The Costs of Overcoming Social and Institutional Barriers to Implementing Co-Benefit Solutions in Thailand’s Transport and Residential Energy Sectors: Methods and Applications
Abstract
:1. Introduction
2. Literature Review
2.1. Co-Benefits
2.2. Feasibility and Implementation Barriers
2.3. Costs and IAMs
2.4. Transaction Costs
3. Case Selection and Methods
3.1. The Cases of Transport and Residential Energy in Thailand
3.2. The Size of Implementation Barriers for Transport and Residential Energy
3.3. The Costs of Overcoming Barriers
4. Results
4.1. The Effects of Implementation Barriers
4.2. The Costs of Overcoming Implementation Barriers
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zusman, E.; Miyatsuka, A. Conference Report: Translating co-benefits research into action in Asia: Science, models, projects and policies. Carbon Manag. 2013, 4, 369–371. [Google Scholar] [CrossRef]
- Zusman, E.; Chae, Y.; Kim, H.; Farzaneh, H. An Introduction to Co-benefits: Core Concepts and Applications. In Aligning Climate Change and Sustainable Development Policies in Asia; Farzaneh, H., Zusman, E., Chae, Y., Eds.; Springer: Singapore, 2021; pp. 1–15. [Google Scholar]
- Zusman, E.; Miyatsuka, A.; Evarts, D.; Oanh, N.T.K.; Patdu, K.; Amann, M. Co-benefits: Taking a Multidisciplinary Approach. Carbon Manag. 2013, 4, 135–137. [Google Scholar]
- Miyatsuka, A.; Zusman, E. Fact Sheet No. 1 What are Co-benefits? ACP Fact Sheet 2008, 1, 1–3. [Google Scholar]
- Mayrhofer, J.P.; Gupta, J. The science and politics of co-benefits in climate policy. Environ. Sci. Policy 2016, 57, 22–30. [Google Scholar] [CrossRef]
- Karlsson, M.; Alfredsson, E.; Westling, N. Climate policy co-benefits: A review. Clim. Policy 2020, 20, 292–316. [Google Scholar]
- Zusman, E.; Unger, C.; Borgford-Parnell, N.; Mar, K.A. One Atmosphere: Integrating Air Pollution and Climate Policy and Governance. Atmosphere 2021, 12, 1570. [Google Scholar] [CrossRef]
- Schneider, S.H. The greenhouse effect: Science and policy. Science 1989, 243, 771–781. [Google Scholar] [CrossRef]
- Ayres, R.; Walter, J. The greenhouse effect: Damages, costs and abatement. Environ. Resour. Econ. 1991, 1, 237–270. [Google Scholar]
- Elkins, P. How large a carbon tax is justified by the secondary benefits of CO2 abatement? Environ. Resour. Econ. 1996, 18, 161–187. [Google Scholar]
- Aunan, K.; Fang, J.; Vennemo, H.; Oye, K.; Seip, M.H. Co-benefits of Climate Policy-Lessons Learned from a Study in Shanxi, China. Energy Policy 2004, 32, 567–581. [Google Scholar]
- Pearce, D. Policy Frameworks for the Ancillary Benefits of Climate Policies. In Ancillary Benefits and Costs of Greenhouse Gas Mitigation; OECD: Paris, France, 2000; pp. 517–560. [Google Scholar]
- IPCC. Climate Change 2022: Mitigation of Climate Change. In Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J., Slade, R., Khourdajie, A.A., Diemen, R., van McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Dharmala, N.; Kholod, N.; Chaturvedi, V.; Ghosh, P.P.; Mathur, R.; Bali, S.; Behera, A.; Chamola, S.; Clarke, L.; Evans, M.; et al. Win-win transportation strategies for India: Linking air pollution and climate mitigation. Energy Clim. Change 2022, 3, 100072. [Google Scholar] [CrossRef]
- Ürge-Vorsatz, D.; Tirado-Herrero, S.; Dubash, N.; Lecocq, F. Measuring the Co-Benefits of Climate Change Mitigation. Annu. Rev. Environ. Resour. 2014, 39, 549–582. [Google Scholar]
- Islam, K.N. Municipal solid waste to energy generation: An approach for enhancing climate co-benefits in the urban areas of Bangladesh. Renew. Sustain. Energy Rev. 2018, 81, 2472–2486. [Google Scholar]
