Climate Change and the Escalating Cost of Floods: New Insights from Regional Risk Assessment Perspective
Abstract
1. Introduction
- (1)
- Use hydraulic modeling to incorporate the expected increases in the design flood hydrograph peaks according to the RCP 2.6, RCP 4.5, and RCP 8.5 scenarios to determine changes in flood inundation extent.
- (2)
- Analyze flood risk changes for different exposure elements.
- (3)
- Estimate the shifts in expected annual damage (EAD) for the selected climate-change-driven flood scenarios that could be used for future planning of flood protection measures.
2. Materials and Methods
2.1. Study Area Description
2.2. Climate Change Driven Changes in Flood Characteristics
2.3. Hydraulic Simulation and Flood Damage Estimation
3. Results and Discussion
3.1. Flood Risk Changes for Different Climate Change Scenarios
3.2. Estimated Flood Damage for Climate Change Scenarios
4. Conclusions
- (1)
- It is anticipated that the heightened flood peaks will result in a substantial escalation in economic repercussions. The total EAD is projected to range from 0.97 million euros in the present to 1.97 million euros under the most pessimistic scenario (RCP(II)), signifying a twofold augmentation in flood-related damage.
- (2)
- It has been determined that buildings represent the most vulnerable element and will constitute most of the projected damage. A substantial number of structures currently regarded as flood safe or at low flood risk, as determined by the present flood hazard assessment, will become increasingly susceptible to flooding in the event of the anticipated climate-driven changes in flood peaks.
- (3)
- Water infrastructure will be particularly vulnerable to impairment. It is anticipated that the heightened frequency and severity of flood events, precipitated by climate change, will result in a substantial escalation in damage to water infrastructure. It is reasonable to hypothesize that this phenomenon will result in increased maintenance expenditures. This, in turn, poses a significant threat to the reliability of critical services during increasingly recurrent flood events.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arrighi, C.; Rossi, L.; Trasforini, E.; Rudari, R.; Ferraris, L.; Brugioni, M.; Castelli, F. Quantification of flood risk mitigation benefits: A building-scale damage assessment through the RASOR platform. J. Environ. Manag. 2018, 207, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wang, Y.C.; Kalcic, M.; Muenich, R.L.; Yang, Y.E.; Scavia, D. Evaluating the impact of climate change on fluvial flood risk in a mixed-use watershed. Environ. Model. Softw. 2019, 122, 104031. [Google Scholar] [CrossRef]
- Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flood risk at the global scale. Clim. Change 2016, 134, 387–401. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; Montanari, A. Global and regional increase of precipitation extremes under global warming. Water Resour. Res. 2019, 55, 4901–4914. [Google Scholar] [CrossRef]
- Bezak, N.; Petan, S.; Kobold, M.; Brilly, M.; Bálint, Z.; Balabanova, S.; Cazac, V.; Csík, A.; Godina, R.; Janál, P.; et al. A catalogue of the flood forecasting practices in the Danube River Basin. River Res. Appl. 2021, 37, 909–918. [Google Scholar] [CrossRef]
- Alfieri, L.; Dottori, F.; Betts, R.; Salamon, P.; Feyen, L. Multi-model projections of river flood risk in Europe under global warming. Climate 2018, 6, 6. [Google Scholar] [CrossRef]
- He, Y.; Manful, D.; Warren, R.; Forstenhäusler, N.; Osborn, T.J.; Price, J.; Yamazaki, D. Quantification of impacts between 1.5 and 4 C of global warming on flooding risks in six countries. Clim. Change 2022, 170, 15. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Lugeri, N.; Dankers, R.; Hirabayashi, Y.; Döll, P.; Pińskwar, I.; Dysarz, T.; Hochrainer, S.; Matczak, P. Assessing river flood risk and adaptation in Europe—Review of projections for the future. Mitig. Adapt. Strateg. Glob. Change 2010, 15, 641–656. [Google Scholar] [CrossRef]
- Poncet, N.; Tramblay, Y.; Lucas-Picher, P.; Thirel, G.; Caillaud, C. Projections of extreme rainfall and floods in Mediterranean basins from an ensemble of convection-permitting models. Clim. Change 2025, 178, 141. [Google Scholar] [CrossRef]
- Alfieri, L.; Burek, P.; Feyen, L.; Forzieri, G. Global warming increases the frequency of river floods in Europe. Hydrol. Earth Syst. Sci. 2015, 19, 2247–2260. [Google Scholar] [CrossRef]
- Haer, T.; Husby, T.G.; Botzen, W.W.; Aerts, J.C. The safe development paradox: An agent-based model for flood risk under climate change in the European Union. Glob. Environ. Change 2020, 60, 102009. [Google Scholar] [CrossRef]
- Yin, Z.; Hu, Y.; Jenkins, K.; He, Y.; Forstenhäusler, N.; Warren, R.; Guan, D. Assessing the economic impacts of future fluvial flooding in six countries under climate change and socio-economic development. Clim. Change 2021, 166, 38. [Google Scholar] [CrossRef]
