A Pathway towards Climate Services for the Agricultural Sector
Abstract
:1. Introduction
2. What Is a Climate Service?
3. What Does a Climate Service Consist of?
4. What Are the Main Sectors in Which Climate Services Aid?
4.1. Public Health
4.2. Water Management
4.3. Disaster Management and Risk Reduction
4.4. Energy Sector
4.5. Urban Environment and Life
4.6. Tourism
4.7. Natural Areas Conservation
4.8. Biodiversity Conservation
4.9. Insurance and Finance
4.10. International Development
4.11. Agriculture and Food Security
5. How Do Climate Services Aid Agriculture in Adapting to Climate Change?
5.1. Seasonal Climate Forecasts
5.2. Extreme Weather Event Warnings
5.3. Crop Selection and Management
5.4. Water Management
5.5. Pest and Disease Management
5.6. Soil Management and Protection
5.7. Agricultural Insurance and Risk Management
5.8. Climate-Smart Agriculture Practices
5.9. Advisory Services
5.10. Access to Research and Technology
5.11. Policy Support
6. Practical Information about the Climate Services
- R language packages
- Python libraries
7. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Suckall, N.; Soares, M.B. Evaluating the Benefits of Weather and Climate Services in South Asia: A Systematic Review. Reg. Environ. Change 2022, 22, 104. [Google Scholar] [CrossRef]
- Boon, E.; Wright, S.J.; Biesbroek, R.; Goosen, H.; Ludwig, F. Successful Climate Services for Adaptation: What We Know, Don’t Know and Need to Know. Clim. Serv. 2022, 27, 100314. [Google Scholar] [CrossRef]
- FAO. Global Outlook on Climate Services in Agriculture: Investment Opportunities to Reach the Last Mile; FAO: Rome, Italy, 2021; ISBN 978-92-5-135011-9. [Google Scholar]
- Azzopardi, B.; Balzan, M.V.; Cherif, S.; Doblas-Miranda, E.; dos Santos, M.; Dobrinski, P.; Falder, M.; Hassoun, A.E.R.; Giupponi, C.; Koubi, V.V. Climate and Environmental Change in the Mediterranean Basin–Current Situation and Risks for the Future. First Mediterranean Assessment Report; MedECC: Marseille, France, 2020. [Google Scholar]
- WMO. Climate Services for Supporting Climate Change Adaptation: Supplement to the Technical Guidelines for the National Adaptation Plan Process; WMO: Geneva, Switzerland, 2016. [Google Scholar]
- World Meteorological Organization. Climate Knowledge for Action: A Global Framework for Climate Services-Empowering the Most Vulnerable; World Meteorological Organization: Geneva, Switzerland, 2011; ISBN 92-63-11065-4. [Google Scholar]
- Kimani, A.W.; Nyang’anga, H.T.; Mburu, J.I. Assessing the Status of Social Media Familiarity among Smallholder Farmers: A Case Study of Thika, Kiambu Kenya. Int. J. Agric. Ext. 2019, 7, 13–20. [Google Scholar] [CrossRef]
- Khalak, A.; Asaduzzaman Sarker, M.; Nasir Uddin, M. Farmers’ Access to ICT Based Media in Receiving Farm Information: A Grassroots Level Study from Bangladesh. Am. J. Rural Dev. 2018, 6, 14–20. [Google Scholar] [CrossRef]
- Charalampopoulos, I.; Droulia, F. The Agro-Meteorological Caused Famines as an Evolutionary Factor in the Formation of Civilisation and History: Representative Cases in Europe. Climate 2021, 9, 5. [Google Scholar] [CrossRef]
- Lanz, B.; Dietz, S.; Swanson, T. Global Economic Growth and Agricultural Land Conversion under Uncertain Productivity Improvements in Agriculture. Am. J. Agric. Econ. 2018, 100, 545–569. [Google Scholar] [CrossRef]
- Davis, K.F.; Gephart, J.A.; Emery, K.A.; Leach, A.M.; Galloway, J.N.; D’Odorico, P. Meeting Future Food Demand with Current Agricultural Resources. Glob. Environ. Change 2016, 39, 125–132. [Google Scholar] [CrossRef]
- Sánchez-García, E.; Rodríguez-Camino, E.; Bacciu, V.; Chiarle, M.; Costa-Saura, J.; Garrido, M.N.; Lledó, L.; Navascués, B.; Paranunzio, R.; Terzago, S.; et al. Co-Design of Sectoral Climate Services Based on Seasonal Prediction Information in the Mediterranean. Clim. Serv. 2022, 28, 100337. [Google Scholar] [CrossRef]
- Vaughan, C.; Dessai, S. Climate Services for Society: Origins, Institutional Arrangements, and Design Elements for an Evaluation Framework. Wiley Interdiscip. Rev. Clim. Change 2014, 5, 587–603. [Google Scholar] [CrossRef]
- Anderson, G. The Value of Climate Services across Economic and Public Sectors; Climate Change Resilient Development Project Climate Services Partnership, Economic Valuation Working Group; United States Agency for International Development (USAID): Washington, DC, USA, 2013; p. 41.