- Quam, V.G.M.; Rocklöv, J.; Quam, M.B.M.; Lucas, R.A.I. Assessing Greenhouse Gas Emissions and Health Co-Benefits: A Structured Review of Lifestyle-Related Climate Change Mitigation Strategies. Int. J. Environ. Res. Public Health 2017, 14, 468. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Dong, X.; Yang, W.; Xing, J.; Wang, X. Environmental co-benefits of energy recovery from wastewater of typical industrial sectors from life cycle perspective: Regional potentials in China. Energy Convers. Manag. 2023, 293, 117450. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Q.; Wang, S.; Tong, R. Coal power demand and paths to peak carbon emissions in China: A provincial scenario analysis oriented by CO2-related health co-benefits. Energy 2023, 282, 128830. [Google Scholar] [CrossRef]
- Dhar, S.; Pathak, M.; Shukla, P.R. Electric Vehicles and India’s Low Carbon Passenger Transport: A Long-Term Co-Benefits Assessment. J. Clean. Prod. 2017, 146, 139–148. [Google Scholar]
- Finn, O.; Brockway, P.E. Much broader than health: Surveying the diverse co-benefits of energy demand reduction in Europe. Energy Res. Soc. Sci. 2023, 95, 102890. [Google Scholar] [CrossRef]
- Chatterjee, S.; Ürge-Vorsatz, D. Measuring the productivity impacts of energy-efficiency: The case of high-efficiency buildings. J. Clean. Prod. 2021, 318, 128535. [Google Scholar]
- Bragge, P.; Lauren, N.; Pattuwage, L.; Waddell, A.; Lennox, A. Co-Benefits of Sustainable Building and Implications for Southeast Asia; Monash University and Global Buildings Performance Network: Melbourne, Australia, 2021; pp. 1–33. [Google Scholar]
- Ho, B.; Vu, K.; Nguyen, T.; Nguyen, H.; Huynh, N.; Tran, H.; Hoa, L.; Fukuda, K.; Shirakawa, Y.; Phu, V.L. Quantifying the Co-benefits of Air Pollution and Greenhouse Gas emission mitigation by operating Metro Line 1 in Ho Chi Minh City, Vietnam. IOP Conf. Ser. Earth Environ. Sci. 2024, 1391, 012014. [Google Scholar] [CrossRef]
- Zhang, X.; Yin, S.; Lu, X.; Liu, Y.; Wang, T.; Zhang, B.; Li, Z.; Wang, W.; Kong, M.; Chen, K. Establish of air pollutants and greenhouse gases emission inventory and co-benefits of their reduction of transportation sector in Central China. J. Environ. Sci. 2025, 150, 604–621. [Google Scholar] [CrossRef]
- Zhang, R.; Hanaoka, T.; Liu, J.; Li, Z.; Sun, L. Air pollution reduction co-benefits associated with low-carbon transport initiatives for carbon neutrality in China by 2060. Energy 2024, 313, 134090. [Google Scholar] [CrossRef]
- New Climate Institute. Assessing the Achieved and Missed Benefits of Japan’s Intended Nationally Determined Contribution (INDC); New Climate Institute: Berlin, Germany, 2015. [Google Scholar]
- Malley, C.S.; Sokharavuth, P.; Thiv, S.; Nara, C.; Him, C.; Sokyimeng, S.; Henze, D.K.; Holmes, R.; Kuylenstierna, J.C.I.; Michalopoulou, E.; et al. Air Pollution Mitigation Assessment to Inform Cambodia’s First Clean Air Plan. SSRN Electron. J. 2022, 220, 115230. [Google Scholar] [CrossRef]
- CCAC; UNEP. Short-Lived Climate Pollutants Short-Lived Climate Pollutants in Latin America; CCAC: Paris, France, 2018; ISBN 978-92-807-3549-9. [Google Scholar]
- UNEP; APCAP; CCAC. Air Pollution in Asia and the Pacific: Science-Based Solutions; United Nations Environment Programme; UNEP: Nairobi, Kenya, 2019; Available online: https://www.unep.org/resources/assessment/air-pollution-asia-and-pacific-science-based-solutions (accessed on 24 February 2025).