- Boero, R.; Talsma, C.J.; Oliveto, J.A.; Bennett, K.E. Expectations of Future Natural Hazards in Human Adaptation to Concurrent Extreme Events in the Colorado River Basin. Climate 2022, 10, 27. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; et al. Flood risk and climate change: Global and regional perspectives. Hydrol. Sci. J. 2014, 59, 1–28. [Google Scholar] [CrossRef]
- Merz, B.; Kreibich, H.; Schwarze, R.; Thieken, A. Review article “Assessment of economic flood damage”. Nat. Hazards Earth Syst. Sci. 2010, 10, 1697–1724. [Google Scholar] [CrossRef]
- EEA. European Climate Risk Assessment Executive Summary; EEA Report, 01/2024; European Environment Agency: Copenhagen, Denmark, 2024. [Google Scholar]
- Rusjan, S.; Vidmar, A.; Brilly, M. The Transboundary Soča and Vipava River Flood Problems. In Proceedings of the EGU Leonardo Conference, Torino, Italy, 14–16 November 2012. [Google Scholar]
- ARSO. Assessment of Climate Change in Slovenia Until the End of the 21st Century; Environmental Agency of the Republic of Slovenia: Ljubljana, Slovenia, 2018; 156p. (In Slovenian) [Google Scholar]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.P.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; et al. Changing climate both increases and decreases European river floods. Nature 2019, 573, 108–111. [Google Scholar] [CrossRef]
- Mangini, W.; Viglione, A.; Hall, J.; Hundecha, Y.; Ceola, S.; Montanari, A.; Rogger, M.; Salinas, J.L.; Borzì, I.; Parajka, J. Detection of trends in magnitude and frequency of flood peaks across Europe. Hydrol. Sci. J. 2018, 63, 493–512. [Google Scholar] [CrossRef]
- Pistrika, A.; Tsakiris, G.; Nalbantis, I. Flood depth-damage functions for built environment. Environ. Process. 2014, 1, 553–572. [Google Scholar] [CrossRef]
- Vidmar, A.; Zabret, K.; Lebar, K.; Pergar, P.; Kryžanowski, A. Development of an application for estimating the benefits of constructional and non-constructional measures for flood risk reduction. In Proceedings of the 7th Croatian Water Conference—Croatian Waters in the Protection of the Environment and Nature, Opatija, Croatia, 30 May–1 June 2019. [Google Scholar]
- Zabret, K.; Hozjan, U.; Kryžanowski, A.; Brilly, M.; Vidmar, A. Development of model for the estimation of direct flood damage including the movable property. J. Flood Risk Manag. 2018, 11, S527–S540. [Google Scholar] [CrossRef]
- Scawthorn, C.; Flores, P.; Blais, N.; Seligson, H.; Tate, E.; Chang, S.; Mifflin, E.; Thomas, W.; Murphy, J.; Jones, C.; et al. HAZUS-MH flood loss estimation methodology. II. Damage and loss assessment. Nat. Hazards Rev. 2006, 7, 72–81. [Google Scholar] [CrossRef]
- Huizinga, J.; De Moel, H.; Szewczyk, W. Global Flood Depth-Damage Functions: Methodology and the Database with Guidelines; EUR 28552 EN; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar] [CrossRef]
- Slater, L.; Villarini, G.; Archfield, S.; Faulkner, D.; Lamb, R.; Khouakhi, A.; Yin, J. Global changes in 20-year, 50-year, and 100-year river floods. Geophys. Res. Lett. 2021, 48, e2020GL091824. [Google Scholar] [CrossRef]
- Ward, P.J.; De Moel, H.; Aerts, J.C.J.H. How are flood risk estimates affected by the choice of return-periods? Nat. Hazards Earth Syst. Sci. 2011, 11, 3181–3195. [Google Scholar] [CrossRef]
- Koliokosta, E. Return periods in assessing climate change risks: Uses and misuses. Environ. Sci. Proc. 2023, 26, 75. [Google Scholar] [CrossRef]
- Šraj, M.; Viglione, A.; Parajka, J.; Blöschl, G. The influence of non-stationarity in extreme hydrological events on flood frequency estimation. J. Hydrol. Hydromech. 2016, 64, 426–437. [Google Scholar] [CrossRef]
- Feyen, L.; Ciscar, J.C.; Gosling, S.; Ibarreta, D.; Soria, A. Climate Change Impacts and Adaptation in Europe: PESETA IV Final Report; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar] [CrossRef]
- Bates, P.D. Flood inundation prediction. Annu. Rev. Fluid Mech. 2022, 54, 287–315. [Google Scholar] [CrossRef]
- Kay, A.L.; Rudd, A.C.; Fry, M.; Nash, G.; Allen, S. Climate change impacts on peak river flows: Combining national-scale hydrological modelling and probabilistic projections. Clim. Risk Manag. 2021, 31, 100263. [Google Scholar] [CrossRef]
- Rehman, S.; Sahana, M.; Hong, H.; Sajjad, H.; Ahmed, B.B. A systematic review on approaches and methods used for flood vulnerability assessment: Framework for future research. Nat. Hazards 2019, 96, 975–998. [Google Scholar] [CrossRef]
- da Silva, L.B.L.; Alencar, M.H.; de Almeida, A.T. Multidimensional flood risk management under climate changes: Bibliometric analysis, trends and strategic guidelines for decision-making in urban dynamics. Int. J. Disaster Risk Reduct. 2020, 50, 101865. [Google Scholar] [CrossRef]
- Wing, O.E.J.; Bates, P.D.; Quinn, N.D.; Savage, J.T.S.; Uhe, P.F.; Cooper, A. A 30 m global flood inundation model for any climate scenario. Water Resour. Res. 2024, 60, e2023WR036460. [Google Scholar] [CrossRef]
- DWR. Climate Risk-Informed Flood Inundation Mapping (CRFM), Project Modeling and Inundation Study Report. 2025. Available online: https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/All-Programs/Climate-Change-Program/Resources-for-Water-Managers/Files/Publications--Reports/FEMA_CRFM_InundationReport.pdf (accessed on 12 July 2025).
