A Survey of African Weather and Climate Extremes
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Geography and Climatology
3.2. Spatial Pattern of Extremes
3.3. Regional Evaluation of Inter-Annual Climate
3.4. Intra-Seasonal Variability
3.5. Extreme Cases: Congo Monsoon and Coastal Events
3.6. The P–E Balance (Net OLR)
3.7. Simulations, Trends, and Uncertainties
4. Concluding Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Diedhiou, A. Trends in hydrological and climate extremes in Africa. Atmosphere 2019. [Google Scholar]
- World Bank Report on Africa’s Economic Prospects. 2023. Available online: https://www.worldbank.org/en/region/afr/overview (accessed on 30 April 2024).
- FAO Statistical Database on Production and Macro-Economic Indicators for Africa. 2023. Available online: https://www.fao.org/faostat (accessed on 30 April 2024).
- Water Scarcity in Africa: Causes, Effects and Solutions. 2022. Available online: https://earth.org/water-scarcity-in-africa (accessed on 30 April 2024).
- Marra, F.; Levizzani, V.; Cattani, E. Changes in extreme daily precipitation over Africa: Insights from a non-asymptotic statistical approach. J. Hydrol. 2022, 16, 100130. [Google Scholar] [CrossRef]
- Taylor, R.G.; Todd, M.C.; Kongola, L.; Maurice, L.; Nahozya, E.; Sanga, H.; MacDonald, A.M. Evidence of the dependence of groundwater resources on extreme rainfall in East Africa. Nat. Clim. Chang. 2013, 3, 374–378. [Google Scholar] [CrossRef]
- IPCC. The Physical Science Basis. In WG1 6th Intergov Panel Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; 280p. [Google Scholar]
- Washington, R.; Harrison, M.; Conway, D.; Black, E.; Challinor, A.; Grimes, D.; Jones, R.; Morse, A.; Kay, G.; Todd, M. African climate change: Taking the shorter route. Bull. Am. Meteorol. Soc. 2006, 87, 1355–1366. [Google Scholar] [CrossRef]
- Harrison, L.; Funk, C.; Peterson, P. Identifying changing precipitation extremes in sub-Saharan Africa with gauge and satellite products. Environ. Res. Lett. 2019, 14, 085007. [Google Scholar] [CrossRef]
- Taylor, C.M.; Belušić, D.; Guichard, F.; Parker, D.J.; Vischel, T.; Bock, O.; Harris, P.P.; Janicot, S.; Klein, C.; Panthou, G. Frequency of extreme Sahelian storms tripled since 1982 in satellite observations. Nature 2017, 544, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Vischel, T.; Panthou, G.; Peyrillé, P.; Roehrig, R.; Quantin, G.; Lebel, T.; Wilcox, C.; Beucher, F.; Budiarti, M. Precipitation extremes in the West African Sahel: Recent evolution and physical mechanisms. In Tropical Extremes, Natural Variability and Trends; Venugopal, V., Sukhatme, J., Murtugudde, R., Roca, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 978-0-12-809248-4. [Google Scholar]
- Tierney, J.E.; Ummenhofer, C.C.; deMenocal, P.B. Past and future rainfall in the Horn of Africa. Sci. Adv. 2015, 1, e1500682. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.P.; Funk, C. A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Clim. Dyn. 2011, 37, 2417–2435. [Google Scholar] [CrossRef]
- Lyon, B. Seasonal drought in the Greater Horn of Africa and its recent increase during the March–May long rains. J. Clim. 2014, 27, 7953–7975. [Google Scholar] [CrossRef]
- Aguilar, E.; Aziz Barry, A.; Brunet, M.; Ekang, L.; Fernandes, A.; Massoukina, M.; Mbah, J.; Mhanda, A.; Do Nascimento, D.J.; Peterson, T.C.; et al. Changes in temperature and precipitation extremes in western central Africa, Guinea Conakry, and Zimbabwe, 1955–2006. J. Geophys. Res. 2009, 114, D02115. [Google Scholar] [CrossRef]
- MacKellar, N.; New, M.; Jack, C. Observed and modelled trends in rainfall and temperature for South Africa: 1960–2010. S. Afr. J. Sci. 2014, 110, 1–13. [Google Scholar] [CrossRef]
- Kruger, A.C.; Nxumalo, M.P. Historical rainfall trends in South Africa: 1921–2015. Water SA 2017, 43, 285–297. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, L.; Tucker, C.J.; Raghavendra, A.; Hua, W.; Liu, Y.Y.; Joiner, J. Widespread increase of boreal summer dry season length over the Congo rainforest. Nat. Clim. Chang. 2019, 9, 617–622. [Google Scholar] [CrossRef]
- Yeshanew, A.; Jury, M.R. North African climate variability, part 1: Tropical thermocline–coupling. Theor. Appl. Climatol. 2007, 89, 25–36. [Google Scholar] [CrossRef]
- Funk, C.; Hoell, A.; Shukla, S.; Blade, I.; Liebmann, B.; Roberts, J.B.; Robertson, F.R.; Husak, G. Predicting East African droughts using Pacific and Indian Ocean sea surface temperature indices. Hydrol. Earth Syst. Sci. 2014, 18, 4965–4978. [Google Scholar] [CrossRef]
