Are Internally Displaced People (IDP) Safe? A Geospatial Analysis of Climate Vulnerability for IDP Communities in Tacloban, Philippines
Abstract
1. Introduction
2. Social Capital and Climate Vulnerability
3. Methods
3.1. Study Sites: Haiyan Resettlement Sites in Tacloban North
3.2. Measuring Urbanization in IDPs, Tacloban
3.3. Measuring Urban Heat Island (UHI) Effect
3.4. Measuring Flood Risks in Tacloban
- Reclassified Elevation: RElevation
- Reclassified Sloe: RSlope
- Reclassified NDVI: RNDVI
- Reclassified NDUI: RNDUI
- Reclassified TWI: RTWI
4. Results
4.1. Changes in Urban Morphology
4.2. Urban Heat Island Effect in Tacloban
4.3. Flood Risk in Tacloban
4.4. Total Score of Vulnerability (TSV) of IDP Camp
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United States Agency for International Development. Climate Vulnerability Profile: Philippines. 2024. Available online: https://www.preventionweb.net/media/102961/download?startDownload=20250909 (accessed on 3 April 2024).
- World Bank. Vulnerability, Risk Reduction, and Adaptation to Climate Change in Philippines. 2011. Available online: https://www.gfdrr.org/en/publication/climate-risk-and-adaptation-country-profile-philippines (accessed on 8 October 2024).
- Lloyd, S.; Gray, J.; Healey, S.; Opdyke, A. Social vulnerability to natural hazards in the Philippines. Int. J. Disaster Risk Reduct. 2022, 79, 103103. [Google Scholar] [CrossRef]
- Moonen, P.; Defraeye, T.; Dorer, V.; Blocken, B.; Carmeliet, J. Urban Physics: Effect of the Micro-Climate on Comfort, Health and Energy Demand. Front. Archit. Res. 2012, 1, 197–228. [Google Scholar] [CrossRef]
- Santamouris, M.; Kolokotsa, D. Passive Cooling Dissipation Techniques for Buildings and Other Structures: The State of the Art. Energy Build. 2013, 57, 74–94. [Google Scholar] [CrossRef]
- Toparlar, Y.; Blocken, B.; Maiheu, B.; van Heijst, G.J.F. A Review on the CFD Analysis of Urban Microclimate. Renew. Sustain. Energy Rev. 2017, 80, 1613–1640. [Google Scholar] [CrossRef]
- Huijgevoort, M.H.J.; van Cirkel, D.G.; Voeten, J.G.W.F. Climate adaptive solution for artificial turf in cities: Integrated rainwater storage and evaporative cooling. Front. Sustain. Cities 2024, 6, 1399858. [Google Scholar] [CrossRef]
- Braga, D.R.G.C.; Moreno, R.S. Prioritizing the implementation of walkable green spaces: An analysis under climate change in a global south megacity. In Sustainability in Natural Resources Management and Land Planning; Filho, W.L., Azeiteiro, U.M., Setti, A.F.F., Eds.; Springer International Publishing: Cham, Germany, 2021; pp. 343–356. [Google Scholar]
- Pizarro, R.E.; Blakely, E.; Dee, J. Urban planning and policy face climate change. Built Environ. 2006, 32, 400–412. [Google Scholar] [CrossRef]
- Estoque, R.C.; Ooba, M.; Seposo, X.T.; Togawa, T.; Hijioka, Y.; Takahashi, K.; Nakamura, S. Heat health risk assessment in Philippine cities using remotely sensed data and social-ecological indicators. Nat. Commun. 2020, 11, 1581. [Google Scholar] [CrossRef]
- Manalo, J.A.; Matsumoto, J.; Takahashi, H.G.; Villafuerte, M.Q., II; Olaguera, L.M.P.; Ren, G.; Cinco, T.A. The effect of urbanization on temperature indices in the Philippines. Int. J. Climatol. 2021, 42, 850–867. [Google Scholar] [CrossRef]
- Tatlonghari, R.J.A. Assessing Urban Heat Islands Using GIS and Remote Sensing for Sustainable Urban Planning in the Philippines. Int. J. Latest Technol. Eng. Manag. Appl. Sci. 2024, 13, 12. [Google Scholar] [CrossRef]
- Perez, R.T.; Amadore, L.A.; Feir, R.B. Climate Change Impacts and Responses in the Philippines Coastal Sector. Clim. Res. 1999, 12, 97–107. [Google Scholar] [CrossRef]
- Wilby, R.L.; Keenan, R. Adapting to flood risk under climate change. Prog. Phys. Geogr. Earth Environ. 2012, 36, 348–378. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim Change 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Merz, B.; Aerts, J.; Arnbjerg-Nielsen, K.; Baldi, M.; Becker, A.; Bichet, A.; Blöschl, G.; Bouwer, L.M.; Brauer, A.; Cioffi, F.; et al. Floods and climate: Emerging perspectives for flood risk assessment and management. Nat. Hazards Earth Syst. Sci. 2014, 14, 1921–1942. [Google Scholar] [CrossRef]