- Street, R.B. Towards a Leading Role on Climate Services in Europe: A Research and Innovation Roadmap. Clim. Serv. 2016, 1, 2–5. [Google Scholar] [CrossRef]
- Larosa, F.; Mysiak, J. Mapping the Landscape of Climate Services. Environ. Res. Lett. 2019, 14, 093006. [Google Scholar] [CrossRef]
- Perrels, A.; Le, T.-T.; Cortekar, J.; Hoa, E.; Stegmaier, P. How Much Unnoticed Merit Is There in Climate Services? Clim. Serv. 2020, 17, 100153. [Google Scholar] [CrossRef]
- Directorate-General for Research and Innovation (European Commission); Jacob, D.; Runge, T.; Street, R.; Parry, M.; Scott, J. A European Research and Innovation Roadmap for Climate Services; Publications Office of the European Union: Luxembourg, 2015; ISBN 978-92-79-44341-1. [Google Scholar]
- Cortekar, J.; Themessl, M.; Lamich, K. Systematic Analysis of EU-Based Climate Service Providers. Clim. Serv. 2020, 17, 100125. [Google Scholar] [CrossRef]
- Hernández, V.; Florencia Fossa Riglos, M.; Vera, C. Addressing Climate Services in SouthAmerican Chaco Region through a Knowledge Coproduction Process. Glob. Environ. Change 2022, 72, 102443. [Google Scholar] [CrossRef]
- Simelton, E.; McCampbell, M. Do Digital Climate Services for Farmers Encourage Resilient Farming Practices? Pinpointing Gaps through the Responsible Research and Innovation Framework. Agriculture 2021, 11, 953. [Google Scholar] [CrossRef]
- Kjellström, E.; Bärring, L.; Nikulin, G.; Nilsson, C.; Persson, G.; Strandberg, G. Production and Use of Regional Climate Model Projections—A Swedish Perspective on Building Climate Services. Clim. Serv. 2016, 2–3, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, C.D.; Guglielmo, F.; Joussaume, S.; Bessembinder, J.; Christel, I.; Doblas-Reyes, F.J.; Djurdjevic, V.; Garrett, N.; Kjellström, E.; Krzic, A.; et al. Recommendations for Future Research Priorities for Climate Modeling and Climate Services. Bull. Am. Meteorol. Soc. 2021, 102, E578–E588. [Google Scholar] [CrossRef]
- Lindberg, F.; Grimmond, C.S.B.; Gabey, A.; Huang, B.; Kent, C.W.; Sun, T.; Theeuwes, N.E.; Järvi, L.; Ward, H.C.; Capel-Timms, I.; et al. Urban Multi-Scale Environmental Predictor (UMEP): An Integrated Tool for City-Based Climate Services. Environ. Model. Softw. 2018, 99, 70–87. [Google Scholar] [CrossRef]
- Tart, S.; Groth, M.; Seipold, P. Market Demand for Climate Services: An Assessment of Users’ Needs. Clim. Serv. 2020, 17, 100109. [Google Scholar] [CrossRef]
- Dinku, T.; Faniriantsoa, R.; Islam, S.; Nsengiyumva, G.; Grossi, A. The Climate Data Tool: Enhancing Climate Services across Africa. Front. Clim. 2022, 3, 185. [Google Scholar] [CrossRef]
- Dinku, T.; Block, P.; Sharoff, J.; Hailemariam, K.; Osgood, D.; del Corral, J.; Cousin, R.; Thomson, M.C. Bridging Critical Gaps in Climate Services and Applications in Africa. Earth Perspect. 2014, 1, 15. [Google Scholar] [CrossRef]
- van den Hurk, B.J.J.M.; Bouwer, L.M.; Buontempo, C.; Döscher, R.; Ercin, E.; Hananel, C.; Hunink, J.E.; Kjellström, E.; Klein, B.; Manez, M.; et al. Improving Predictions and Management of Hydrological Extremes through Climate Services: www.imprex.eu. Clim. Serv. 2016, 1, 6–11. [Google Scholar] [CrossRef]
- Hewitt, C.; Buontempo, C.; Newton, P.; Doblas-Reyes, F.; Jochumsen, K.; Quadfasel, D. Climate Observations, Climate Modeling, and Climate Services. Bull. Am. Meteorol. Soc. 2017, 98, 1503–1506. [Google Scholar] [CrossRef]
- Lowe, R.; García-Díez, M.; Ballester, J.; Creswick, J.; Robine, J.-M.; Herrmann, F.R.; Rodó, X. Evaluation of an Early-Warning System for Heat Wave-Related Mortality in Europe: Implications for Sub-Seasonal to Seasonal Forecasting and Climate Services. Int. J. Environ. Res. Public Health 2016, 13, 206. [Google Scholar] [CrossRef] [PubMed]
