Drought Monitoring to Build Climate Resilience in Pacific Island Countries
Abstract
1. Introduction
- To identify and select appropriate satellite-based drought indicators (precipitation, soil water, vegetation) that provide adequate regional coverage, spatial resolution, and temporal frequency over the Pacific.
- To develop a composite drought hazard index that uniquely integrates sequential drought impacts (meteorological → soil moisture → vegetation health) through fuzzy logic, a method not yet applied to Pacific Islands’ agricultural drought.
- To demonstrate the applicability of the framework using historical drought case studies in PNG and Vanuatu, thereby providing new evidence on the performance of composite fuzzy drought indices in island environments.
2. Materials and Methods
2.1. Study Area
2.2. Identifying Satellite-Derived Drought Indicators
2.2.1. Standardised Precipitation Index
2.2.2. Soil Water Index
2.2.3. Normalised Difference Vegetation Index
2.2.4. Data Quality Assessment and Preprocessing
2.3. Integrating Drought Indicators in GIS
2.3.1. Standardised Precipitation Index
2.3.2. Soil Water Index
2.3.3. Normalised Difference Vegetation Index Deviation (NDVIdev)
2.3.4. Drought Indicator Mapping
2.4. Establishing a Framework for a Composite Drought Hazard Index
2.4.1. Fuzzy Membership
2.4.2. Fuzzy Overlay
2.4.3. Focal Statistics
3. Results
3.1. Agricultural Drought in PNG
3.2. Agricultural Drought in Vanuatu
3.3. General Trends
4. Discussion
4.1. Context
4.1.1. Connection Between Indicators
4.1.2. Connection to Climate Variability
4.1.3. Connection to Existing Drought Research
4.1.4. Connection to Lived Experience in Papua New Guinea
4.1.5. Connection to Lived Experience in Vanuatu
4.2. Evaluation
4.2.1. Fuzzy Logic
4.2.2. Focal Statistics
4.3. Limitations
4.3.1. SWI T Value
4.3.2. Spatial Resolution
4.3.3. NDVI
4.4. Future Direction
4.4.1. Machine Learning
4.4.2. Other Drought Indicators
4.4.3. Further Considerations for Composite Index
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BOM | Bureau of Meteorology |
CLMS | Copernicus land monitoring service |
CREWS | Climate Risk and Early Warning Systems |
DRA | Drought risk assessment |
ENSO | El Niño–Southern Oscillation |
LTS | Long-term statistics |
MSWEP | Multi-source weighted ensemble precipitation |
NDVI | Normalised difference vegetation index |
NDVIdev | Normalised difference vegetation index deviation |
PIC | Pacific Island Countries |
PNG | Papua New Guinea |
SPI | Standardised precipitation index |
SWI | Soil water index |
WMO | World Meteorological Organisation |
Appendix A
References
- BoM. Australian Water Information Dictionary—Drought. Available online: http://www.bom.gov.au/water/awid/id-861.shtml (accessed on 13 March 2025).
- WHO. Drought. World Health Organisation. 2024. Available online: https://www.who.int/health-topics/drought#tab=tab_1 (accessed on 4 March 2025).
- Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- Wilhite, D.A. The Enigma of Drought. In Drought Assessment, Management, and Planning: Theory and Case Studies; Wilhite, D.A., Ed.; Springer: New York, NY, USA, 1993; pp. 3–15. [Google Scholar]
- Fuchs, B.A.; Svoboda, M.D.; Wilhite, D.A.; Hayes, M.J. Drought Indices for Drought Risk Assessment in a Changing Climate. In Handbook of Engineering Hydrology: Modeling, Climate Change, and Variability, 1st ed.; Eslamian, S., Ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- National Drought Mitigation Centre. Types of Drought. National Drought Mitigation Centre. 2024. Available online: https://drought.unl.edu/Education/DroughtIn-depth/TypesofDrought.aspx (accessed on 25 February 2025).
