Safe Sowing Windows for Smallholder Farmers in West Africa in the Context of Climate Variability
Abstract
:1. Introduction
2. Data Description
2.1. Study Area
2.2. Data Sources
2.3. Seasonal Variability of Climate Indices in the Study Area
3. Methods
3.1. Sowing Strategies of the Growing Season
3.2. The FAO Crop Model AquaCrop
Description of the Model: AquaCrop-GIS
4. Results and Discussion
4.1. Inter-Annual Variation of the Onset Approaches
4.2. Safe Sowing Window across West Africa and Risks
4.3. Climate Effects and Risks on the Onset of the Rainy Season between 1982 and 2019
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanjra, M.A.; Qureshi, M.E. Global water crisis and future food security in an era of climate change. Food Policy 2010, 35, 365–377. [Google Scholar] [CrossRef]
- Berners-Lee, M.; Kennelly, C.; Watson, R.; Hewitt, C.N. Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elem. Sci. Anthr. 2018, 6, 52. [Google Scholar] [CrossRef]
- Dinar, A.; Tieu, A.; Huynh, H. Water scarcity impacts on global food production. Glob. Food Secur. 2019, 23, 212–226. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2019. Safeguarding against Economic Slowdowns and Downturns; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; p. 239. [Google Scholar]
- Tzachor, A.; Richards, C.E.; Gudoshava, M.; Nying’uro, P.; Misiani, H.; Ongoma, J.G.; Yair, Y.; Mulugetta, Y.; Gaye, A.T. How to reduce Africa’s undue exposure to climate risks. Nature 2023, 620, 488–491. [Google Scholar] [CrossRef]
- Liu, K.; Harrison, M.T.; Yan, H.; Liu, D.L.; Meinke, H.; Hoogenboom, G.; Wang, B.; Peng, B.; Guan, K.; Jaegermeyr, J. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nat. Commun. 2023, 14, 765. [Google Scholar] [CrossRef]
- Wallach, D.; Palosuo, T.; Thorburn, P.; Mielenz, H.; Buis, S.; Hochman, Z.; Gourdain, E.; Andrianasolo, F.; Dumont, B.; Ferrise, R. Proposal and extensive test of a calibration protocol for crop phenology models. Agron. Sustain. Dev. 2023, 43, 46. [Google Scholar] [CrossRef]
- Wang, G.; Alo, C.A. Changes in Precipitation Seasonality in West Africa Predicted by RegCM3 and the Impact of Dynamic Vegetation Feedback. Int. J. Geophys. 2012, 2012. [Google Scholar] [CrossRef]
- Manzanas, R.; Amekudzi, L.K.; Preko, K.; Herrera, S.; Gutiérrez, J.M. Precipitation variability and trends in Ghana: An intercomparison of observational and reanalysis products. Clim. Chang. 2014, 124, 805–819. [Google Scholar] [CrossRef]
- Amekudzi, L.K.; Yamba, E.I.; Preko, K.; Asare, E.O.; Aryee, J.; Baidu, M.; Codjoe, S.N.A. Variabilities in Rainfall Onset, Cessation and Length of Rainy Season for the Various Agro-Ecological Zones of Ghana. Climate 2015, 3, 416–434. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Funk, C.; Fink, A.H. Rainfall over the African continent from the 19th through the 21st century. Glob. Planet. Chang. 2018, 165, 114–127. [Google Scholar] [CrossRef]
- Biasutti, M. Rainfall trends in the African Sahel: Characteristics, processes, and causes. WIREs Clim. Chang. 2019, 10, e591. [Google Scholar] [CrossRef]
- Adjei–Gyapong, T.; Asiamah, R.D. The interim Ghana soil classification system and its relation with the World Reference Base for Soil Resources. In Proceedings of the Quatorzième Réunion du Sous-Comité Ouest et Centre Africain de corréLation des Sols, Abomey, Bénin, 9–13 October 2000; Soil Research Institute—SRI: Kwadaso, Ghana, 2002; pp. 51–76. [Google Scholar]
- Ismaila, U.; Gana, A.S.; Tswanya, N.M.; Dogara, D. Cereals production in Nigeria: Problems, constraints and opportunities for betterment. Afr. J. Agric. Res. 2010, 5, 1341–1350. [Google Scholar]
- Sultan, B.; Gaetani, M. Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation. Front. Plant Sci. 2016, 7, 1–20. [Google Scholar] [CrossRef]
- Laux, P.; Kunstmann, H.; Bardossy, A. Predicting the regional onset of the rainy season in West Africa. Int. J. Climatol. 2008, 28, 329–342. [Google Scholar] [CrossRef]
- Silungwe, F.R.; Graef, F.; Bellingrath-Kimura, S.D.; Tumbo, S.D.; Kahimba, F.C.; Lana, M.A. The Management Strategies of Pearl Millet Farmers to Cope with Seasonal Rainfall Variability in a Semi-Arid Agroclimate. Agronomy 2019, 9, 400. [Google Scholar] [CrossRef]