- Zusman, E.; Hengesbaugh, M.; Dang, E.-M.; Precious, B.; Merlin, L.; Miaojie, S.; Xuan, X. Training Curriculum Integrating Air Pollution and Climate Change Planning in Cities in Asia; CCAC: Paris, France, 2021. [Google Scholar]
- Jewell, J.; Cherp, A. On the political feasibility of climate change mitigation pathways: Is it too late to keep warming below 1.5 °C? Wiley Interdiscip. Rev. Clim. Change 2020, 11, 1–12. [Google Scholar] [CrossRef]
- Loftus, P.J.; Cohen, A.M.; Long, J.C.S.; Jenkins, J.D. A critical review of global decarbonization scenarios: What do they tell us about feasibility? Wiley Interdiscip. Rev. Clim. Change 2015, 6, 93–112. [Google Scholar] [CrossRef]
- Roe, S.; Streck, C.; Beach, R.; Busch, J.; Chapman, M.; Daioglou, V.; Deppermann, A.; Doelman, J.; Emmet-Booth, J.; Engelmann, J.; et al. Land-based measures to mitigate climate change: Potential and feasibility by country. Glob. Change Biol. 2021, 27, 6025–6058. [Google Scholar] [CrossRef]
- Majone, G. The feasibility of social policies. Policy Sci. 1975, 6, 49–69. [Google Scholar]
- Majone, G. On the notion of political feasibility. Eur. J. Political Res. 1975, 3, 259–274. [Google Scholar]
- IPCC. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- IPCC. Global Warming of 1.5 °C. In An IPCC Special Report on the Pathways, of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustain; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Brutschin, E.; Pianta, S.; Tavoni, M.; Riahi, K.; Bosetti, V.; Marangoni, G.; Van Ruijven, B.J. A multidimensional feasibility evaluation of low-carbon scenarios. Environ. Res. Lett. 2021, 16, 064069. [Google Scholar] [CrossRef]
- Nielsen, K.S.; Stern, P.C.; Dietz, T.; Gilligan, J.M.; van Vuuren, D.P.; Figueroa, M.J.; Folke, C.; Gwozdz, W.; Ivanova, D.; Reisch, L.A.; et al. Improving Climate Change Mitigation Analysis: A Framework for Examining Feasibility. One Earth 2020, 3, 325–336. [Google Scholar] [CrossRef]
- Steg, L.; Veldstra, J.; de Kleijne, K.; Kılkış, Ş.; Lucena, A.F.P.; Nilsson, L.J.; Sugiyama, M.; Smith, P.; Tavoni, M.; de Coninck, H.; et al. A method to identify barriers to and enablers of implementing climate change mitigation options. One Earth 2022, 5, 1216–1227. [Google Scholar] [CrossRef]
- Bertram, C.; Brutschin, E.; Drouet, L.; Luderer, G.; van Ruijven, B.; Aleluia Reis, L.; Baptista, L.B.; de Boer, H.-S.; Cui, R.; Daioglou, V.; et al. Feasibility of peak temperature targets in light of institutional constraints. Nat. Clim. Change 2024, 14, 954–960. [Google Scholar] [CrossRef]
- Hanaoka, T.; Masui, T.; Matsuoka, Y.; Hibino, G.; Fujiwara, K.; Motoki, Y.; Oshiro, K. AIM/Enduse Model Manual; NIES: Tsukuba, Japan, 2015. [Google Scholar]
- Klaassen, G.; Amann, M.; Berglund, C.; Cofala, J.; Hoeglund-Isaksson, L.; Heyes, C.; Mechler, R.; Tohka, A.; Schoepp, W.; Winiwarter, W. The Extension of the RAINS Model to Greenhouse Gases; IIASA Interim Report; IIASA: Laxenberg, Austria, 2004. [Google Scholar]
- Amann, M.; Bertok, I.; Borken-Kleefeld, J.; Cofala, J.; Heyes, C.; Höglund-Isaksson, L.; Klimont, Z.; Nguyen, B.; Posch, M.; Rafaj, P.; et al. Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environ. Model. Softw. 2011, 26, 1489–1501. [Google Scholar] [CrossRef]