- Montes, C.; Acharya, N.; Rumana Hossain, P.; Amjath Babu, T.S.; Krupnik, T.J.; Quamrul Hassan, S.M. Developing a Framework for an Early Warning System of Seasonal Temperature and Rainfall Tailored to Aquaculture in Bangladesh. Clim. Serv. 2022, 26, 100292. [Google Scholar] [CrossRef]
- Gudoshava, M.; Wanzala, M.; Thompson, E.; Mwesigwa, J.; Endris, H.S.; Segele, Z.; Hirons, L.; Kipkogei, O.; Mumbua, C.; Njoka, W.; et al. Application of Real Time S2S Forecasts over Eastern Africa in the Co-Production of Climate Services. Clim. Serv. 2022, 27, 100319. [Google Scholar] [CrossRef]
- Daron, J.; Bruno Soares, M.; Janes, T.; Colledge, F.; Srinivasan, G.; Agarwal, A.; Hewitt, C.; Richardson, K.; Nepal, S.; Singh Shrestha, M.; et al. Advancing Climate Services in South Asia. Clim. Serv. 2022, 26, 100295. [Google Scholar] [CrossRef]
- Lourenço, T.C.; Swart, R.; Goosen, H.; Street, R. The Rise of Demand-Driven Climate Services. Nat. Clim. Change 2016, 6, 13–14. [Google Scholar] [CrossRef]
- Guido, Z.; Hill, D.; Crimmins, M.; Ferguson, D. Informing Decisions with a Climate Synthesis Product: Implications for Regional Climate Services. Weather Clim. Soc. 2013, 5, 83–92. [Google Scholar] [CrossRef]
- Born, L.; Prager, S.; Ramirez-Villegas, J.; Imbach, P. A Global Meta-Analysis of Climate Services and Decision-Making in Agriculture. Clim. Serv. 2021, 22, 100231. [Google Scholar] [CrossRef]
- Street, R.B.; Buontempo, C.; Mysiak, J.; Karali, E.; Pulquério, M.; Murray, V.; Swart, R. How Could Climate Services Support Disaster Risk Reduction in the 21st Century. Int. J. Disaster Risk Reduct. 2019, 34, 28–33. [Google Scholar] [CrossRef]
- Hewitt, C.D.; Allis, E.; Mason, S.J.; Muth, M.; Pulwarty, R.; Shumake-Guillemot, J.; Bucher, A.; Brunet, M.; Fischer, A.M.; Hama, A.M.; et al. Making Society Climate Resilient: International Progress under the Global Framework for Climate Services. Bull. Am. Meteorol. Soc. 2020, 101, E237–E252. [Google Scholar] [CrossRef]
- Hewitt, C.; Mason, S.; Walland, D. The Global Framework for Climate Services. Nat. Clim. Change 2012, 2, 831–832. [Google Scholar] [CrossRef]
- Vincent, K.; Dougill, A.J.; Dixon, J.L.; Stringer, L.C.; Cull, T. Identifying Climate Services Needs for National Planning: Insights from Malawi. Clim. Policy 2017, 17, 189–202. [Google Scholar] [CrossRef]
- Dinku, T.; Faniriantsoa, R.; Cousin, R.; Khomyakov, I.; Vadillo, A.; Hansen, J.W.; Grossi, A. ENACTS: Advancing Climate Services Across Africa. Front. Clim. 2022, 3, 787683. [Google Scholar] [CrossRef]
- Rosas, G.; Gubler, S.; Oria, C.; Acuña, D.; Avalos, G.; Begert, M.; Castillo, E.; Croci-Maspoli, M.; Cubas, F.; Dapozzo, M.; et al. Towards Implementing Climate Services in Peru—The Project CLIMANDES. Clim. Serv. 2016, 4, 30–41. [Google Scholar] [CrossRef]
- Vogel, J.; Letson, D.; Herrick, C. A Framework for Climate Services Evaluation and Its Application to the Caribbean Agrometeorological Initiative. Clim. Serv. 2017, 6, 65–76. [Google Scholar] [CrossRef]
- Brasseur, G.P.; Gallardo, L. Climate Services: Lessons Learned and Future Prospects. Earth’s Future 2016, 4, 79–89. [Google Scholar] [CrossRef]
- Owen, G.; Ferguson, D.B.; McMahan, B. Contextualizing Climate Science: Applying Social Learning Systems Theory to Knowledge Production, Climate Services, and Use-Inspired Research. Clim. Change 2019, 157, 151–170. [Google Scholar] [CrossRef]
- Harvey, B.; Jones, L.; Cochrane, L.; Singh, R.K. The Evolving Landscape of Climate Services in Sub-Saharan Africa: What Roles Have NGOs Played? Clim. Change 2019, 157, 81–98. [Google Scholar] [CrossRef]
- Bojovic, D.; Clair, A.S.; Christel, I.; Terrado, M.; Stanzel, P.; Gonzalez, P.; Palin, E. Engagement, Involvement and Empowerment: Three Realms of a Coproduction Framework for Climate Services. Glob. Environ. Change 2021, 68, 102271. [Google Scholar] [CrossRef]