- Mei, W.; Xie, S.P. Intensification of landfalling typhoons over the northwest Pacific since the last 1970s. Nat. Geosci. 2016, 9, 753–757. [Google Scholar] [CrossRef]
- Toda, L.; Orduna, J.R.; Lasco, R.; Santos, C.T. Assessing and mapping barangay level social vulnerability of Tacloban city and Ormoc city to climate-related hazards. Clim. Disasters Dev. 2015, 1, 25–40. [Google Scholar] [CrossRef]
- Tumamao-Guittap, G.; Castro, J.T.; Punay, K.N.G. Exposure analysis of Tacloban city’s humanitarian supply chain to climate-related hazards: Towards a risk-informed site selection process. J. Urban Reg. Plan. 2019, 6, 33–45. [Google Scholar]
- Weerasinghe, S. What We Know About Climate Change and Migration; Institute for the Study of International Migration (ISIM), Georgetown University: Washington, DC, USA, 2021; Available online: https://cmsny.org/wp-content/uploads/2021/02/What-We-Know-About-Climate-Change-and-Migration-Final.pdf (accessed on 21 September 2024).
- Core Writing Team; Lee, H.; Romero, J. (Eds.) Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Synthesis Report. In Climate Change 2023; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar] [CrossRef]
- International Marine Design Conference. Global Report on Internal Displacement; Norwegian Refugee Council: Oslo, Norway, 2024; Available online: https://api.internal-displacement.org/sites/default/files/publications/documents/IDMC-GRID-2024-Global-Report-on-Internal-Displacement.pdf (accessed on 23 June 2024).
- See, J.; Wilmsen, B. Just adaptation? Generating new vulnerabilities and shaping adaptive capacities through the politics of climate-related resettlement in a Philippine coastal city. Glob. Environ. Change 2020, 65, 102188. [Google Scholar] [CrossRef]
- Adger, W.N. Social capital, collective action, and adaptation to climate change. Econ. Geogr. 2003, 79, 387–404. [Google Scholar] [CrossRef]
- Aldrich, D.P.; Meyer, M.A. Social capital and community resilience. Am. Behav. Sci. 2015, 59, 254–269. [Google Scholar] [CrossRef]
- Cutter, S.L.; Burton, C.G.; Emrich, C.T. Disaster resilience indicators for benchmarking baseline conditions. J. Homel. Secur. Emerg. Manag. 2010, 7, 1–22. [Google Scholar] [CrossRef]
- Pelling, M.; High, C. Understanding adaptation: What can social capital offer assessments of adaptive capacity? Glob. Environ. Change 2005, 15, 308–319. [Google Scholar] [CrossRef]
- Morrow, B. Community resilience: A social justice perspective. In CARRI Research Report 4; Community and Regional Resilience Institute: Oak Ridge, TN, USA, 2008. [Google Scholar] [CrossRef]
- Kim, Y.; Ross, J. Managing climate risks and adaptation in coastal communities: How to provide information. J. Public Policy Adm. 2024, 8, 73–81. [Google Scholar] [CrossRef]
- Burby, R.J.; Deyle, R.E.; Godschalk, D.R.; Olshansky, R.B. Creating Hazard Resilient Communities through Land-Use Planning. Nat. Hazards Rev. 2000, 2, 99–106. [Google Scholar] [CrossRef]
- Sylves, R. Budgeting for local emergency management and homeland security. In Emergency Management: Principles and Practice for Local Government; Waugh, W.L., Tierney, K., Eds.; International City Managers Association: Washington, DC, USA, 2007; pp. 183–206. [Google Scholar]
- Opoku-Boateng, E.; Agyei, F.; Asibey, M.O.; Mintah, F. Climate change resilience and social capital: Insights from informal urban neighbourhoods in Kumasi, Ghana. Cities 2024, 152, 105234. [Google Scholar] [CrossRef]
- Carmen, E.; Fazey, I.; Ross, H.; Bedinger, M.; Smith, F.M.; Prager, K.; McClymont, K.; Morrison, D. Building community resilience in a context of climate change: The role of social capital. Ambio 2022, 51, 1371–1387. [Google Scholar] [CrossRef] [PubMed]