- Coase, R. The Problem of Social Cost. J. Law Econ. 1960, III, 2–69. [Google Scholar]
- North, D.C. Institutions, Institutional Change and Economic Performance; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Gordon, R.L. Transaction Costs, Property Rights, and the Limits of Government. In Regulation and Economic Analysis. Topics in Regulatory Economics and Policy Series; Springer: Boston, MA, USA, 1994. [Google Scholar]
- Kuperan, K. Measuring Transaction Costs of Fisheries Co-Management. Coast. Manag. 2008, 36, 225–240. [Google Scholar] [CrossRef]
- McCann, L.; Colby, B.; Easter, K.W.; Kasterine, A.; Kuperan, K.V. Transaction cost measurement for evaluating environmental policies. Ecol. Econ. 2005, 52, 527–542. [Google Scholar] [CrossRef]
- McCann, L.E.; Easter, W.K. Estimates of Public Sector Transaction Costs in NRCS Programs. J. Agric. Appl. Econ. 2000, 1, 555–563. [Google Scholar] [CrossRef]
- Fang, F.; Easter, K.W.; Brezonik, P.L. Point-nonpoint source water quality trading: A case study in the Minnesota River Basin. J. Am. Water Resour. Assoc. 2005, 41, 645–657. [Google Scholar] [CrossRef]
- Falconer, K.; Dupraz, P.; Whitby, M. An investigation of policy administrative costs using panel data for the English environmentally sensitive areas. J. Agric. Econ. 2001, 83–103. [Google Scholar] [CrossRef]
- Cuypers, I.R.P.; Hennart, J.-F.; Silverman, B.S.; Ertug, G. Transaction cost theory: Past progress, current challenges, and suggestions for the future. ANNALS 2021, 15, 111–150. [Google Scholar] [CrossRef]
- Li, C.-Y.; Fang, Y.-H. The more we get together, the more we can save? A transaction cost perspective. Int. J. Inf. Manag. 2022, 62, 102434. [Google Scholar] [CrossRef]
- Princz-Jakovics, T.; Szemenyei, M. Development of an e-governance system to support cooperative environmental policy actions. Env. Syst Decis 2024, 44, 763–778. [Google Scholar] [CrossRef]
- Janardhanan, N.; Zusman, E.; Hengesbaugh, M.; Olsen, S.; Lee, S.-Y.; Akahoshi, K.; Takai, E.; Patdu, M.K.; Nagatani-Yoshida, K.; Bathan-Baterina, G.; et al. Integrating Clean Air, Climate, and Health Policies in the COVID-19 Era; Asian Co-Benefits Partnership: Hayama, Japan, 2021. [Google Scholar]
- ACP. Asian Co-Benefits Partnership White Paper 2014 Bringing Development And Climate Together; Asian Co-benefits Partnership: Hayama, Japan, 2014. [Google Scholar]
- CCAC. Clean Air and Climate Change Solutions in Southeast Asia; UNEP: Nairobi, Kenya, 2025. [Google Scholar]
- Clean Air Asia. Vehicle Inspection & Maintenance in Asia: Status and Challenges 2016; Clean Air Asia: Manila, Philippines, 2016. [Google Scholar]
- Dandapat, S.; Ghosh, T.; Shankar, U.; Maitra, S.; Maitra, B. A relook at the pollution certification of in-use vehicles in India and a way forward. Asian Transp. Stud. 2020, 6, 100020. [Google Scholar] [CrossRef]
- Dasgupta, S.; Laplante, B.; Mamingi, N.; Wang, H. Inspections, pollution prices, and environmental performance: Evidence from China. Ecol. Econ. 2001, 36, 487–498. [Google Scholar]
- Hausker, K. Vehicle Inspection and Maintenance Programs: International Experience and Best Practices; US Office of Energy and Information Technology: Washington, DC, USA, 2004.