- Dell’Aquila, A.; Graça, A.; Teixeira, M.; Fontes, N.; Gonzalez-Reviriego, N.; Marcos-Matamoros, R.; Chou, C.; Terrado, M.; Giannakopoulos, C.; Varotsos, K.V.; et al. Monitoring Climate Related Risk and Opportunities for the Wine Sector: The MED-GOLD Pilot Service. Clim. Serv. 2023, 30, 100346. [Google Scholar] [CrossRef]
- Fernandez-Montoya, L.; Guillemot, J.; von Hildebrand, A. Climate Services for Health: Improving Public Health Decision-Making in a New Climate; WMO/WHO: Geneva, Switzerland, 2016; ISBN 978-92-4-151156-3. [Google Scholar]
- Jancloes, M.; Thomson, M.; Costa, M.M.; Hewitt, C.; Corvalan, C.; Dinku, T.; Lowe, R.; Hayden, M. Climate Services to Improve Public Health. Int. J. Environ. Res. Public Health 2014, 11, 4555–4559. [Google Scholar] [CrossRef]
- Fletcher, I.K.; Stewart-Ibarra, A.M.; García-Díez, M.; Shumake-Guillemot, J.; Lowe, R. Climate Services for Health: From Global Observations to Local Interventions. Med 2021, 2, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Di Napoli, C.; Romanello, M.; Minor, K.; Chambers, J.; Dasgupta, S.; Escobar, L.E.; Hang, Y.; Hänninen, R.; Liu, Y.; Lotto Batista, M.; et al. The Role of Global Reanalyses in Climate Services for Health: Insights from the Lancet Countdown. Meteorol. Appl. 2023, 30, e2122. [Google Scholar] [CrossRef]
- Manyuchi, A.E.; Vogel, C.; Wright, C.Y.; Erasmus, B. Systems Approach to Climate Services for Health. Clim. Serv. 2021, 24, 100271. [Google Scholar] [CrossRef]
- Tamene, H.; Ayal, D.Y.; Zeleke, T.T.; Ture, K. Determinants of the Choice of Adaptation Strategies to Climate Variability and Extremes among Pastoralist and Agro-Pastoralist Households in Yabello and Arero Districts, Southeast Ethiopia. Clim. Serv. 2023, 30, 100381. [Google Scholar] [CrossRef]
- Dorward, P.; Clarkson, G.; Stern, R. Participatory Integrated Climate Services for Agriculture (PICSA): Field Manual. A Step by Step Guide to Using PICSA with Farmers; University of Reading, Walker Institute: Reading, UK, 2015; ISBN 978-0-7049-1563-3. [Google Scholar]
- Breuer, N.; Fraisse, C.W. Climate Services for Agricultural and Livestock Producers: What Have We Learned? Agrometeoros 2020, 28, e026654. [Google Scholar] [CrossRef]
- Rubio-Martin, A.; Llario, F.; Garcia-Prats, A.; Macian-Sorribes, H.; Macian, J.; Pulido-Velazquez, M. Climate Services for Water Utilities: Lessons Learnt from the Case of the Urban Water Supply to Valencia, Spain. Clim. Serv. 2023, 29, 100338. [Google Scholar] [CrossRef]
- Cantone, C.; Ivars Grape, H.; El Habash, S.; Pechlivanidis, I.G. A Co-Generation Success Story: Improving Drinking Water Management through Hydro-Climate Services. Clim. Serv. 2023, 31, 100399. [Google Scholar] [CrossRef]
- Cremades, R.; Mitter, H.; Tudose, N.C.; Sanchez-Plaza, A.; Graves, A.; Broekman, A.; Bender, S.; Giupponi, C.; Koundouri, P.; Bahri, M.; et al. Ten Principles to Integrate the Water-Energy-Land Nexus with Climate Services for Co-Producing Local and Regional Integrated Assessments. Sci. Total Environ. 2019, 693, 133662. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Shibata, H.; Chen, L. Spatial Priority Conservation Areas for Water Yield Ecosystem Service under Climate Changes in Teshio Watershed, Northernmost Japan. J. Water Clim. Change 2018, 11, 106–129. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Liu, S.; Han, Z.; Song, L.; Ke, Z.; Chen, K. Climate Services for Water Resource Management in China: The Case Study of Danjiangkou Reservoir. J. Meteorol. Res. 2021, 35, 87–100. [Google Scholar] [CrossRef]
- Keramitsoglou, I.; Sismanidis, P.; Analitis, A.; Butler, T.; Founda, D.; Giannakopoulos, C.; Giannatou, E.; Karali, A.; Katsouyanni, K.; Kendrovski, V.; et al. Urban Thermal Risk Reduction: Developing and Implementing Spatially Explicit Services for Resilient Cities. Sustain. Cities Soc. 2017, 34, 56–68. [Google Scholar] [CrossRef]
