pollution. NPJ Clim. Atmos. Sci. 2020, 3, 23. [Google Scholar] [CrossRef]
- Shi, Z.; Song, C.; Liu, B.; Lu, G.; Xu, J.; Vu, T.V.; Elliott, R.J.R.; Li, W.; Bloss, W.J.; Harrison, R.M. Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 lockdowns. Sci. Adv. 2021, 7, eabd6696. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, J.; Sun, X.; Xu, S.; Shan, M.; Yuan, Q.; Liu, L.; Du, Z.; Liu, D.; Xu, D.; et al. Variation in concentration and sources of black carbon in a megacity of China during the COVID-19 pandemic. Geophys. Res. Lett. 2020, 47, e2020GL090444. [Google Scholar]
- Sangkham, S.; Phairuang, W.; Sherchan, S.P.; Pansakun, N.; Munkong, N.; Sarndhon, K.; Islam, M.A.; Sakunkoo, P. An update on adverse health effects from exposure to PM2.5. Environ. Adv. 2024, 18, 100603. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, D.; Wen, W.; Wieser, L.; Kiesewetter, G.; Wang, C.; Zhang, S.; Lin, H. Temporal trend of cause-specific mortality burden attributable to ambient PM2.5 from different sectors and fuel types across Chinese provinces during 2015–2022. Environ. Res. 2025, 285, 122507. [Google Scholar] [CrossRef]
- Collins, W.J.; Lamarque, J.F.; Schulz, M.; Boucher, O.; Eyring, V.; Hegglin, M.I.; Maycock, A.; Myhre, G.; Prather, M.; Shindell, D.; et al. AerChemMIP: Quantifying the effects of chemistry and aerosols in CMIP6. Geosci. Model Dev. 2017, 10, 585–607. [Google Scholar] [CrossRef]
- Romanello, M.; McGushin, A.; Napoli, C.D.; Drummond, P.; Hughes, N.; Jamart, L.; Kennard, H.; Lampard, P.; Rodriguez, B.S.; Arnell, N.; et al. The 2021 report of the Lancet countdown on health and climate change: Code red for a healthy future. Lancet 2021, 398, 1619–1662. [Google Scholar] [CrossRef]
- Gidden, M.J.; Riahi, K.; Smith, S.J.; Fujimori, S.; Luderer, G.; Kriegler, E.; Vuuren, D.P.V.; Berg, M.V.D.; Feng, L.; Klein, D.; et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 2019, 12, 1443–1475. [Google Scholar] [CrossRef]
- Williams, D.N.; Balaji, V.; Cinquini, L.; Denvil, S.; Duffy, D.; Evans, B.; Ferraro, R.; Hansen, R.; Lautenschlager, M.; Trenham, C. A global repository for planet-sized experiments and observations. Bull. Am. Meteorol. Soc. 2016, 97, 803–816. [Google Scholar] [CrossRef]
- Erying, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Deser, C.; Phillips, A.S.; Bourdette, V.; Teng, H. Uncertainty in climate change projections: The role of internal variability. Clim. Dyn. 2012, 38, 527–546. [Google Scholar]
- Ren, L.; Yang, Y.; Wang, H.; Wang, P.; Yue, X.; Liao, H. Co-benefits of mitigating aerosol pollution to future solar and wind energy in China toward carbon neutrality. Geophys. Res. Lett. 2024, 51, e2024GL109296. [Google Scholar]
- Feng, L.; Smith, S.J.; Braun, C.; Crippa, M.; Gidden, M.J.; Hoesly, R.; Klimont, Z.; van Marle, M.; van den Berg, M.; van der Werf, G.R. The generation of gridded emissions data for CMIP6. Geosci. Model Dev. 2020, 13, 461–482. [Google Scholar] [CrossRef]
- Turnock, S.T.; Allen, R.J.; Andrews, M.; Bauer, S.E.; Deushi, M.; Emmons, L.; Good, P.; Horowitz, L.; John, J.G.; Michou, M.; et al. Historical and future changes in air pollutants from CMIP6 models. Atmos. Chem. Phys. 2020, 20, 14547–14579. [Google Scholar] [CrossRef]
- Shim, S.; Sung, H.; Kwon, S.; Kim, J.; Lee, J.; Sun, M.; Song, J.; Ha, J.; Byun, Y.; Kim, Y.; et al. Regional features of long-term exposure to PM2.5 air quality over Asia under SSP scenarios based on CMIP6 models. Int. J. Environ. Res. Public Health 2021, 18, 6817. [Google Scholar] [CrossRef]
- Fiore, A.M.; Naik, V.; Spracklen, D.V.; Steiner, A.; Unger, N.; Prather, M.; Bergmann, D.; Cameron-Smith, P.J.; Cionni, I.; Collins, W.J.; et al. Global air quality and climate. Chem. Soc. Rev. 2012, 41, 6663–6683. [Google Scholar] [CrossRef]
- Silva, R.A.; West, J.J.; Lamarque, J.F.; Shindell, D.T.; Collins, W.J.; Faluvegi, G.; Folberth, G.A.; Horowitz, L.W.; Nagashima, T.; Naik, V.; et al. Future global mortality from changes in air pollution attributable to climate change. Nat. Clim. Change 2017, 7, 647–651. [Google Scholar] [CrossRef]