- Li, Y.; Crawford-Brown, D.J. Assessing the co-benefits of greenhouse gas reduction: Health benefits of particulate matter related inspection and maintenance programs in Bangkok, Thailand. Sci. Total Environ. 2011, 409, 1774–1785. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-W.; Chang, S.-H.; Chiu, H.-J.; Liu, Y.-C. Understanding consumers’ intention to switch to electric motorcycles: A transaction cost economics perspective. Australas. J. Environ. Manag. 2022, 29, 7–23. [Google Scholar] [CrossRef]
- Chalise, N.; Kumar, P.; Priyadarshini, P.; Yadama, G.N. Dynamics of sustained use and abandonment of clean cooking systems: Lessons from rural India. Environ. Res. Lett. 2018, 13, 035010. [Google Scholar] [CrossRef]
- Limmeechokchai, B.; Chawana, S. Sustainable energy development strategies in the rural Thailand: The case of the improved cooking stove and the small biogas digester. Renew. Sustain. Energy Rev. 2007, 11, 818–837. [Google Scholar] [CrossRef]
- Thoday, K.; Benjamin, P.; Gan, M.; Puzzolo, E. The Mega Conversion Program from kerosene to LPG in Indonesia: Lessons learned and recommendations for future clean cooking energy expansion. Energy Sustain. Dev. 2018, 46, 71–81. [Google Scholar] [CrossRef]
- Akahoshi, K.; Zusman, E.; Hanaoka, T.; Kim Oanh, N.T.; Huy, L.N.; Wangwongwatana, S.; Homyok, P.; Malley, C.S.; Hirayama, T.; Goto, Y.; et al. The Prospects of Controlling Open Burning of Crop Residues in Thailand: A Quantitative Assessment of Implementation Barriers and Costs. Atmosphere 2024, 15, 1309. [Google Scholar] [CrossRef]
- Zusman, E.; Akahoshi, K.; Hanaoka, T.; Malley, C.; Wangwongwatana, S.; Onmek, N.; Ittipol, P.; Kim Oanh, N.-T.; Huy Lai Nguyen Kuylenstierna, J.C.; Hirayama, T.; et al. The Truth About Co-Benefits: A Multidimensional Feasibility Assessment for Thailand and Beyond. Environ. Res. Commun. Rev. 2025, 7, 025009. [Google Scholar]
- Lund, P. Market penetration rates of new energy technologies. Energy Policy 2006, 34, 3317–3326. [Google Scholar] [CrossRef]
- Sovacool, B.K. How long will it take? Conceptualizing the temporal dynamics of energy transitions. Energy Res. Soc. Sci. 2016, 13, 202–215. [Google Scholar] [CrossRef]
- Grubler, A. Energy transitions research: Insights and cautionary tales. Energy Policy 2012, 50, 8–16. [Google Scholar] [CrossRef]
- Bento, N.; Wilson, C. Measuring the duration of formative phases for energy technologies. Environ. Innov. Soc. Transit. 2016, 21, 95–112. [Google Scholar] [CrossRef]
- McCann, L.; Easter, K.W. Transaction Costs of Policies to Reduce Agricultural Phosphorous Pollution in the Minnesota River. Land Econ. 1999, 75, 402–414. [Google Scholar] [CrossRef]
- Krutilla, K.; Krause, R. Transaction Costs and Environmental Policy: An Assessment Framework and Literature Review. IRERE 2011, 4, 261–354. [Google Scholar] [CrossRef]
- Pollution Control Department. PM2.5 Control Plan; Pollution Control Department: Bangkok, Thailand, 2019. [Google Scholar]
- Bank of Thailand. Average Wage Classified by Occupation. Available online: https://app.bot.or.th/BTWS_STAT/statistics/ReportPage.aspx?reportID=667&language=eng (accessed on 25 February 2025).