- Newth, D.; Gooley, G.; Gunasekera, D. Socio-Economic Analysis of Climate Services in Disaster Risk Reduction: A Perspective on Pacific SIDS. Front. Environ. Sci. 2021, 9, 681747. [Google Scholar] [CrossRef]
- Vaughan, C.; Dessai, S.; Hewitt, C. Surveying Climate Services: What Can We Learn from a Bird’s-Eye View? Weather Clim. Soc. 2018, 10, 373–395. [Google Scholar] [CrossRef]
- Halsnæs, K.; Bay, L.; Dømgaard, M.L.; Kaspersen, P.S.; Larsen, M.A.D. Accelerating Climate Service Development for Renewable Energy, Finance and Cities. Sustainability 2020, 12, 7540. [Google Scholar] [CrossRef]
- Charalampopoulos, I.; Matzarakis, A. Thoughts about the Thermal Environment and the Development of Human Civilisation. Atmosphere 2022, 13, 1925. [Google Scholar] [CrossRef]
- Bartók, B.; Tobin, I.; Vautard, R.; Vrac, M.; Jin, X.; Levavasseur, G.; Denvil, S.; Dubus, L.; Parey, S.; Michelangeli, P.-A.; et al. A Climate Projection Dataset Tailored for the European Energy Sector. Clim. Serv. 2019, 16, 100138. [Google Scholar] [CrossRef]
- Swart, R.; Celliers, L.; Collard, M.; Prats, A.G.; Huang-Lachmann, J.-T.; Sempere, F.L.; de Jong, F.; Máñez Costa, M.; Martinez, G.; Velazquez, M.P.; et al. Reframing Climate Services to Support Municipal and Regional Planning. Clim. Serv. 2021, 22, 100227. [Google Scholar] [CrossRef]
- Castan Broto, V.; Allen, A.; Rapoport, E. Interdisciplinary Perspectives on Urban Metabolism. J. Ind. Ecol. 2012, 16, 851–861. [Google Scholar] [CrossRef]
- Zuccaro, G.; Leone, M.F. Climate Services to Support Disaster Risk Reduction and Climate Change Adaptation in Urban Areas: The CLARITY Project and the Napoli Case Study. Front. Environ. Sci. 2021, 9, 693319. [Google Scholar] [CrossRef]
- Zhang, Y. Urban Metabolism: A Review of Research Methodologies. Environ. Pollut. 2013, 178, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.; Lemieux, C. Weather and Climate Information for Tourism. Procedia Environ. Sci. 2010, 1, 146–183. [Google Scholar] [CrossRef]
- Damm, A.; Köberl, J.; Stegmaier, P.; Jiménez Alonso, E.; Harjanne, A. The Market for Climate Services in the Tourism Sector—An Analysis of Austrian Stakeholders’ Perceptions. Clim. Serv. 2020, 17, 100094. [Google Scholar] [CrossRef]
- Köberl, J.; François, H.; Cognard, J.; Carmagnola, C.; Prettenthaler, F.; Damm, A.; Morin, S. The Demand Side of Climate Services for Real-Time Snow Management in Alpine Ski Resorts: Some Empirical Insights and Implications for Climate Services Development. Clim. Serv. 2021, 22, 100238. [Google Scholar] [CrossRef]
- Le Cozannet, G.; Nicholls, R.J.; Hinkel, J.; Sweet, W.V.; McInnes, K.L.; Van de Wal, R.S.W.; Slangen, A.B.A.; Lowe, J.A.; White, K.D. Sea Level Change and Coastal Climate Services: The Way Forward. J. Mar. Sci. Eng. 2017, 5, 49. [Google Scholar] [CrossRef]
- Steiger, R.; Damm, A.; Prettenthaler, F.; Pröbstl-Haider, U. Climate Change and Winter Outdoor Activities in Austria. J. Outdoor Recreat. Tour. 2021, 34, 100330. [Google Scholar] [CrossRef]
- Pröbstl-Haider, U.; Mostegl, N.; Damm, A. Tourism and Climate Change—A Discussion of Suitable Strategies for Austria. J. Outdoor Recreat. Tour. 2021, 34, 100394. [Google Scholar] [CrossRef]
- Rutty, M.; Steiger, R.; Demiroglu, O.C.; Perkins, D.R. Tourism Climatology: Past, Present, and Future. Int. J. Biometeorol. 2021, 65, 639–643. [Google Scholar] [CrossRef]
- Raihan, A. A Review on the Integrative Approach for Economic Valuation of Forest Ecosystem Services. J. Environ. Sci. Econ. 2023, 2, 1–18. [Google Scholar] [CrossRef]
- Muys, B.; Angelstam, P.; Bauhus, J.; Bouriaud, L.; Jactel, H.; Kraigher, H.; Müller, J.; Pettorelli, N.; Pötzelsberger, E.; Primmer, E.; et al. Forest Biodiversity in Europe; Pülzl, H., Ed.; European Forest Institute: Joensuu, Finland, 2022; ISBN 978-952-7426-20-3. [Google Scholar]