- Ati, O.; Stigter, C.; Oladipo, E. A comparison of methods to determine the onset of the growing season in Northern Nigeria. Int. J. Climatol. 2002, 22, 731–742. [Google Scholar] [CrossRef]
- Marteau, R.; Moron, V.; Philippon, N. Spatial coherence of monsoon onset over Western and Central Sahel (1950–2000). J. Clim. 2009, 22, 1313–1324. [Google Scholar] [CrossRef]
- Yamada, T.J.; Kanae, S.; Oki, T.; Koster, R.D. Seasonal variation of land–atmosphere coupling strength over the West African monsoon region in an atmospheric general circulation model. Hydrol. Sci. J. 2013, 58, 1276–1286. [Google Scholar] [CrossRef]
- Agoungbome, S.M.D.; ten Veldhuis, M.C.; van de Giesen, N. Optimal Sowing Windows under Rainfall Variability in Rainfed Agriculture in West Africa. Agronomy 2023, 13, 167. [Google Scholar] [CrossRef]
- Aryee, J.; Amekudzi, L.; Quansah, E.; Klutse, N.; Atiah, W.; Yorke, C. Development of high spatial resolution rainfall data for Ghana. Int. J. Climatol. 2018, 38, 1201–1215. [Google Scholar] [CrossRef]
- Ziese, M.; Rauthe-Schöch, A.; Becker, A.; Finger, P.; Rustemeier, E.; Schneider, U. GPCC Full Data Daily Version 2020 at 1.0°: Daily Land-Surface Precipitation from Rain-Gauges Built on GTS-Based and Historic Data; Global Precipitation Climatology Centre (GPCC): Offenbach, Germany, 2020. [Google Scholar] [CrossRef]
- De Bruin, H.A.R.; Lablans, W.N. Reference crop evapotranspiration determined with a modified Makkink equation. Hydrol. Process. 1998, 12, 1053–1062. [Google Scholar] [CrossRef]
- Van de Giesen, N.; Hut, R.; Selker, J. The Trans-African Hydro-Meteorological Observatory (TAHMO). WIREs Water 2014, 1, 341–348. [Google Scholar] [CrossRef]
- Akinsanola, A.A.; Zhou, W. Understanding the Variability of West African Summer Monsoon Rainfall: Contrasting Tropospheric Features and Monsoon Index. Atmosphere 2020, 11, 309. [Google Scholar] [CrossRef]
- Quagraine, K.A.; Nkrumah, F.; Klein, C.; Klutse, N.A.B.; Quagraine, K.T. West African Summer Monsoon Precipitation Variability as Represented by Reanalysis Datasets. Climate 2020, 8, 111. [Google Scholar] [CrossRef]
- Fontaine, B.; Louvet, S.; Roucou, P. Definition and predictability of an OLR-based West African monsoon onset. Int. J. Climatol. 2008, 28, 1787–1798. [Google Scholar] [CrossRef]
- Gazeaux, J.; Flaounas, E.; Naveau, P.; Hannart, A. Inferring change points and nonlinear trends in multivariate time series: Application to West African monsoon onset timings estimation. J. Geophys. Res. 2011, 116, D05101. [Google Scholar] [CrossRef]
- Lebel, T.; Ali, A. Recent trends in the Central and Western Sahel rainfall regime (1990–2007). J. Hydrol. 2009, 375, 52–64. [Google Scholar] [CrossRef]
- Raj, J.; Bangalath, H.; Stenchikov, G. West African Monsoon: Current state and future projections in a high-resolution AGCM. Clim. Dyn. 2019, 52, 6441–6461. [Google Scholar] [CrossRef]
- Gbangou, T.; Ludwig, F.; van Slobbe, E.; Hoang, L.; Kranjac-Berisavljevic, G. Seasonal variability and predictability of agro-meteorological indices: Tailoring onset of rainy season estimation to meet farmers’ needs in Ghana. Clim. Serv. 2019, 14, 19–30. [Google Scholar] [CrossRef]
- Marteau, R.; Sultan, B.; Moron, V.; Alhassane, A.; Baron, C.; Traoré, S.B. The onset of the rainy season and farmers’ sowing strategy for pearl millet cultivation in Southwest Niger. Agric. For. Meteorol. 2011, 151, 1356–1369. [Google Scholar] [CrossRef]
- Huho, J.M. Rain-fed agriculture and climate change: An analysis of the most appropriate planting dates in Central Division of Laikipia District, Kenya. Int. J. Curr. Res. 2011, 3, 172–182. [Google Scholar]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. AquaCrop—The FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agro. J. 2009, 101, 438–447. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Fereres, E. On the conservative behavior of biomass water productivity. Irrig Sci 2006, 25, 189–207. [Google Scholar] [CrossRef]