- Zhang, Y.; Wu, Z.; Singh, V.P.; Lin, Q.; Ning, S.; Zhou, Y.; Jin, J.; Zhou, R.; Ma, Q. Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts. Agric. Water Manag. 2023, 282, 108266. [Google Scholar] [CrossRef]
- Taylor, M.; McGregor, A.; Dawson, B. Vulnerability of Pacific Island Agriculture and Forestry to Climate Change; Pacific Community: Nouméa, New Caledonia, 2016. [Google Scholar]
- Gibson, J. The role of agriculture in the development process in the Pacific. N. Z. Econ. Pap. 2023, 57, 99–104. [Google Scholar] [CrossRef]
- Georgeou, N.; Hawksley, C.; Wali, N.; Lountain, S.; Rowe, E.; West, C.; Barratt, L. Food security and small holder farming in Pacific Island countries and territories: A scoping review. PLOS Sustain. Transform. 2022, 1, e0000009. [Google Scholar] [CrossRef]
- Kuleshov, Y.; McGree, S.; Jones, D.; Charles, A.; Cottrill, D.; Prakash, B.; Atalifo, T.; Nihmei, S.; Seuseu, F.L.S.K. Extreme Weather and Climate Events and Their Impacts on Island Countries in the Western Pacific: Cyclones, Floods and Droughts. Atmos. Clim. Sci. 2014, 4, 803–818. [Google Scholar] [CrossRef]
- Mohammadi, B.; Vaheddoost, B.; Danandeh Mehr, A. A spatiotemporal teleconnection study between Peruvian precipitation and oceanic oscillations. Quat. Int. 2020, 565, 1–11. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2023: Synthesis Report. In Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar] [CrossRef]
- Nunn, P.D.; Kumar, R. Alluvial charcoal in the Sigatoka Valley, Viti Levu Island, Fiji. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 213, 153–162. [Google Scholar] [CrossRef]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate Extremes: Observations, Modeling, and Impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Y.; Yin, L.; Zhao, Q. A novel composite drought index combining precipitation, temperature and evapotranspiration used for drought monitoring in the Huang-Huai-Hai Plain. Agric. Water Manag. 2024, 291, 108626. [Google Scholar] [CrossRef]
- Gholinia, A.; Abbaszadeh, P. Agricultural Drought Monitoring: A Comparative Review of Conventional and Satellite-Based Indices. Atmosphere 2024, 15, 1129. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Z.; Wang, H.; He, C.; Zhang, F.; Zhou, Y. Urban meteorological drought comprehensive index based on a composite fuzzy matter element-moment estimation weighting model. iScience 2024, 27, 110798. [Google Scholar] [CrossRef]
- Xu, W.; Tang, M.; Jin, J.; Xie, Q.; Hu, Y. Concept and method of drought disaster risk measurement based on drought propagation level--a case study of AnHui Province. Ecol. Indic. 2024, 166, 112286. [Google Scholar] [CrossRef]
- Nakhaei, M.; Mohebbi Tafreshi, A.; Saadi, T. A novel GIS-based modified multivariate drought index for modeling and management of the hydrogeological drought (Case study: Hashtgerd Aquifer, Iran). Environ. Sci. Pollut. Res. Int. 2025, 32, 6005–6026. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shan, F.; Yue, H.; Wang, X.; Fan, Y. Global analysis of the correlation and propagation among meteorological, agricultural, surface water, and groundwater droughts. J. Environ. Manag. 2023, 333, 117460. [Google Scholar] [CrossRef]
- Edkins, K.; Papua New Guinea Provinces (Numbers) 2012. Wikipedia. 2012. Available online: https://commons.wikimedia.org/wiki/File:Papua_new_guinea_provinces_(numbers)_2012.png (accessed on 28 May 2025).