- Stagl, J.; Hattermann, F.F.; Vohland, K. Exposure to Climate Change in Central Europe: What Can Be Gained from Regional Climate Projections for Management Decisions of Protected Areas? Reg. Environ. Change 2015, 15, 1409–1419. [Google Scholar] [CrossRef]
- Reyer, C.P.O.; Silveyra Gonzalez, R.; Dolos, K.; Hartig, F.; Hauf, Y.; Noack, M.; Lasch-Born, P.; Rötzer, T.; Pretzsch, H.; Meesenburg, H.; et al. The PROFOUND Database for Evaluating Vegetation Models and Simulating Climate Impacts on European Forests. Earth Syst. Sci. Data 2020, 12, 1295–1320. [Google Scholar] [CrossRef]
- Fraccaroli, C.; Marini Govigli, V.; Briers, S.; Peña Cerezo, N.; Paz Jiménez, J.; Romero, M.; Lindner, M.; Martínez de Arano, I. Climate Data for the European Forestry Sector: From End-User Needs to Opportunities for Climate Resilience. Clim. Serv. 2021, 23, 100247. [Google Scholar] [CrossRef]
- Nobre, C.A.; Sampaio, G.; Borma, L.S.; Castilla-Rubio, J.C.; Silva, J.S.; Cardoso, M. Land-Use and Climate Change Risks in the Amazon and the Need of a Novel Sustainable Development Paradigm. Proc. Natl. Acad. Sci. USA 2016, 113, 10759–10768. [Google Scholar] [CrossRef] [PubMed]
- Shilky, S.; Patra, S.; Ekka, P.; Kumar, A.; Saikia, P. Climate Change: A Major Challenge to Biodiversity Conservation, Ecological Services, and Sustainable Development. In Palgrave Handbook of Socio-Ecological Resilience in the Face of Climate Change: Contexts from a Developing Country; Nautiyal, S., Gupta, A.K., Goswami, M., Khan, Y.D.I., Eds.; Palgrave McMillan: Singapore, 2023; pp. 577–592. ISBN 978-981-9922-05-5. [Google Scholar]
- Muluneh, M.G. Impact of Climate Change on Biodiversity and Food Security: A Global Perspective—A Review Article. Agric. Food Secur. 2021, 10, 36. [Google Scholar] [CrossRef]
- Pulido-Chadid, K.; Virtanen, E.; Geldmann, J. How Effective Are Protected Areas for Reducing Threats to Biodiversity? A Systematic Review Protocol. Environ. Evid. 2023, 12, 18. [Google Scholar] [CrossRef]
- Rhodes, J.R.; Armsworth, P.R.; Iacona, G.; Shah, P.; Gordon, A.; Wilson, K.A.; Runting, R.K.; Bryan, B.A. Flexible Conservation Decisions for Climate Adaptation. One Earth 2022, 5, 622–634. [Google Scholar] [CrossRef]
- Vanderhoeven, S.; Adriaens, T.; Desmet, P.; Strubbe, D.; Backeljau, T.; Barbier, Y.; Brosens, D.; Cigar, J.; Coupremanne, M.; De Troch, R.; et al. Tracking Invasive Alien Species (TrIAS): Building a Data-Driven Framework to Inform Policy. Res. Ideas Outcomes 2017, 3, e13414. [Google Scholar] [CrossRef]
- Termonia, P.; Van Schaeybroeck, B.; De Cruz, L.; De Troch, R.; Caluwaerts, S.; Giot, O.; Hamdi, R.; Vannitsem, S.; Duchêne, F.; Willems, P.; et al. The CORDEX.Be Initiative as a Foundation for Climate Services in Belgium. Clim. Serv. 2018, 11, 49–61. [Google Scholar] [CrossRef]
- Hansen, J.; List, G.; Downs, S.; Carr, E.R.; Diro, R.; Baethgen, W.; Kruczkiewicz, A.; Braun, M.; Furlow, J.; Walsh, K.; et al. Impact Pathways from Climate Services to SDG2 (“Zero Hunger”): A Synthesis of Evidence. Clim. Risk Manag. 2022, 35, 100399. [Google Scholar] [CrossRef]
- Prasada, D.V.P. Climate-Indexed Insurance as a Climate Service to Drought-Prone Farmers: Evidence from a Discrete Choice Experiment in Sri Lanka. In Handbook of Climate Services; Leal Filho, W., Jacob, D., Eds.; Climate Change Management; Springer International Publishing: Cham, Switzerland, 2020; pp. 423–445. ISBN 978-3-030-36875-3. [Google Scholar]
- Tadesse, M.A.; Shiferaw, B.A.; Erenstein, O. Weather Index Insurance for Managing Drought Risk in Smallholder Agriculture: Lessons and Policy Implications for Sub-Saharan Africa. Agric. Food Econ. 2015, 3, 26. [Google Scholar] [CrossRef]
- Global Framework for Climate Services (GFCS). Climate Services for Resilient Development Partnership (CSRD). Available online: https://gfcs.wmo.int/CSRD (accessed on 10 October 2023).