- Nicholson, S.E. Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys. 2017, 55, 590–635. [Google Scholar] [CrossRef]
- Palmer, P.I.; Wainwright, C.M.; Dong, B.; Maidment, R.I.; Wheeler, K.G.; Gedney, N.; Hickman, J.E.; Madani, N.; Folwell, S.S.; Abdo, G.; et al. Drivers and impacts of Eastern African rainfall variability. Nat. Rev. Earth Environ. 2023, 4, 254–270. [Google Scholar] [CrossRef]
- Hastenrath, S. Zonal circulations over the equatorial Indian Ocean. J. Clim. 2000, 13, 2746–2756. [Google Scholar] [CrossRef]
- Xie, S.-P. Global warming: Thermodynamic effects. In Coupled Atmosphere-Ocean Dynamics; Elsevier: Amsterdam, The Netherlands, 2023; Chapter 13; pp. 339–366. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Lee, H.T.; Gruber, A.; Ellingson, R.G.; Laszlo, I. Development of the HIRS outgoing longwave radiation climate dataset. J. Atmos. Ocean. Technol. 2007, 24, 2029–2047. [Google Scholar] [CrossRef]
- McMahon, T.A.; Peel, M.C.; Lowe, L.; Srikanthan, R.; McVicar, T.R. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: A pragmatic synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 1331–1363. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Pinzon, J.E.; Tucker, C.J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 2014, 6, 6929–6960. [Google Scholar] [CrossRef]
- Hulley, G.; Freepartner, R.; Malakar, N.; Sarkar, S. MODIS Land Surface Temperature and Emissivity Product (User Guide 6); NASA-GSFC-JPL: Pasadena, CA, USA, 2016. [Google Scholar]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Harrigan, S.; Zsoter, E.; Alfieri, L.; Prudhomme, C.; Salamon, P.; Wetterhall, F.; Barnard, C.; Cloke, H.; Pappenberger, F. GloFAS-ERA5 operational global river discharge reanalysis 1979–present. Earth Syst. Sci. Data 2020, 12, 2043–2060. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The modern-era retrospective analysis for research and applications, v2 (MERRA2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Carton, J.A.; Chepurin, G.A.; Chen, L. SODA-3 a new ocean climate reanalysis. J. Clim. 2018, 31, 6967–6983. [Google Scholar] [CrossRef]
- Wells, N.; Goddard, S.; Hayes, M.J. A self-calibrating Palmer Drought Severity Index. J. Clim. 2004, 17, 2335–2351. [Google Scholar] [CrossRef]
- Bengtsson, L.; Hagemann, S.; Hodges, K.I. Can climate trends be calculated from reanalysis data? J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Williams, K.D.; Copsey, D.; Blockley, E.W.; Bodas-Salcedo, A.; Calvert, D.; Comer, R.; Davis, P.; Graham, T.; Hewitt, H.T.; Hill, R.; et al. The Met Office global coupled model 3.0 configurations. J. Adv. Model. Earth Syst. 2017, 10, 357–380. [Google Scholar] [CrossRef]
- Stouffer, R.J.; Eyring, V.; Meehl, G.A.; Bony, S.; Senior, C.; Stevens, B.; Taylor, K.E. CMIP5 scientific gaps and recommendations for CMIP6. Bull. Am. Meteorol. Soc. 2017, 98, 95–105. [Google Scholar] [CrossRef]
- Jury, M.R.; Whitehall, K. Warming of an elevated layer over Africa. Clim. Chang. 2010, 99, 229–245. [Google Scholar] [CrossRef]
- Ramo, R.; Roteta, E.; Bistinas, I.; van Der Werf, G.I. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proc. Natl. Acad. Sci. USA 2021, 118, e2011160118. [Google Scholar] [CrossRef] [PubMed]
- Karamage, F.; Liu, Y.; Fan, X.; Francis Justine, M.; Wu, G.; Liu, Y.; Zhou, H.; Wang, R. Spatial relationship between precipitation and runoff in Africa. Hydrol. Earth Syst. Sci. 2018, 2018, 1–27. [Google Scholar] [CrossRef]
- Chikoore, H.; Jury, M.R. South African drought deconstructed. Weather. Clim. Extrem. 2021, 33, 100334. [Google Scholar] [CrossRef]
- Jury, M.R.; Matyas, C. Tropical cyclones in the northern Mozambique Channel: Composite intra-seasonal forcing and 2019 event. Meteorol. Atmos. Phys. 2022, 134, 70. [Google Scholar] [CrossRef]
- White, W.B. Coupled Rossby waves in the Indian Ocean on interannual time scales. J. Phys. Oceanogr. 2000, 30, 2972–2989. [Google Scholar] [CrossRef]
- Yamagata, T.; Behera, S.K.; Luo, J.J.; Masson, S.; Jury, M.R.; Rao, S.A. Coupled ocean–atmosphere variability in the tropical Indian Ocean. In Earth’s Climate: The Ocean–Atmosphere Interaction; Wang, C., Xie, S.-P., Carton, J.A., Eds.; 2003; pp. 189–212. Available online: https://ftp.cpc.ncep.noaa.gov/hwang/OLD/Yamagata_2004_GR.pdf (accessed on 30 April 2024).