- Godschalk, D.R. Urban hazard mitigation: Creating resilient cities. Nat. Hazards Rev. 2003, 4, 136–143. [Google Scholar] [CrossRef]
- Deressa, T.; Hassan, R.M.; Ringler, C. Measuring Ethiopian Farmers’ Vulnerability to Climate Change Across Regional States’ Environment and Production Technology; Division IFPRI Discussion Paper 00806; International Food Policy Research Institute: Washington, DC, USA, 2008. [Google Scholar]
- Bass, S.; Ramasamy, S. Community-Based Adaptation in Action: A Case Study from Bangladesh; Food and Agriculture Organization of the United Nations, Rome Department of Agricultural Extension: Dhaka, Bangladesh, 2008; Available online: https://www.uncclearn.org/wp-content/uploads/library/fao30.pdf (accessed on 8 January 2025).
- Favier, A.; Westernhagen, C.H.; Krieg, M.; Kumawat, B. Integrating social capital with urban infrastructure networks for more resilient cities. arXiv 2025, arXiv:2502.06328. [Google Scholar] [CrossRef]
- Mangada, L.L.; Cuaton, G.P. Typhoon Haiyan survivors at the resettlement sites: COVID-19 pandemic realities and challenges. Dialogues Health 2022, 1, 100005. [Google Scholar] [CrossRef]
- Hadlos, A. Determining the depth of households’ participation influencing the level of their residential satisfaction in a post-Haiyan resettlement. Int. J. Disaster Risk Reduct. 2021, 64, 102490. [Google Scholar] [CrossRef]
- Pormon, M.M.M.; Yee, D.K.P.; Gerona, C.K.O. Households condition and satisfaction towards post-disaster resettlement: The case of typhoon Haiyan resettlement areas in Tacloban City. Int. J. Disaster Risk Reduct. 2023, 91, 103681. [Google Scholar] [CrossRef]
- Ensor, J.; Tuhkanen, H.; Boyland, M.; Salamanca, A.; Johnson, K.; Thomalla, F.; Mangada, L.L. Redistributing resilience? Deliberate transformation and political capabilities in post-Haiyan Tacloban. World Dev. 2021, 140, 105360. [Google Scholar] [CrossRef]
- Archila Bustos, M.F.; Hall, O.; Andersson, M. Nighttime lights and population changes in Europe 1992–2012. Ambio 2015, 44, 653–655. [Google Scholar] [CrossRef] [PubMed]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C. Why VIIRS data are superior to DMSP for mapping nighttime lights. In Proceedings of the Asia-Pacific Advanced Network; Asia Pacific Advanced Network: Hidalgo, Mexico, 2013. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Li, X.; Zhou, Y.; Cao, C.; Warner, T.A. Remote Sensing of Night-Time Light; Taylor & Francis: London, UK, 2021. [Google Scholar]
- Elvidge, C.D.; Zhizhin, M.; Ghosh, T.; Hsu, F.C.; Taneja, J. Annual time series of global VIIRS night-time lights derived from monthly averages: 2012 to 2019. Remote Sens. 2021, 13, 922. [Google Scholar] [CrossRef]
- Enenkel, M.; Shrestha, R.M.; Stokes, E.; Román, M.; Wang, Z.; Espinosa, M.T.M.; Hajzmanova, I.; Ginnetti, J.; Vinck, P. Emergencies do not stop at night: Advanced analysis of displacement based on satellite-derived nighttime light observations. IBM J. Res. Dev. 2020, 64, 8:1–8:12. [Google Scholar] [CrossRef]
- Jiang, W.; He, G.; Long, T.; Liu, H. Ongoing conflict makes Yemen dark: From the perspective of nighttime light. Remote Sens. 2017, 9, 798. [Google Scholar] [CrossRef]
- Levin, N.; Kyba, C.C.M.; Zhang, Q.; Sánchez de Miguel, A.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Levin, N.; Zhang, Q. A global analysis of factors controlling VIIRS nighttime light levels from densely populated areas. Remote Sens. Environ. 2017, 190, 366–382. [Google Scholar] [CrossRef]
- Chen, X. Nighttime lights and population migration: Revisiting classic demographic perspectives with an analysis of recent European data. Remote Sens. 2020, 12, 169. [Google Scholar] [CrossRef]
- Li, X.; Li, D. Can night-time light images play a role in evaluating the Syrian crisis? Int. J. Remote Sens. 2014, 35, 6648–6661. [Google Scholar] [CrossRef]
- Earth Observation Group. 2025. Available online: https://eogdata.mines.edu/products/vnl/ (accessed on 3 August 2024).
