Unraveling the Intricate Links between the Dwindling Aral Sea and Climate Variability during 2002–2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Methods
3. Results
3.1. Spatial Distribution of Climate Parameters
3.2. Monitoring the Water Storage of Large Lakes That Are Located in the ASB from Multiple Satellite Data
3.3. Impact of Climate and Hydrologic Change on Lakes Water Storage
3.4. Relationships between Lake Water Change and Human Activity Factors
3.5. Changes in Volume of River Water Withdrawal
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, H.; Chen, Y. Influences of recent climate change and human activities on water storage variations in Central Asia. J. Hydrol. 2017, 544, 46–57. [Google Scholar] [CrossRef]
- Yegizbayeva, A.; Ilyas, S.; Berdimbetov, T. Drought Characterisation of Syrdarya River Basin in Central Asia Using Reconnaissance Drought Index. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 6356–6359. [Google Scholar] [CrossRef]
- Timur, B. Spatio-Temporal Variations of Climate Variables and Extreme Indices over the Aral Sea Basin during 1960–2017. Trends Sci. 2023, 20, 5664. [Google Scholar] [CrossRef]
- Reyer, C.P.; Otto, I.M.; Adams, S.; Albrecht, T.; Baarsch, F.; Cartsburg, M.; Coumou, D.; Eden, A.; Ludi, E.; Marcus, R.; et al. Climate change impacts in Central Asia and their implications for development. Reg. Environ. Chang. 2015, 17, 1639–1650. [Google Scholar] [CrossRef]
- Asian Development Bank. Guidelines for Climate Proofing Investment in Agriculture, Rural Development, and Food Security; Asian Development Bank: Mandaluyong, Philippines, 2013. [Google Scholar]
- Small, E.E.; Sloan, L.C.; Nychka, D. Changes in Surface Air Temperature Caused by Desiccation of the Aral Sea. J. Clim. 2001, 14, 284–299. [Google Scholar] [CrossRef]
- Dukhovny, V.; Sokolov, V. Lessons on Cooperation Building to Manage Water Conflicts in the Aral Sea Basin; UNESCO: Paris, France, 2003. [Google Scholar]
- Smith, D.R. Environmental Security and Shared Water Resources in Post-Soviet Central Asia. Post-Soviet Geogr. 1995, 36, 351–370. [Google Scholar] [CrossRef]
- Hu, Z.; Li, Q.; Chen, X.; Teng, Z.; Chen, C.; Yin, G.; Zhang, Y. Climate changes in temperature and precipitation extremes in an alpine grassland of Central Asia. Theor. Appl. Clim. 2015, 126, 519–531. [Google Scholar] [CrossRef]
- Gupta, R.K.; Kienzler, K.; Martius, C.; Mirzabaev, A.; Oweis, T.; de Pauw, E.; Qadir, M.; Shideed, K.; Sommer, R.; Thomas, R.; et al. A Vision for Sustainable Land Management Research in Central Asia; Tashkent, ICARDA: Tashkent, Uzbekistan, 2009. [Google Scholar]
- Akramkhanov, A.R.; Kuziev, R.; Sommer, C.; Martius, C.; Forkutsa, O.; Massucati, L. Soils and soil ecology in khorezm. In Cotton, Water, Salts and Soums; Springer: Berlin/Heidelberg, Germany, 2012; pp. 37–58. [Google Scholar]
- Zavialov, P.O.; Kostianoy, A.G.; Emelianov, S.V.; Ni, A.A.; Ishniyazov, D.; Khan, V.M.; Kudyshkin, T.V. Hydrographic survey in the dying Aral Sea. Geophys. Res. Lett. 2003, 30, 1659. [Google Scholar] [CrossRef]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 2006, 33, L08402. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Wang, L.; Zhu, L.; Li, X. Terrestrial water storage regime and its change in the endorheic Tibetan Plateau. Sci. Total. Environ. 2022, 815, 152729. [Google Scholar] [CrossRef] [PubMed]