- Tazalika, L.; Jury, M.R. Spatial and temporal patterns of intra-seasonal rainfall oscillations over tropical Africa: Their evolution and propagation. Theor. Appl. Climatol. 2008, 94, 67–80. [Google Scholar] [CrossRef]
- Vigaud, N.; Richard, Y.; Rouault, M.; Fauchereau, N. Moisture transport between the south Atlantic Ocean and southern Africa: Relationships with summer rainfall and associated dynamics. Clim. Dyn. 2009, 32, 113–123. [Google Scholar] [CrossRef]
- Masters, J. Five of Africa’s Top 30 Deadliest Weather Disasters Have Occurred since 2022. 2023. Available online: https://yaleclimateconnections.org/2023/05/ (accessed on 30 April 2024).
- Chirps. African Gauge Count. 2023. Available online: http://data.chc.ucsb.edu/products/CHIRPS-2.0/diagnostics/stations-perMonth-byRegion/pngs/Africa.station.count.CHIRPS-v2.0.png (accessed on 30 April 2024).
Acronym | Name (Variables) | Resolution |
---|---|---|
CLOUDSAT | Satellite microwave radar (cloud reflectivity) | 10 km |
cMorph GPM | Multi-satellite interpolated infrared + microwave radiance (rainfall) | 25 km |
CRU4 | Climate Research Unit v4 (station Palmer Drought Severity Index) | 50 km |
EC | European Community (GloFAS river discharge) | 25 km |
ERA5 | European Reanalysis v5 (humidity, omega, pot. evap., rain, temp, wind) | 25 km |
EVI | Enhanced Vegetation Index (satellite color fraction) | 10 km |
FAO | Food and Agricultural Organization (socio-economic data) | Country-level |
HADLEY | Hadley Centre earth system model coupled ensemble simulation | 150 km |
MERRA2 | Meteorological Reanalysis v2 NASA (air chemistry) | 50 km |
NOAA | Nat. Ocean Atmos. Admin. (SST, land temp, tropical cyclones) | 25 km |
net OLR | Satellite net outgoing longwave radiation | 100 km |
SODA | Simple Ocean Data Assimilation (currents, salinity, sea temp) | 50 km |
Sahel | S Africa | E Africa | |||
---|---|---|---|---|---|
19 August 2022 | 149 | 27 February 2023 | 222 | 6 June 1999 | 206 |
1 August 2020 | 147 | 15 March 2019 | 213 | 26 March 2023 | 157 |
25 July 2007 | 144 | 20 January 2013 | 210 | 12 January 1998 | 151 |
9 August 2020 | 141 | 28 January 2009 | 196 | 29 January 1999 | 146 |
6 August 2020 | 140 | 23 January 2004 | 195 | 5 October 1998 | 145 |
8 August 2010 | 137 | 23 February 2000 | 194 | 10 January 1998 | 144 |
12 August 2022 | 136 | 22 February 2000 | 190 | 25 November 2011 | 144 |
21 June 1999 | 136 | 19 July 2002 | 184 | 4 November 1999 | 142 |
25 July 2021 | 126 | 15 February 2019 | 174 | 7 May 2015 | 139 |
25 April 2023 | 126 | 11 April 2022 | 173 | 7 April 2000 | 139 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jury, M.R. A Survey of African Weather and Climate Extremes. Climate 2024, 12, 65. https://doi.org/10.3390/cli12050065
Jury MR. A Survey of African Weather and Climate Extremes. Climate. 2024; 12(5):65. https://doi.org/10.3390/cli12050065
Chicago/Turabian StyleJury, Mark R. 2024. "A Survey of African Weather and Climate Extremes" Climate 12, no. 5: 65. https://doi.org/10.3390/cli12050065
APA StyleJury, M. R. (2024). A Survey of African Weather and Climate Extremes. Climate, 12(5), 65. https://doi.org/10.3390/cli12050065