- Svoboda, M.; Fuchs, B. Handbook of Drought Indicators and Indices; World Meteorological Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef]
- Bhardwaj, J.; Kuleshov, Y.; Chua, Z.-W.; Watkins, A.B.; Choy, S.; Sun, Q. Evaluating Satellite Soil Moisture Datasets for Drought Monitoring in Australia and the South-West Pacific. Remote Sens. 2022, 14, 3971. [Google Scholar] [CrossRef]
- Chua, Z.W.; Kuleshov, Y.; Watkins, A.B. Drought detection over papua new guinea using satellite-derived products. Remote Sens. 2020, 12, 3859. [Google Scholar] [CrossRef]
- Kuleshov, Y.; Kurino, T.; Kubota, T.; Tashima, T.; Xie, P. WMO Space-Based Weather and Climate Extremes Monitoring Demonstration Project (SEMDP): First Outcomes of Regional Cooperation on Drought and Heavy Precipitation Monitoring for Australia and Southeast Asia. In Rainfall—Extremes, Distribution and Properties; Abbot, J., Hammond, A., Eds.; IntechOpen: London, UK, 2019. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Svoboda, M.; Hayes, M.J.; Wood, D. Standardized Precipitation Index: User Guide; World Meteorological Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Beck, H.E.; Wood, E.F.; Pan, M.; Fisher, C.K.; Miralles, D.G.; van Dijk, A.I.J.M.; McVicar, T.R.; Adler, R.F. MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment. Bull. Am. Meteorol. Soc. 2019, 100, 473–500. [Google Scholar] [CrossRef]
- Abbas, A.; Yang, Y.; Pan, M.; Tramblay, Y.; Shen, C.; Ji, H.; Gebrechorkos, S.H.; Pappenberger, F.; Pyo, J.C.; Feng, D.; et al. Comprehensive Global Assessment of 23 Gridded Precipitation Datasets Across 16,295 Catchments Using Hydrological Modeling. EGUsphere 2025, 2025. [Google Scholar] [CrossRef]
- Zeri, M.; Williams, K.; Cunha, A.P.M.A.; Cunha-Zeri, G.; Vianna, M.S.; Blyth, E.M.; Marthews, T.R.; Hayman, G.D.; Costa, J.M.; Marengo, J.A.; et al. Importance of including soil moisture in drought monitoring over the Brazilian semiarid region: An evaluation using the JULES model, in situ observations, and remote sensing. Clim. Resil. Sustain. 2022, 1, e7. [Google Scholar] [CrossRef]
- Ceballos, A.; Scipal, K.; Wagner, W.; Martínez-Fernández, J. Validation of ERS scatterometer-derived soil moisture data in the central part of the Duero Basin, Spain. Hydrol. Process. 2005, 19, 1549–1566. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Swinnen, E.; Toté, C.; Tavares, J.L.; Lacaze, R. Copernicus Global Land Service NDVI Continuity with Sentinel-3 Data. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 6731–6734. [Google Scholar]
- Toté, C.; Swinnen, E.; Sterckx, S.; Adriaensen, S.; Benhadj, I.; Iordache, M.-D.; Bertels, L.; Kirches, G.; Stelzer, K.; Dierckx, W.; et al. Evaluation of PROBA-V Collection 1: Refined Radiometry, Geometry, and Cloud Screening. Remote Sens. 2018, 10, 1375. [Google Scholar] [CrossRef]
- Toté, C.; Swinnen, E.; Sterckx, S.; Clarijs, D.; Quang, C.; Maes, R. Evaluation of the SPOT/VEGETATION Collection 3 reprocessed dataset: Surface reflectances and NDVI. Remote Sens. Environ. 2017, 201, 219–233. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, Z.; He, H.; Wu, X.; Zhou, J.; Zhang, Y.; Guo, X. Evaluating the accuracy of MSWEP V2.1 and its performance for drought monitoring over mainland China. Atmos. Res. 2019, 226, 17–31. [Google Scholar] [CrossRef]
- Swain, S.; Patel, P.; Nandi, S. Application of SPI, EDI and PNPI using MSWEP precipitation data over Marathwada, India. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 5505–5507. [Google Scholar]
- Alijanian, M.; Rakhshandehroo, G.R.; Mishra, A.; Dehghani, M. Evaluation of remotely sensed precipitation estimates using PERSIANN-CDR and MSWEP for spatio-temporal drought assessment over Iran. J. Hydrol. 2019, 579, 124189. [Google Scholar] [CrossRef]
- European Drought Observatory. EDO AND GDO INDICATOR FACTSHEET: Standardised Precipitation Index. Copernicus. Available online: https://drought.emergency.copernicus.eu/data/factsheets/factsheet_spi.pdf (accessed on 19 August 2025).
- Papua New Guinea—Subnational Administrative Boundaries. United Nations Office for the Coordination of Humanitarian Affairs. 2025. Available online: https://data.humdata.org/dataset/cod-ab-png (accessed on 28 May 2025).