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef]
- The US Geological Survey. Characterizing Urban Heat Islands Across 50 Major US Cities in the United States. 2023. Available online: https://www.usgs.gov/publications/characterizing-urban-heat-islands-across-50-major-cities-united-states (accessed on 15 July 2024).
- Edamo, M.L.; Ukumo, T.Y.; Lohani, T.K.; Ayana, M.T.; Ayele, M.A.; Mada, Z.M.; Abdi, D.M. A comparative assessment of multi-criteria decision-making analysis and machine learning methods for flood susceptibility mapping and socio-economic impacts on flood risk in Abela-Abaya floodplain of Ethiopia. Environ. Chall. 2022, 9, 100629. [Google Scholar] [CrossRef]
- Meyer, V.; Haase, D.; Scheuer, S. A multicriteria flood risk assessment and mapping approach. Flood Risk Manag. Res. 2008, 4, 1687–1693. [Google Scholar]
- Meyer, V.; Scheuer, S.; Haase, D. A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany. Nat. Hazards 2009, 48, 17–39. [Google Scholar] [CrossRef]
- Rana, S.M.S.; Habib, S.M.A.; Sharifee, M.N.H.; Sultana, N.; Rahman, S.H. Flood risk mapping of the flood-prone Rangpur division of Bangladesh using remote sensing and multi-criteria analysis. Nat. Hazards Res. 2018, 4, 20–31. [Google Scholar] [CrossRef]
- Rincón, D.; Khan, U.T.; Armenakis, C. Flood Risk Mapping Using GIS and Multi-Criteria Analysis: A Greater Toronto Area Case Study. Geosciences 2018, 8, 275. [Google Scholar] [CrossRef]
- Cooley, M.E.; Turner, R.M. Application of Landsat Products in Range- and Water-Management Problems in the Sahelian Zone of Mali, Upper Volta, and Niger; U.S. Government Printing Office: Washington, DC, USA, 1982. [Google Scholar]
- Demirkesen, A.C.; Evrendilek, F.; Berberoglu, S.; Kilic, S. Coastal flood risk analysis using landsat-7 ETM+ imagery and SRTM DEM: A case study of Izmir, Turkey. Environ. Monit. Assess. 2007, 131, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Olthof, I.; Tolszczuk-Leclerc, S. Comparing Landsat and RADARSAT for Current and Historical Dynamic Flood Mapping. Remote Sens. 2018, 10, 780. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, X.; Liu, D. Blending MODIS and Landsat images for urban flood mapping. Int. J. Remote Sens. 2014, 35, 3237–3253. [Google Scholar] [CrossRef]
- Gunes, A.E.; Kovel, J.P. Using GIS in Emergency Management Operations. J. Urban Plan. Dev. 2000, 126, 136–149. [Google Scholar] [CrossRef]
- Milenkovic, M.; Kekic, D. Using GIS in emergency management. In International Scientific Conference on ICT and E-Business Related Research; Sinteza: Oradea, Romania, 2016; pp. 202–207. [Google Scholar] [CrossRef]
- Kwan, M.P.; Lee, J. Emergency response after 9/11: The potential of real-time 3D GIS for quick emergency response in micro-spatial environments. Computers. Environ. Urban Syst. 2005, 29, 93–113. [Google Scholar] [CrossRef]
- Šterk, M.; Praprotnik, M. Improving emergency response logistics through advanced GIS. Open Geospat. Data Softw. Stand. 2017, 2, 1. [Google Scholar] [CrossRef]