- Tureniyazova, A.; Berdimbetov, T. Relationship between climate and land cover change in Aral Sea Basin. E3S Web Conf. 2023, 386, 06003. [Google Scholar] [CrossRef]
- Micklin, P. Efforts to revive the aral sea. In The Aral Sea; Springer: Cham, Switzerland, 2014; Chapter 15; pp. 361–380. [Google Scholar]
- Izhitskiy, A.; Ayzel, G. Water Balance of the Regulated Arid Lake as an Indicator of Climate Change and Anthropogenic Impact: The North (Small) Aral Sea Case Study. Water 2023, 15, 1464. [Google Scholar] [CrossRef]
- Huang, S.; Chen, X.; Ma, X.; Fang, H.; Liu, T.; Kurban, A.; Guo, J.; De Maeyer, P.; Van de Voorde, T. Monitoring Surface Water Area Changes in the Aral Sea Basin Using the Google Earth Engine Cloud Platform. Water 2023, 15, 1729. [Google Scholar] [CrossRef]
- Cretaux, J.F.; Kostianoy, A.; Bergé-Nguyen, M.; Kouraev, A. Present-day water balance of the aral sea seen from satellite. In Remote Sensing of the Asian Seas; Springer: Berlin/Heidelberg, Germany, 2019; pp. 523–539. [Google Scholar]
- Shi, W.; Wang, M.; Guo, W. Long-term hydrological changes of the Aral Sea observed by satellites. J. Geophys. Res. Oceans 2014, 119, 3313–3326. [Google Scholar] [CrossRef]
- Tao, D.; Shi, H.; Gao, C.; Zhan, J.; Ke, X. Water Storage Monitoring in the Aral Sea and its Endorheic Basin from Multisatellite Data and a Hydrological Model. Remote. Sens. 2020, 12, 2408. [Google Scholar] [CrossRef]
- Berdimbetov, T.; Shelton, S.; Pushpawela, B.; Rathnayake, U.; Koshim, A.G.; Yegizbayeva, A.; Nietullaeva, S. Use of intensity analysis and transfer matrix to characterize land conversion in the Aral Sea Basin under changing climate. Model. Earth Syst. Environ. 2024, 10, 1–13. [Google Scholar] [CrossRef]
- Narbayev, M.; Pavlova, V. The Aral Sea, Central Asian Countries and Climate Change in the 21st Century; United Nations ESCAP: Bangkok, Thailand, 2022; 58p. [Google Scholar]
- Berdimbetov, T.T.; Ma, Z.-G.; Liang, C.; Ilyas, S. Impact of Climate Factors and Human Activities on Water Resources in the Aral Sea Basin. Hydrology 2020, 7, 30. [Google Scholar] [CrossRef]
- Abdullaev, I.; Rakhmatullaev, S. Transformation of water management in Central Asia: From State-centric, hydraulic mission to socio-political control. Environ. Earth Sci. 2013, 73, 849–861. [Google Scholar] [CrossRef]
- Aizen, E.M.; Aizen, V.B.; Melack, J.M.; Nakamura, T.; Ohta, T. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. Int. J. Clim. 2001, 21, 535–556. [Google Scholar] [CrossRef]
- CAWater-Info. “Portal of Knowledge for Water and Environmental Issues in Central Asia.” Tashkent. 2015. Available online: http://www.cawater-info.net/ (accessed on 7 July 2024).
- Bernauer, T.; Siegfried, T. Climate change and international water conflict in Central Asia. J. Peace Res. 2012, 49, 227–239. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Y.; Ye, Z.; Li, Y.; Zhang, Q. Recent Lake Area Changes in Central Asia. Sci. Rep. 2019, 9, 16277. [Google Scholar] [CrossRef]
- Lutz, A.F.; Droogers, P.; Immerzeel, W.W. Climate Change Impact and Adaptation on the Water Resources in the Amu Darya and Syr Darya River Basins; FutureWater: Wageningen, The Netherlands, 2012; 116p, Available online: https://www.researchgate.net/publication/256505945 (accessed on 7 July 2024).