- Wagner, W.; Lemoine, G.; Rott, H. A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data. Remote Sens. Environ. 1999, 70, 191–207. [Google Scholar] [CrossRef]
- de Lange, R.; Beck, R.; van de Giesen, N.; Friesen, J.; de Wit, A.; Wagner, W. Scatterometer-Derived Soil Moisture Calibrated for Soil Texture With a One-Dimensional Water-Flow Model. IEEE Trans. Geosci. Remote Sens. 2008, 46, 4041–4049. [Google Scholar] [CrossRef]
- Boken, V.K.; Cracknell, A.P.; Heathcote, R.L. Monitoring and Predicting Agricultural Drought: A Global Study; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Wagner, W.; Hahn, S.; Kidd, R.; Melzer, T.; Bartalis, Z.; Hasenauer, S.; Figa-saldaña, J.; Rosnay, P.; Jann, A.; Schneider, S.; et al. The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications. Meteorol. Z. 2013, 22, 5–33. [Google Scholar] [CrossRef]
- Albergel, C.; Dorigo, W.; Reichle, R.H.; Balsamo, G.; de Rosnay, P.; Muñoz-Sabater, J.; Isaksen, L.; de Jeu, R.; Wagner, W. Skill and Global Trend Analysis of Soil Moisture from Reanalyses and Microwave Remote Sensing. J. Hydrometeorol. 2013, 14, 1259–1277. [Google Scholar] [CrossRef]
- Spinoni, J.; Barbosa, P.; De Jager, A.; McCormick, N.; Naumann, G.; Vogt, J.V.; Magni, D.; Masante, D.; Mazzeschi, M. A new global database of meteorological drought events from 1951 to 2016. J. Hydrol. Reg. Stud. 2019, 22, 100593. [Google Scholar] [CrossRef]
- Sepulcre-Canto, G.; Horion, S.; Singleton, A.; Carrao, H.; Vogt, J. Development of a Combined Drought Indicator to detect agricultural drought in Europe. Nat. Hazards Earth Syst. Sci. 2012, 12, 3519–3531. [Google Scholar] [CrossRef]
- Moussa Kourouma, J.; Emmanuel, E.; Emnet, N.; Darius, P.; Royd, V.; Atkilt, G.; Zenebe, A. Assessing the spatio-temporal variability of NDVI and VCI as indices of crops productivity in Ethiopia: A remote sensing approach. Geomat. Nat. Hazards Risk 2021, 12, 2880–2903. [Google Scholar] [CrossRef]
- Demisse, G.; Hill, S.; Tadesse, T.; Atnafu, S. Using Satellite Images for Drought Monitoring: A Knowledge Discovery Approach. J. Strateg. Innov. Sustain. 2011, 7, 135–152. [Google Scholar]
- Batool, A.; Ruba, S.; Ghufran, M.A.; Rashid, A.; Nadeem, N. Fuzzy comparison of drought vulnerability based on the analytical hierarchy process. Zoo Bot. 2024, 2, 7–26. [Google Scholar] [CrossRef]
- Malik, A.; Kumar, A.; Salih, S.Q.; Kim, S.; Kim, N.W.; Yaseen, Z.M.; Singh, V.P. Drought index prediction using advanced fuzzy logic model: Regional case study over Kumaon in India. PLoS ONE 2020, 15, e0233280. [Google Scholar] [CrossRef]
- Lewis, S.M.; Fitts, G.; Kelly, M.; Dale, L. A fuzzy logic-based spatial suitability model for drought-tolerant switchgrass in the United States. Comput. Electron. Agric. 2014, 103, 39–47. [Google Scholar] [CrossRef]
- Nwazelibe, V.E.; Unigwe, C.O.; Egbueri, J.C. Testing the performances of different fuzzy overlay methods in GIS-based landslide susceptibility mapping of Udi Province, SE Nigeria. CATENA 2023, 220, 106654. [Google Scholar] [CrossRef]
- Tangestani, M.H. Landslide susceptibility mapping using the fuzzy gamma approach in a GIS, Kakan catchment area, southwest Iran. Aust. J. Earth Sci. 2004, 51, 439–450. [Google Scholar] [CrossRef]
- Sehler, R.; Li, J.; Reager, J.; Ye, H. Investigating Relationship Between Soil Moisture and Precipitation Globally Using Remote Sensing Observations. J. Contemp. Water Res. Educ. 2019, 168, 106–118. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Farrar, T.J. The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. I. NDVI response to rainfall. Remote Sens. Environ. 1994, 50, 107–120. [Google Scholar] [CrossRef]
- Al-hasn, R. Studying Correlation between Precipitation and NDVI/MODIS for Time Series (2012–2022) in Arid Region in Syria. Environ. Sci. Proc. 2024, 29, 58. [Google Scholar] [CrossRef]
- Ghebrezgabher, M.G.; Yang, T.; Yang, X.; Eyassu Sereke, T. Assessment of NDVI variations in responses to climate change in the Horn of Africa. Egypt. J. Remote Sens. Space Sci. 2020, 23, 249–261. [Google Scholar] [CrossRef]
- Zhang, H.; Chang, J.; Zhang, L.; Wang, Y.; Li, Y.; Wang, X. NDVI dynamic changes and their relationship with meteorological factors and soil moisture. Environ. Earth Sci. 2018, 77, 582. [Google Scholar] [CrossRef]
- Santoso, A.; Mcphaden, M.J.; Cai, W. The Defining Characteristics of ENSO Extremes and the Strong 2015/2016 El Niño. Rev. Geophys. 2017, 55, 1079–1129. [Google Scholar] [CrossRef]
- Reddy, P.J.; Perkins-Kirkpatrick, S.E.; Ridder, N.N.; Sharples, J.J. Combined role of ENSO and IOD on compound drought and heatwaves in Australia using two CMIP6 large ensembles. Weather. Clim. Extrem. 2022, 37, 100469. [Google Scholar] [CrossRef]
- Bhardwaj, J.; Kuleshov, Y.; Chua, Z.-W.; Watkins, A.B.; Choy, S.; Sun, Q. Building Capacity for a User-Centred Integrated Early Warning System for Drought in Papua New Guinea. Remote Sens. 2021, 13, 3307. [Google Scholar] [CrossRef]
- Broughton, B. Evaluation of Australia’s Response to El Niño Drought and Frosts in PNG 2015-17. 2017. Available online: https://www.dfat.gov.au/sites/default/files/evaluation-of-australias-response-to-png-el-nino-drought-2015-2017.pdf (accessed on 28 May 2025).