- Allen, R.J.; Turnock, S.; Nabat, P.; Neubauer, D.; Lohmann, U.; Olivié, D.; Oshima, N.; Michou, M.; Wu, T.; Zhang, J.; et al. Climate and air quality impacts due to mitigation of non-methane near-term climate forcers. Atmos. Chem. Phys. 2020, 20, 9641–9663. [Google Scholar] [CrossRef]
- Hoesly, R.M.; Smith, S.J.; Feng, L.; Klimont, Z.; Janssens-Maenhout, G.; Pitkanen, T.; Seibert, J.J.; Vu, L.; Andres, R.J.; Bolt, R.M.; et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 2018, 11, 369–408. [Google Scholar] [CrossRef]
- Turnock, S.T.; Allen, R.; Archibald, A.T.; Dalvi, M.; Folberth, G.; Griffiths, P.T.; Keeble, J.; Robertson, E.; O’Connor, F.M. The future climate and air quality response from different near-term climate forcer, climate, and land-use scenarios using UKESM1. Earth’s Future 2022, 10, e2022EF002687. [Google Scholar] [CrossRef]
- Dunne, J.P.; Hewitt, H.T.; Arblaster, J.; Bonou, F.; Boucher, O.; Cavazos, T.; Durack, P.J.; Hassler, B.; Juckes, M.; Miyakawa, T.; et al. An evolving coupled model intercomparison project phase 7 (CMIP7) and Fast Track in support of future climate assessment. EGUsphere 2024, 18, 1–51. [Google Scholar] [CrossRef]
- Ikeda, K.; Yamaji, K.; Kanaya, Y.; Taketani, F.; Pan, X.; Komazaki, Y.; Kurokawa, J.; Ohara, T. Sensitivity analysis of source regions to PM2.5 concentration at Fukue Island, Japan. J. Air Waste Manag. 2014, 64, 445–452. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Sun, J.Y.; Zhang, X.C.; Che, H.Z.; Li, Y. Spatial and temporal variations of the concentrations of PM10, PM2.5 and PM1 in China. Atmos. Chem. Phys. 2015, 15, 13585–13598. [Google Scholar] [CrossRef]
Experiment Name (Time Period) | Key Forcing Setup |
---|---|
histSST (1850–2014) | Prescribed observed sea surface temperature (SST) and sea ice; anthropogenic and natural emissions follow historical records |
histSSP-piNTCF | Same as histSST but with NTCF emissions fixed at 1850 levels |
histSSP-piO3 | Same as histSST but with ozone precursor emissions fixed at 1850 levels |
ssp370SST (2015–2100) | Future emissions follow SSP3-7.0 scenario; SST and sea ice prescribed from coupled CMIP6 simulations |
ssp370SST-lowNTCF | Same as ssp370SST but with strong NTCF mitigation (reduced aerosols, precursors) |
ssp370SST-lowO3 | Same as ssp370SST but with low ozone precursor emissions |
WHO Levels | PM2.5 (μg/m3) | Annual PM2.5 Breakpoints Based on Air Quality Guidelines (AQGs) and Interim Targets | |
---|---|---|---|
6 | Exceeds target levels | >50 | Exceeds WHO PM2.5 guidelines by more than ten times |
5 | Exceeds target levels | 35–50 | Exceeds WHO PM2.5 guidelines by seven to ten times |
4 | Interim target 1 | 25–35 | Exceeds WHO PM2.5 guidelines by five to seven times |
3 | Interim target 2 | 15–25 | Exceeds WHO PM2.5 guidelines by three to five times |
2 | Interim target 3 | 10–15 | Exceeds WHO PM2.5 guidelines by two to three times |
1 | Interim target 4 | 5–10 | Exceeds WHO PM2.5 guidelines by one to two times |
0 | Air quality guideline | 0–5 | Meets WHO PM2.5 guidelines |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, H.M.; Lee, J.-H.; Kim, J.; Lee, H.; Chang, P.-H.; Boo, K.-O. The Impacts of Changes in Near-Term Climate Forcers on East Asia’s Climate. Climate 2025, 13, 191. https://doi.org/10.3390/cli13090191
Sung HM, Lee J-H, Kim J, Lee H, Chang P-H, Boo K-O. The Impacts of Changes in Near-Term Climate Forcers on East Asia’s Climate. Climate. 2025; 13(9):191. https://doi.org/10.3390/cli13090191
Chicago/Turabian StyleSung, Hyun Min, Jae-Hee Lee, Jisun Kim, Hyomee Lee, Pil-Hun Chang, and Kyung-On Boo. 2025. "The Impacts of Changes in Near-Term Climate Forcers on East Asia’s Climate" Climate 13, no. 9: 191. https://doi.org/10.3390/cli13090191
APA StyleSung, H. M., Lee, J.-H., Kim, J., Lee, H., Chang, P.-H., & Boo, K.-O. (2025). The Impacts of Changes in Near-Term Climate Forcers on East Asia’s Climate. Climate, 13(9), 191. https://doi.org/10.3390/cli13090191