- Micklin, P. The Aral Sea Disaster. Annu. Rev. Earth Planet. Sci. 2007, 35, 47–72. [Google Scholar] [CrossRef]
- Micklin, P. The Aral Sea Crisis and Its Future: An Assessment in 2006. Eurasian Geogr. Econ. 2006, 47, 546–567. [Google Scholar] [CrossRef]
- Xu, H.-J.; Wang, X.-P.; Zhang, X.-X. Decreased vegetation growth in response to summer drought in Central Asia from 2000 to 2012. Int. J. Appl. Earth Obs. Geoinform. 2016, 52, 390–402. [Google Scholar] [CrossRef]
- Xu, M.; Kang, S.; Wu, H.; Yuan, X. Detection of spatio-temporal variability of air temperature and precipitation based on long-term meteorological station observations over Tianshan Mountains, Central Asia. Atmos. Res. 2017, 203, 141–163. [Google Scholar] [CrossRef]
- Yin, G.; Mariethoz, G.; McCabe, M.F. Gap-Filling of Landsat 7 Imagery Using the Direct Sampling Method. Remote. Sens. 2017, 9, 12. [Google Scholar] [CrossRef]
- Zanter, K. LANDSAT 8 (L8) Data Users Handbook; United States Geological Survey: Sioux Falls, SC, USA, 2019. [Google Scholar]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Javadzadeh, H.; Ataie-Ashtiani, B.; Hosseini, S.M.; Simmons, C.T. Interaction of lake-groundwater levels using cross-correlation analysis: A case study of Lake Urmia Basin, Iran. Sci. Total. Environ. 2020, 729, 138822. [Google Scholar] [CrossRef]
- Shen, G.; Fu, W.; Guo, H.; Liao, J. Water Body Mapping Using Long Time Series Sentinel-1 SAR Data in Poyang Lake. Water 2022, 14, 1902. [Google Scholar] [CrossRef]
- Sarp, G.; Ozcelik, M. Water body extraction and change detection using time series: A case study of Lake Burdur, Turkey. J. Taibah Univ. Sci. 2018, 11, 381–391. [Google Scholar] [CrossRef]
- Ismail, M.A.; Waqas, M.; Ali, A.; Muzzamil, M.M.; Abid, U.; Zia, T. Enhanced index for water body delineation and area calculation using Google Earth Engine: A case study of the Manchar Lake. J. Water Clim. Chang. 2021, 13, 557–573. [Google Scholar] [CrossRef]
- Boomer, I.; Aladin, N.; Plotnikov, I.; Whatley, R. The palaeolimnology of the Aral Sea: A review. Quat. Sci. Rev. 2000, 19, 1259–1278. [Google Scholar] [CrossRef]
- Lioubimtseva, E. Impact of Climate Change on the Aral Sea and Its Basin. In The Aral Sea; Springer: Berlin/Heidelberg, Germany, 2014; pp. 405–427. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Cole, R. Uncertainties of Climate Change in Arid Environments of Central Asia. Rev. Fish. Sci. 2007, 14, 29–49. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Cole, R.; Adams, J.; Kapustin, G. Impacts of climate and land-cover changes in arid lands of Central Asia. J. Arid. Environ. 2005, 62, 285–308. [Google Scholar] [CrossRef]
- Carroll, M.L.; DiMiceli, C.M.; Townshend, J.R.G.; Sohlberg, R.A.; Elders, A.I.; Devadiga, S.; Sayer, A.M.; Levy, R.C. Development of an operational land water mask for MODIS Collection 6, and influence on downstream data products. Int. J. Digit. Earth 2016, 10, 207–218. [Google Scholar] [CrossRef]