- The Pacific Region: ECHO Factsheet. Press Release. 2016. Available online: https://reliefweb.int/report/world/echo-factsheet-pacific-region-september-2016 (accessed on 28 May 2025).
- Fox, L. Vanuatu Drought: Toddler’s Death Believed to be Country’s First Fatality Linked to Worsening Crisis; Australian Broadcasting Company: Ultimo, Australia, 2015; Available online: https://www.abc.net.au/news/2015-09-23/drought-toddler-dies-from-severe-diarrhoea-in-vanuatu/6796808 (accessed on 28 May 2025).
- Auer Frege, I.; Befus, E.; Ben Bih, K.; Fawwad, M.; Ide, T.; Kiefer, M.; Kienzl, P.; Klüppel, D.; Korte, L.; Kortendieck, M.; et al. World Risk Report; Bündnis Entwicklung Hilft Institute for International Law of Peace and Armed Conflict: Bochum, Germany, 2024; Available online: https://weltrisikobericht.de/worldriskreport/#downloads (accessed on 28 May 2025).
- 2015 El Niño IS Now Well Established: Prepare for Drought; OCHA: New York, NY, USA, 2015; Available online: https://reliefweb.int/report/vanuatu/2015-el-ni-o-now-well-established-prepare-drought#:~:text=The%20Climate%20Division%20of%20the,until%20first%20quarter%20of%202016 (accessed on 28 May 2025).
- ASIA-PACIFIC REGION: Overview of El Niño Impact and Responses(as of June 2016); OCHA: New York, NY, USA, 2016; Available online: https://reliefweb.int/report/mongolia/asia-pacific-region-overview-el-ni-o-impact-and-responses-june-2016 (accessed on 28 May 2025).
- Gan, X.; Fernandez, I.C.; Guo, J.; Wilson, M.; Zhao, Y.; Zhou, B.; Wu, J. When to use what: Methods for weighting and aggregating sustainability indicators. Ecol. Indic. 2017, 81, 491–502. [Google Scholar] [CrossRef]
- Saha, S.; Barnali, K.; Chandra, P.G.; Kaustuv, M.; Biswajeet, P.; Abhirup, D.; Nizam, A.M.K.; Alamri, A.M. Spatial assessment of drought vulnerability using fuzzy-analytical hierarchical process: A case study at the Indian state of Odisha. Geomat. Nat. Hazards Risk 2021, 12, 123–153. [Google Scholar] [CrossRef]
- Oyounalsoud, M.S.; Abdallah, M.; Gokhan Yilmaz, A.; Siddique, M.; Atabay, S. A new meteorological drought index based on fuzzy logic: Development and comparative assessment with conventional drought indices. J. Hydrol. 2023, 619, 129306. [Google Scholar] [CrossRef]
- Liu, X.; Yu, S.; Yang, Z.; Dong, J.; Peng, J. The first global multi-timescale daily SPEI dataset from 1982 to 2021. Sci. Data 2024, 11, 223. [Google Scholar] [CrossRef]
- He, Y.; Xie, Y.; Liu, J.; Hu, Z.; Liu, J.; Cheng, Y.; Zhang, L.; Wang, Z.; Li, M. Generation of 1 km high resolution Standardized precipitation evapotranspiration Index for drought monitoring over China using Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2024, 135, 104296. [Google Scholar] [CrossRef]
- Peters, A.J.; Walter-Shea, E.; Ji, L.; Viña, A.; Hayes, M.; Svoboda, M. Drought monitoring with NDVI-based Standardized Vegetation Index. Photogramm. Eng. Remote Sens. 2002, 68, 71–75. [Google Scholar]
- Kogan, F.N. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Sannier, C.A.D.; Taylor, J.C.; Du Plessis, W.; Campbell, K. Real-time vegetation monitoring with NOAA-AVHRR in Southern Africa for wildlife management and food security assessment. Int. J. Remote Sens. 1998, 19, 621–639. [Google Scholar] [CrossRef]