- Vanuytrecht, E.; Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E.; Heng, L.K.; García-Vila, M.; Moreno, P.M. AquaCrop: FAO’s crop water productivity and yield response model. Environ. Model. Softw. 2014, 62, 351–360. [Google Scholar] [CrossRef]
- Lorite, I.J.; Garcia-Vila, M.; Fereres, E. AquaCrop-GIS Version 2.1: Reference Manual, 1st ed.; FAO Land and Water: Rome, Italy, 2015. [Google Scholar]
- Abedinpour, M.; Sarangi, A.; Rajput, T.; Singh, M.; Pathak, H.; Ahmad, T. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agric. Water Manag. 2012, 110, 55–66. [Google Scholar] [CrossRef]
- Akumaga, U.; Tarhule, A.; Yusuf, A.A. Validation and testing of the FAO AquaCrop model under different levels of nitrogen fertilizer on rain-fed maize in Nigeria, West Africa. Agric. For. Meteorol. 2017, 232, 225–234. [Google Scholar] [CrossRef]
- Nyakudya, I.W.; Stroosnijder, L. Effect of rooting depth, plant density and planting date on maize (Zea mays L.) yield and water use efficiency in semi-arid Zimbabwe: Modelling with AquaCrop. Agric. Water Manag. 2014, 146, 280–296. [Google Scholar] [CrossRef]
- Quiroz, R.S. The climate of the “El Niño” winter of 1982–1983. A season of extraordinary climatic anomalies. Mon. Weather Rev. 1983, 111, 1685–1706. [Google Scholar] [CrossRef]
- Dunning, C.M.; Black, E.; Allan, R.P. Later Wet Seasons with More Intense Rainfall over Africa under Future Climate Change. J. Clim. 2018, 31, 9719–9738. [Google Scholar] [CrossRef]
- Froidurot, S.; Diedhiou, A. Characteristics of wet and dry spells in the West African monsoon system. Atmos. Sci. Let. 2017, 18, 125–131. [Google Scholar] [CrossRef]
- Lodoun, T.; Giannini, A.; Traoré, P.S.; Somé, L.; Sanon, M.; Vaksmann, M.; Rasolodimby, J.M. Changes in seasonal descriptors of precipitation in Burkina Faso associated with late 20th century drought and recovery in West Africa. Environ. Dev. 2013, 5, 96–108. [Google Scholar] [CrossRef]
- Monerie, P.; Pohl, B.; Gaetani, M. The fast response of Sahel precipitation to climate change allows effective mitigation action. Npj Clim. Atmos. Sci. 2021, 4. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2023: Synthesis Report; Contribution of Working Groups I, II, and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; CoreWriting Team; Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar] [CrossRef]
Parameter Descriptions | Value | Units or Meaning | Source Values |
---|---|---|---|
Time from sowing to maturity | 90 (Fixed) | Day | 97 [40] |
Time from sowing to emergence | 6 | Day | 6 |
Time from sowing to start of canopy senescence | 70 * | Day | 72 |
Time from sowing to flowering | 48 * | Day | 52 [40] |
Duration of flowering | 10 | Day | 10 |
Time from sowing to maximum rooting depth | 80 * | Day | - |
Maximum effective rooting depth, Z | 1.0 | Meter | 1.0 |
Reference harvest index, | 40 | % | 40 [41] |
reduction | 54 * | % | 53 |
under soil fertility stress | 45 * | % | 40–77 |
Time to maximum canopy cover | 56 | Day | Automated or |
Building up of | 25 | Day | recommended by |
Minimum effective rooting depth, | 0.3 | Meter | AquaCrop (FAO) |
Plant population | 40,000 | Plant/ha | |
N fertilizer levels | 0 (No input) | N kg/ha | Expert |
Weeds management | 12 | % coverage | knowledge |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agoungbome, S.M.D.; ten Veldhuis, M.-C.; van de Giesen, N. Safe Sowing Windows for Smallholder Farmers in West Africa in the Context of Climate Variability. Climate 2024, 12, 44. https://doi.org/10.3390/cli12030044
Agoungbome SMD, ten Veldhuis M-C, van de Giesen N. Safe Sowing Windows for Smallholder Farmers in West Africa in the Context of Climate Variability. Climate. 2024; 12(3):44. https://doi.org/10.3390/cli12030044
Chicago/Turabian StyleAgoungbome, Sehouevi Mawuton David, Marie-Claire ten Veldhuis, and Nick van de Giesen. 2024. "Safe Sowing Windows for Smallholder Farmers in West Africa in the Context of Climate Variability" Climate 12, no. 3: 44. https://doi.org/10.3390/cli12030044
APA StyleAgoungbome, S. M. D., ten Veldhuis, M. -C., & van de Giesen, N. (2024). Safe Sowing Windows for Smallholder Farmers in West Africa in the Context of Climate Variability. Climate, 12(3), 44. https://doi.org/10.3390/cli12030044