- Molinari, D.; Dazzi, S.; Gattai, E.; Minucci, G.; Pesaro, G.; Radice, A.; Vacondio, R. Cost–benefit analysis of flood mitigation measures: A case study employing high-performance hydraulic and damage modelling. Nat. Hazards 2021, 108, 3061–3084. [Google Scholar] [CrossRef]
- Zeng, P.; Fang, W.; Zhang, H.; Liang, Z. Cost-benefit analysis of the Wuxikou integrated flood management project considering the effects of flood risk reduction and resettlement. Int. J. Disaster Risk Sci. 2023, 14, 795–812. [Google Scholar] [CrossRef]
- Bhatkoti, R.; Moglen, G.E.; Murray-Tuite, P.M.; Triantis, K.P. Changes to bridge flood risk under climate change. J. Hydrol. Eng. 2016, 21, 04016045. [Google Scholar] [CrossRef]
- Hosseinipoor, M.; Mollaei Rudsary, A.; Danesh-Yazdi, M.; Kazempour, Z.; Yeganeh, Y. Why structural solutions for flood control should be adapted to climate change? Nat. Hazards 2025, 121, 4657–4682. [Google Scholar] [CrossRef]
- Grove, R.J.; Croke, J.; Thompson, C. Quantifying different riverbank erosion processes during an extreme flood event. Earth Surf. Process. 2013, 38, 1393–1406. [Google Scholar] [CrossRef]
- Sholtes, J.; Ubing, C.; Randle, T.; Fripp, J.; Cenderelli, D.; Baird, D. Managing infrastructure in the stream environment. J. Am. Water Resour. Assoc. 2018, 54, 1172–1184. [Google Scholar] [CrossRef]
- Blazewicz, M.; Jagt, K.; Sholtes, J. Colorado Fluvial Hazard Zone Delineation Protocol Version 1.0; Colorado Water Conservation Board: Denver, CO, USA, 2020. [Google Scholar] [CrossRef]
- GOV. SI. 12-Month Report After the Flood Event in August 2023. 2024. Available online: https://www.gov.si/zbirke/projekti-in-programi/ukrepi-drzave-za-pomoc-po-poplavah-avgusta-2023/12-mesecev-po-poplavah-avgusta-2023/ (accessed on 20 August 2025). (In Slovenian)









| RCP Scenario | RCP 2.6 | RCP 4.5 | RCP 8.5(I) | RCP 8.5(II) |
|---|---|---|---|---|
| Mean relative change in discharge peaks | 5% | 10% | 20% | 40% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidmar, A.; Ghebrebimichael, F.G.; Rusjan, S. Climate Change and the Escalating Cost of Floods: New Insights from Regional Risk Assessment Perspective. Climate 2025, 13, 223. https://doi.org/10.3390/cli13110223
Vidmar A, Ghebrebimichael FG, Rusjan S. Climate Change and the Escalating Cost of Floods: New Insights from Regional Risk Assessment Perspective. Climate. 2025; 13(11):223. https://doi.org/10.3390/cli13110223
Chicago/Turabian StyleVidmar, Andrej, Filmon Ghilay Ghebrebimichael, and Simon Rusjan. 2025. "Climate Change and the Escalating Cost of Floods: New Insights from Regional Risk Assessment Perspective" Climate 13, no. 11: 223. https://doi.org/10.3390/cli13110223
APA StyleVidmar, A., Ghebrebimichael, F. G., & Rusjan, S. (2025). Climate Change and the Escalating Cost of Floods: New Insights from Regional Risk Assessment Perspective. Climate, 13(11), 223. https://doi.org/10.3390/cli13110223