- Abenir, M.A.D.; Manzanero, L.I.O.; Bollettino, V. Community-based leadership in disaster resilience: The case of small island community in Hagonoy, Bulacan, Philippines. Int. J. Disaster Risk Reduct. 2022, 71, 102797. [Google Scholar] [CrossRef]
- MacLeod, D.; Easton-Calabria, E.; de Perez, E.C.; Jaime, C. Verification of forecasts for extreme rainfall, tropical cyclones, flood and storm surge over Myanmar and the Philippines. Weather Clim. Extrem. 2021, 33, 100325. [Google Scholar] [CrossRef]
- Ravago, M.-L.V.; Mapa, C.D.S.; Aycardo, A.G.; Abrigo, M.R.M. Localized disaster risk management index for the Philippines: Is your municipality ready for the next disaster? Int. J. Disaster Risk Reduct. 2020, 51, 101913. [Google Scholar] [CrossRef]
- Valenzuela, V.P.B.; Esteban, M.; Takagi, H.; Thao, N.D.; Onuki, M. Disaster awareness in three low risk coastal communities in Puerto Princesa City, Palawan, Philippines. Int. J. Disaster Risk Reduct. 2020, 46, 101508. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.W.; Mach, K.; et al. Flood risk and climate change: Global and regional perspectives. Hydrol. Sci. J. 2014, 59, 1–28. [Google Scholar] [CrossRef]
- Kim, Y.; Chadduck, C.; Guerra, V. Mapping green infrastructure for storm water management: A spatial analysis in Northern Virginia, USA. Environ. Pollut. Clim. Change 2023, 7, 358. [Google Scholar]
IDP Camps | Village Name | Operation Sponsorship |
---|---|---|
A | SM Cares Village | NGO |
B | New Hope Village | Government |
C | Sangway Village | Government |
D | Villa Sofia | Government |
E | Villa Diana | Government |
F | North Hill Arbors | Government |
G | Greendale Residences | Government |
H | Pope Francis Village | NGO |
I | Saint Francis Village | Government |
J | Guadalupe Heights | Not Available |
K | GMA Kapuso Village | NGO |
L | Ridgeview Park | Government |
M | Dreamville | NGO |
N | Operation Blessing (Community of Hope) | NGO |
O | Knightsbridge | Government |
P | Salvacion Heights | Government |
Q | Lions Village | NGO |
Category | Description | Data | Calculation | Sources |
---|---|---|---|---|
Emergency facilities | Number of facilities (e.g., police stations, fire stations, libraries, schools, municipal buildings, religious facilities, gymnasiums, etc.) within the 1.5 m buffer | Tabulated from Google Earth | Spatial join to buffer (1.5 m buffer) | Google Earth |
NDVI (Normal Distribution Vegetation Index) | Difference is band data to illustrate health of vegetation | Landsat 8 satellite | NDVI = (B5 − B4)/(B5 + B4) | NDVI |
Urban Change | Difference in VIIRS night-time value at pixel | VIIRS | (pixel value 2023 − pixel value 2003) | VIIRS |
Flood Risk | Computed by the multi-criterial model with elevation, slope, Topographic Wetness Index (TWI), NDVI, and NDUI | Elevation data from STRM 1-sec global arc NDVI from Landsat 8 data NDUI from Landsat 8 data | TWI = ln (flow accumulation/tan slop) NDVI = (B5 − B4)/(B5 + B4) NDUI = (B6 − B5)/(B6 + B5) | TWI NDVI NDUI |
Risk Level to Floods | Total Score of Vulnerability (TSV) to Flood Risk | Characteristics |
---|---|---|
Highly severe risky | 3.7–4.6 | Low vegetation, high impervious surface built-up, low elevation, flat terrain |