- Che, X.; Feng, M.; Sexton, J.; Channan, S.; Sun, Q.; Ying, Q.; Liu, J.; Wang, Y. Landsat-Based Estimation of Seasonal Water Cover and Change in Arid and Semi-Arid Central Asia (2000–2015). Remote Sens. 2019, 11, 1323. [Google Scholar] [CrossRef]
- Aitekeyeva, N.; Li, X.; Guo, H.; Wu, W.; Shirazi, Z.; Ilyas, S.; Yegizbayeva, A.; Hategekimana, Y. Drought Risk Assessment in Cultivated Areas of Central Asia Using MODIS Time-Series Data. Water 2020, 12, 1738. [Google Scholar] [CrossRef]
- Jiang, L.; Jiapaer, G.; Bao, A.; Li, Y.; Guo, H.; Zheng, G.; Chen, T.; De Maeyer, P. Assessing land degradation and quantifying its drivers in the Amudarya River delta. Ecol. Indic. 2019, 107, 105595. [Google Scholar] [CrossRef]
- Jiang, L.; Bao, A.; Jiapaer, G.; Guo, H.; Zheng, G.; Gafforov, K.; Kurban, A.; De Maeyer, P. Monitoring land sensitivity to desertification in Central Asia: Convergence or divergence? Sci. Total. Environ. 2019, 658, 669–683. [Google Scholar] [CrossRef]
- Jiang, L.; Jiapaer, G.; Bao, A.; Kurban, A.; Guo, H.; Zheng, G.; De Maeyer, P. Monitoring the long-term desertification process and assessing the relative roles of its drivers in Central Asia. Ecol. Indic. 2019, 104, 195–208. [Google Scholar] [CrossRef]
- Gafforov, K.S.; Bao, A.; Rakhimov, S.; Liu, T.; Abdullaev, F.; Jiang, L.; Durdiev, K.; Duulatov, E.; Rakhimova, M.; Mukanov, Y. The Assessment of Climate Change on Rainfall-Runoff Erosivity in the Chirchik–Akhangaran Basin, Uzbekistan. Sustainability 2020, 12, 3369. [Google Scholar] [CrossRef]
- Hamidov, A.; Helming, K.; Balla, D. Impact of agricultural land use in Central Asia: A review. Agron. Sustain. Dev. 2016, 36, 6. [Google Scholar] [CrossRef]
- Ayzel, G.; Izhitskiy, A. Climate Change Impact Assessment on Freshwater Inflow into the Small Aral Sea. Water 2019, 11, 2377. [Google Scholar] [CrossRef]
- Berdimbetov, T.; Ma, Z.G.; Shelton, S.; Ilyas, S.; Nietullaeva, S. Identifying Land Degradation and its Driving Factors in the Aral Sea Basin From 1982 to 2015. Front. Earth Sci. 2021, 9, 690000. [Google Scholar] [CrossRef]
- Libert, B.; Lipponen, A. Challenges and opportunities for transboundary water cooperation in central asia: Findings from unece’s regional assessment and project work. Int. J. Water Resour. Dev. 2012, 28, 565–576. [Google Scholar] [CrossRef]
Climate Parameters | Lake Name | Season | Mean | Slope | R-Square |
---|---|---|---|---|---|
TMP (°C year−y) | NAS | Non-Growing | −2.87 | 0.09 | 0.19 |
Growing | 21.10 | 0.11 * | 0.29 | ||
EAS | Non-Growing | 0.21 | 0.10 * | 0.18 | |
Growing | 22.45 | 0.10 * | 0.24 | ||
WAS | Non-Growing | −0.15 | 0.11 * | 0.18 | |
Growing | 21.58 | 0.10 | 0.26 | ||
SL | Non-Growing | 4.63 | 0.12 * | 0.15 | |
Growing | 24.09 | 0.06 | 0.13 | ||
AL | Non-Growing | 6.74 | −0.11 | 0.14 | |
Growing | 24.05 | 0.05 | 0.05 | ||
PRE (mm year−R) | NAS | Non-Growing | 12.71 | 0.04 | −0.06 |
Growing | 10.74 | 0.03 | −0.07 | ||
EAS | Non-Growing | 15.81 | −0.11 * | −0.04 | |
Growing | 10.16 | −0.16 * | −0.01 | ||
WAS | Non-Growing | 15.36 | −0.03 | −0.07 | |
Growing | 8.85 | −0.13 * | −0.03 | ||