- Snow, J.T.; Biagini, B.; Benchwick, G.; George, G.; Diasso, U.; Hoedjes, J.; Miller, A.; Ngamini, J.; Usher, J. A New Vision for Weather and Climate Services in Africa|UNDP Climate Change Adaptation. Available online: https://www.adaptation-undp.org/resources/communications-products/new-vision-weather-and-climate-services-africa (accessed on 11 October 2023).
- Talukdar, G.; Bhattacharjya, R.K.; Sarma, A.K. Optimal Cropping Pattern Based on Short-Term Streamflow Forecasts to Improve Agricultural Economic Benefits and Crop Productivity under Uncertainty Conditions. Hydrol. Sci. J. 2023, 68, 246–260. [Google Scholar] [CrossRef]
- Alexander, S.; Yang, G.; Addisu, G.; Block, P. Forecast-Informed Reservoir Operations to Guide Hydropower and Agriculture Allocations in the Blue Nile Basin, Ethiopia. Int. J. Water Resour. Dev. 2021, 37, 208–233. [Google Scholar] [CrossRef]
- Block, P. Tailoring Seasonal Climate Forecasts for Hydropower Operations. Hydrol. Earth Syst. Sci. 2011, 15, 1355–1368. [Google Scholar] [CrossRef]
- Mahon, R.; Petrie, J.-A.; Trotman, A.; Eyzaguirre, J.; Burrowes, R.; Matthews, L.; Van Meerbeeck, C.J.; Charles, A. Climate Services for Tourism: Insights from Caribbean Small Island Developing States. Clim. Serv. 2021, 24, 100262. [Google Scholar] [CrossRef]
- Yegbemey, R.N.; Egah, J. Reaching out to Smallholder Farmers in Developing Countries with Climate Services: A Literature Review of Current Information Delivery Channels. Clim. Serv. 2021, 23, 100253. [Google Scholar] [CrossRef]
- Vaughan, C.; Hansen, J.; Roudier, P.; Watkiss, P.; Carr, E. Evaluating Agricultural Weather and Climate Services in Africa: Evidence, Methods, and a Learning Agenda. Wiley Interdiscip. Rev. Clim. Change 2019, 10, e586. [Google Scholar] [CrossRef]
- Antwi-Agyei, P.; Dougill, A.J.; Doku-Marfo, J.; Abaidoo, R.C. Understanding Climate Services for Enhancing Resilient Agricultural Systems in Anglophone West Africa: The Case of Ghana. Clim. Serv. 2021, 22, 100218. [Google Scholar] [CrossRef]
- Nidumolu, U.; Lim-Camacho, L.; Gaillard, E.; Hayman, P.; Howden, M. Linking Climate Forecasts to Rural Livelihoods: Mapping Decisions, Information Networks and Value Chains. Weather Clim. Extremes 2020, 27, 100174. [Google Scholar] [CrossRef]
- Ozdemir, D. The Impact of Climate Change on Agricultural Productivity in Asian Countries: A Heterogeneous Panel Data Approach. Environ. Sci. Pollut. Res. 2022, 29, 8205–8217. [Google Scholar] [CrossRef]
- Bahru, B.A.; Bosch, C.; Birner, R.; Zeller, M. Drought and Child Undernutrition in Ethiopia: A Longitudinal Path Analysis. PLoS ONE 2019, 14, e0217821. [Google Scholar] [CrossRef]
- Munaweera, T.I.K.; Jayawardana, N.U.; Rajaratnam, R.; Dissanayake, N. Modern Plant Biotechnology as a Strategy in Addressing Climate Change and Attaining Food Security. Agric. Food Secur. 2022, 11, 26. [Google Scholar] [CrossRef]
- Brown, M.E.; Backer, D.; Billing, T.; White, P.; Grace, K.; Doocy, S.; Huth, P. Empirical Studies of Factors Associated with Child Malnutrition: Highlighting the Evidence about Climate and Conflict Shocks. Food Sec. 2020, 12, 1241–1252. [Google Scholar] [CrossRef]
- Echendu, A.J. Flooding, Food Security and the Sustainable Development Goals in Nigeria: An Assemblage and Systems Thinking Approach. Soc. Sci. 2022, 11, 59. [Google Scholar] [CrossRef]
- Jat, R.K.; Meena, V.S.; Kumar, M.; Jakkula, V.S.; Reddy, I.R.; Pandey, A.C. Direct Seeded Rice: Strategies to Improve Crop Resilience and Food Security under Adverse Climatic Conditions. Land 2022, 11, 382. [Google Scholar] [CrossRef]
- Ortiz, A.M.D.; Chua, P.L.C.; Salvador, D.; Dyngeland, C.; Albao, J.D.G.; Abesamis, R.A. Impacts of Tropical Cyclones on Food Security, Health and Biodiversity. Bull. World Health Organ. 2023, 101, 152–154. [Google Scholar] [CrossRef] [PubMed]