- Seto, K.C.; Churkina, G.; Hsu, A.; Keller, M.; Newman, P.W.G.; Qin, B.; Ramaswami, A. From Low- To Net-Zero Carbon Cities- To Next Global Agenda. Annu. Rev. Environ. Resour. 2021, 46, 377–415. [Google Scholar] [CrossRef]
- Unruh, G.C. Escaping carbon lock-in. Energy Policy 2002, 30, 317–325. [Google Scholar]
- Seto, K.C.; Davis, S.J.; Mitchell, R.B.; Stokes, E.C.; Unruh, G.; Urge-Vorsatz, D. Carbon lock-in: Types, causes and policy implications. Annu. Rev. Environ. Resour. 2016, 41, 425–452. [Google Scholar]
Sector | Solution | BAU | Ideal |
---|---|---|---|
Transport | Emissions standards | Increase budget by 3% annually | Reduce budget to 0 over a ten-year period (interpolate budget figures for 2022–2032) |
E-vehicles | Increase budget by 7% annually | Increase the budget by ten times over a ten-year period (interpolate budget figures for 2022–2032) | |
Inspection and maintenance | Increase budget by 3% annually | Double the budget in the first five years, then reduce the budget to 0 at the end of ten years (interpolate budget figures for 2022–2032) | |
Residential energy | Switch to LPG | Hold budget constant over ten-year period | Funds for a five-year program that begins with awareness raising/needs assessment and concludes with monitoring evaluation (run twice for a total of ten years) |
Promote clean stove technologies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akahoshi, K.; Zusman, E.; Hanaoka, T.; Wangwongwatana, S.; Onmek, N.; Paw-Armart, I.; Hirayama, T.; Goto, Y.; Kawashima, K.; Amann, M. The Costs of Overcoming Social and Institutional Barriers to Implementing Co-Benefit Solutions in Thailand’s Transport and Residential Energy Sectors: Methods and Applications. Climate 2025, 13, 64. https://doi.org/10.3390/cli13030064
Akahoshi K, Zusman E, Hanaoka T, Wangwongwatana S, Onmek N, Paw-Armart I, Hirayama T, Goto Y, Kawashima K, Amann M. The Costs of Overcoming Social and Institutional Barriers to Implementing Co-Benefit Solutions in Thailand’s Transport and Residential Energy Sectors: Methods and Applications. Climate. 2025; 13(3):64. https://doi.org/10.3390/cli13030064
Chicago/Turabian StyleAkahoshi, Kaoru, Eric Zusman, Tatsuya Hanaoka, Supat Wangwongwatana, Nutthajit Onmek, Ittipol Paw-Armart, Tomoki Hirayama, Yurie Goto, Kazumasa Kawashima, and Markus Amann. 2025. "The Costs of Overcoming Social and Institutional Barriers to Implementing Co-Benefit Solutions in Thailand’s Transport and Residential Energy Sectors: Methods and Applications" Climate 13, no. 3: 64. https://doi.org/10.3390/cli13030064
APA StyleAkahoshi, K., Zusman, E., Hanaoka, T., Wangwongwatana, S., Onmek, N., Paw-Armart, I., Hirayama, T., Goto, Y., Kawashima, K., & Amann, M. (2025). The Costs of Overcoming Social and Institutional Barriers to Implementing Co-Benefit Solutions in Thailand’s Transport and Residential Energy Sectors: Methods and Applications. Climate, 13(3), 64. https://doi.org/10.3390/cli13030064