Moderately severe risky | 3.1–3.6 | Slight improvement to vegetation or impervious surface build-up; slightly higher elevation; has a land gradient |
Risky | 2.7–3.0 | Good vegetation, low impervious surfacing, good elevation, and slope |
Low risky | 2.3–2.6 | Spaces still with urban development, but have high elevation, high slope, and lots of vegetation |
Very insignificantly risky | 0–2.2 | Largely undeveloped land that might have human settlement, but is largely undeveloped. High elevation. High slope |
IDP Camp Name | Location In the Map | Type | Number of Emergency Facilities Within 1.5 m of IDPs | Flood Risk, 1 to 5 | NDVI | NDUI | Rank of Emergency Response | Rank of Flood Risks | Rank of NDVI | Rank of Urban Change | Total Score of Vulnerability (TSV) |
---|---|---|---|---|---|---|---|---|---|---|---|
Villa Sofia | D | Gov | 4 | 1.950 | 0.281 | 0.191 | 7 | 4 | 4 | 3 | 4.50 |
Salvacion Heights | P | Gov | 1 | 3.172 | 0.432 | 0.212 | 8 | 2 | 2 | 3 | 3.75 |
Operation Blessing | N | NGO | 4 | 3.000 | 0.442 | 0.198 | 7 | 3 | 2 | 3 | 3.75 |
New Hope Village | B | Gov | 5 | 3.295 | 0.392 | 0.007 | 6 | 2 | 3 | 4 | 3.75 |
Sangway Village | C | Gov | 5 | 3.533 | 0.351 | 0.271 | 6 | 1 | 3 | 3 | 3.25 |
North Hill Arbors | F | Gov | 11 | 3.126 | 0.422 | 0.774 | 5 | 2 | 2 | 3 | 3.00 |
SM Cares Village | A | NGO | 12 | 3.458 | 0.384 | 0.658 | 4 | 2 | 3 | 3 | 3.00 |
Lions Village | Q | NGO | 13 | 3.313 | 0.281 | 0.563 | 3 | 2 | 4 | 3 | 3.00 |
Dreamville | M | NGO | 12 | 2.981 | 0.425 | 0.382 | 4 | 3 | 2 | 3 | 3.00 |
GMA Kapuso Village | K | NGO | 12 | 3.405 | 0.390 | 1.016 | 4 | 2 | 3 | 2 | 2.75 |
Ridgeview Park | L | Gov | 12 | 3.134 | 0.410 | 0.914 | 4 | 2 | 2 | 3 | 2.75 |
Pope Francis Village | H | NGO | 13 | 3.286 | 0.367 | 0.259 | 3 | 2 | 3 | 3 | 2.75 |
Knightsbridge | O | Gov | 12 | 2.613 | 0.454 | 0.204 | 4 | 3 | 1 | 3 | 2.75 |
Guadalupe Heights | J | NA | 14 | 2.870 | 0.446 | 0.259 | 2 | 3 | 2 | 3 | 2.50 |
Greendale Residences | G | Gov | 14 | 3.196 | 0.413 | 0.530 | 2 | 2 | 2 | 3 | 2.25 |
Saint Francis Village | I | Gov | 15 | 3.473 | 0.316 | 1.269 | 1 | 2 | 3 | 2 | 2.00 |
Villa Diana | E | Gov | 14 | 3.378 | 0.405 | 1.670 | 2 | 2 | 2 | 1 | 1.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Chadduck, C. Are Internally Displaced People (IDP) Safe? A Geospatial Analysis of Climate Vulnerability for IDP Communities in Tacloban, Philippines. Climate 2025, 13, 185. https://doi.org/10.3390/cli13090185
Kim Y, Chadduck C. Are Internally Displaced People (IDP) Safe? A Geospatial Analysis of Climate Vulnerability for IDP Communities in Tacloban, Philippines. Climate. 2025; 13(9):185. https://doi.org/10.3390/cli13090185
Chicago/Turabian StyleKim, Younsung, and Colin Chadduck. 2025. "Are Internally Displaced People (IDP) Safe? A Geospatial Analysis of Climate Vulnerability for IDP Communities in Tacloban, Philippines" Climate 13, no. 9: 185. https://doi.org/10.3390/cli13090185
APA StyleKim, Y., & Chadduck, C. (2025). Are Internally Displaced People (IDP) Safe? A Geospatial Analysis of Climate Vulnerability for IDP Communities in Tacloban, Philippines. Climate, 13(9), 185. https://doi.org/10.3390/cli13090185