SL | Non-Growing | 12.68 | 0.04 | −0.07 | |
Growing | 6.13 | −0.17 * | 0.02 | ||
AL | Non-Growing | 35.72 | 0.21 * | −0.05 | |
Growing | 13.06 | −0.12 * | −0.06 | ||
PET (m day−1 year−1) | NAS | Non-Growing | 0.85 | −0.01 | −0.02 |
Growing | 6.20 | 0.04 | 0.27 | ||
EAS | Non-Growing | 1.08 | −0.01 | 0.00 | |
Growing | 6.02 | 0.04 | 0.40 | ||
WAS | Non-Growing | 1.11 | −0.01 | −0.01 | |
Growing | 6.11 | 0.04 | 0.34 | ||
SL | Non-Growing | 1.41 | −0.01 | 0.05 | |
Growing | 6.36 | 0.02 | 0.12 | ||
AL | Non-Growing | 1.55 | −0.01 | 0.09 | |
Growing | 6.09 | 0.02 | 0.03 |
Lakes | TMP | PRE | PET | TWS | |
---|---|---|---|---|---|
Growing | NAS | 0.52 a | −0.22 | 0.56 a | 0.59 a |
WAS | −0.71 b | 0.71 b | −0.76 b | 0.89 b | |
EAS | −0.62 a | 0.55 a | −0.68 b | 0.98 b | |
AL | 0.22 | −0.21 | 0.30 | 0.16 | |
SL | 0.65 b | −0.83 b | 0.55 a | 0.83 b | |
Non-Growing | NAS | 0.16 | 0.21 | −0.69 b | −0.42 |
WAS | 0.17 | 0.29 | 0.34 | 0.86 b | |
EAS | 0.27 | 0.12 | 0.24 | 0.81 b | |
AL | −0.22 | −0.65 | 0.18 | −0.48 a | |
SL | −0.16 | 0.21 | −0.32 | −0.52 a |
NAS | WAS | EAS | AL | SL | ||
---|---|---|---|---|---|---|
Growing | NAS | 1 | −0.75 a | −0.78 a | 0.69 a | 0.03 |
WAS | - | 1 | 0.93 a | −0.91 b | −0.32 | |
EAS | - | - | 1 | −0.92 b | −0.26 | |
AL | - | - | - | 1 | 0.35 | |
SL | - | - | - | - | 1 | |
Non-growing | NAS | 1 | −0.62 a | −0.42 | 0.65 a | −0.18 |
WAS | - | 1 | 0.91 | −0.83 b | −0.19 | |
EAS | - | - | 1 | −0.76 a | −0.35 | |
AL | - | - | - | 1 | 0.11 | |
SL | - | - | - | - | 1 |
AL | SL | EAS | WAS | NAS | ||
---|---|---|---|---|---|---|
0.09 | 0.83 b | −0.82 b | −0.87 b | 0.87 b | Population | Annual |
0.17 | 0.91 b | −0.15 | −0.88 b | 0.86 b | Urban | |
0.25 | 0.14 | −0.86 b | −0.11 | −0.19 | Cropland | |
0.93 b | 0.91 b | 0.85 b | 0.89 b | 0.94 b | MODIS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berdimbetov, T.; Pushpawela, B.; Murzintcev, N.; Nietullaeva, S.; Gafforov, K.; Tureniyazova, A.; Madetov, D. Unraveling the Intricate Links between the Dwindling Aral Sea and Climate Variability during 2002–2017. Climate 2024, 12, 105. https://doi.org/10.3390/cli12070105
Berdimbetov T, Pushpawela B, Murzintcev N, Nietullaeva S, Gafforov K, Tureniyazova A, Madetov D. Unraveling the Intricate Links between the Dwindling Aral Sea and Climate Variability during 2002–2017. Climate. 2024; 12(7):105. https://doi.org/10.3390/cli12070105
Chicago/Turabian StyleBerdimbetov, Timur, Buddhi Pushpawela, Nikita Murzintcev, Sahibjamal Nietullaeva, Khusen Gafforov, Asiya Tureniyazova, and Dauranbek Madetov. 2024. "Unraveling the Intricate Links between the Dwindling Aral Sea and Climate Variability during 2002–2017" Climate 12, no. 7: 105. https://doi.org/10.3390/cli12070105
APA StyleBerdimbetov, T., Pushpawela, B., Murzintcev, N., Nietullaeva, S., Gafforov, K., Tureniyazova, A., & Madetov, D. (2024). Unraveling the Intricate Links between the Dwindling Aral Sea and Climate Variability during 2002–2017. Climate, 12(7), 105. https://doi.org/10.3390/cli12070105