- Oyounalsoud, M.S.; Yilmaz, A.G.; Abdallah, M.; Abdeljaber, A. Drought prediction using artificial intelligence models based on climate data and soil moisture. Sci. Rep. 2024, 14, 19700. [Google Scholar] [CrossRef]
- Xu, X.; Chen, F.; Wang, B.; Harrison, M.T.; Chen, Y.; Liu, K.; Zhang, C.; Zhang, M.; Zhang, X.; Feng, P.; et al. Unleashing the power of machine learning and remote sensing for robust seasonal drought monitoring: A stacking ensemble approach. J. Hydrol. 2024, 634, 131102. [Google Scholar] [CrossRef]
- Nwayor, I.J.; Robeson, S.M. Exploring the relationship between SPI and SPEI in a warming world. Theor. Appl. Climatol. 2024, 155, 2559–2569. [Google Scholar] [CrossRef]
- Christian, J.I.; Hobbins, M.; Hoell, A.; Otkin, J.A.; Ford, T.W.; Cravens, A.E.; Powlen, K.A.; Wang, H.; Mishra, V. Flash drought: A state of the science review. WIREs Water 2024, 11, e1714. [Google Scholar] [CrossRef]
SPI Values | Classification |
---|---|
≤−1.5 | Very dry |
−1.5 to −0.1 | Moderately dry |
−1 to 1 | Near normal |
1 to 1.5 | Moderately wet |
≥1.5 | Very wet |
SWI Percentage Range (%) | Classification |
---|---|
0–15 | Extremely dry |
15–30 | Dry |
30–50 | Moderate |
50–70 | Wet |
70–100 | Extremely wet |
NDVI Deviation Range | Classification |
---|---|
<−0.2 | Severely below normal |
−0.2 to −0.05 | Moderately below normal |
−0.05 to 0.05 | Near normal |
0.05 to 0.2 | Moderately above normal |
>0.2 | Significantly above normal |
Indicator | Variable Measured | Spatial Resolution | Temporal Frequency | Time Span | Data Source |
---|---|---|---|---|---|
Standardised Precipitation Index (SPI) | Precipitation anomaly (z-score) | 0.1° | Monthly | 1979–2023 | Bureau of Meteorology (BoM), based on MSWEP V2 |
Soil Water Index (SWI) | Soil moisture content (0–100%) | 0.1° | 10-day composites averaged monthly | 2007–present | Copernicus Land Monitoring Service (CLMS) |
Normalised Difference Vegetation Index Deviation (NDVIdev) V3 | Vegetation health anomaly (unitless) | 0.01° | 10-day composites averaged monthly | 1999–2020 | CLMS PROBA-V/Sentinel-3 |
Indicator | Minimum (No Drought) | Maximum (Drought) |
---|---|---|
SWI (%) | 100 | 0 |
SPI | 2 | −2 |
NDVIdev | 0.2 | −0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcus, S.; Watkins, A.B.; Kuleshov, Y. Drought Monitoring to Build Climate Resilience in Pacific Island Countries. Climate 2025, 13, 172. https://doi.org/10.3390/cli13090172
Marcus S, Watkins AB, Kuleshov Y. Drought Monitoring to Build Climate Resilience in Pacific Island Countries. Climate. 2025; 13(9):172. https://doi.org/10.3390/cli13090172
Chicago/Turabian StyleMarcus, Samuel, Andrew B. Watkins, and Yuriy Kuleshov. 2025. "Drought Monitoring to Build Climate Resilience in Pacific Island Countries" Climate 13, no. 9: 172. https://doi.org/10.3390/cli13090172
APA StyleMarcus, S., Watkins, A. B., & Kuleshov, Y. (2025). Drought Monitoring to Build Climate Resilience in Pacific Island Countries. Climate, 13(9), 172. https://doi.org/10.3390/cli13090172