- Alvar-Beltrán, J.; Dao, A.; Dalla Marta, A.; Heureux, A.; Sanou, J.; Orlandini, S. Farmers’ Perceptions of Climate Change and Agricultural Adaptation in Burkina Faso. Atmosphere 2020, 11, 827. [Google Scholar] [CrossRef]
- Cogato, A.; Meggio, F.; De Antoni Migliorati, M.; Marinello, F. Extreme Weather Events in Agriculture: A Systematic Review. Sustainability 2019, 11, 2547. [Google Scholar] [CrossRef]
- Charalampopoulos, I. Agrometeorological Conditions and Agroclimatic Trends for the Maize and Wheat Crops in the Balkan Region. Atmosphere 2021, 12, 671. [Google Scholar] [CrossRef]
- Charalampopoulos, I.; Droulia, F. Frost Conditions Due to Climate Change in South-Eastern Europe via a High-Spatiotemporal-Resolution Dataset. Atmosphere 2022, 13, 1407. [Google Scholar] [CrossRef]
- Charalampopoulos, I.; Droulia, F.; Evans, J. The Bioclimatic Change of the Agricultural and Natural Areas of the Adriatic Coastal Countries. Sustainability 2023, 15, 4867. [Google Scholar] [CrossRef]
- Charalampopoulos, I.; Droulia, F.; Kokkoris, I.P.; Dimopoulos, P. Future Bioclimatic Change of Agricultural and Natural Areas in Central Europe: An Ultra-High Resolution Analysis of the De Martonne Index. Water 2023, 15, 2563. [Google Scholar] [CrossRef]
- Charalampopoulos, I.; Droulia, F.; Tsiros, I.X. Projecting Bioclimatic Change over the South-Eastern European Agricultural and Natural Areas via Ultrahigh-Resolution Analysis of the de Martonne Index. Atmosphere 2023, 14, 858. [Google Scholar] [CrossRef]
- Charalampopoulos, I.; Polychroni, I.; Psomiadis, E.; Nastos, P. Spatiotemporal Estimation of the Olive and Vine Cultivations’ Growing Degree Days in the Balkans Region. Atmosphere 2021, 12, 148. [Google Scholar] [CrossRef]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate Variation Explains a Third of Global Crop Yield Variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef]
- Esquivel, A.; Llanos-Herrera, L.; Agudelo, D.; Prager, S.D.; Fernandes, K.; Rojas, A.; Valencia, J.J.; Ramirez-Villegas, J. Predictability of Seasonal Precipitation across Major Crop Growing Areas in Colombia. Clim. Serv. 2018, 12, 36–47. [Google Scholar] [CrossRef]
- Capa-Morocho, M.; Ines, A.V.M.; Baethgen, W.E.; Rodríguez-Fonseca, B.; Han, E.; Ruiz-Ramos, M. Crop Yield Outlooks in the Iberian Peninsula: Connecting Seasonal Climate Forecasts with Crop Simulation Models. Agric. Syst. 2016, 149, 75–87. [Google Scholar] [CrossRef]
- Rodriguez, D.; de Voil, P.; Hudson, D.; Brown, J.N.; Hayman, P.; Marrou, H.; Meinke, H. Predicting Optimum Crop Designs Using Crop Models and Seasonal Climate Forecasts. Sci. Rep. 2018, 8, 2231. [Google Scholar] [CrossRef] [PubMed]
- Nyadzi, E.; Werners, S.E.; Biesbroek, R.; Ludwig, F. Towards Weather and Climate Services That Integrate Indigenous and Scientific Forecasts to Improve Forecast Reliability and Acceptability in Ghana. Environ. Dev. 2022, 42, 100698. [Google Scholar] [CrossRef]
- Foley, A.; Kelman, I. EURO-CORDEX Regional Climate Model Simulation of Precipitation on Scottish Islands (1971–2000): Model Performance and Implications for Decision-Making in Topographically Complex Regions. Int. J. Climatol. 2018, 38, 1087–1095. [Google Scholar] [CrossRef]
- Amegnaglo, C.J.; Anaman, K.A.; Mensah-Bonsu, A.; Onumah, E.E.; Amoussouga Gero, F. Contingent Valuation Study of the Benefits of Seasonal Climate Forecasts for Maize Farmers in the Republic of Benin, West Africa. Clim. Serv. 2017, 6, 1–11. [Google Scholar] [CrossRef]
- Antwi-Agyei, P.; Dougill, A.J.; Abaidoo, R.C. Opportunities and Barriers for Using Climate Information for Building Resilient Agricultural Systems in Sudan Savannah Agro-Ecological Zone of North-Eastern Ghana. Clim. Serv. 2021, 22, 100226. [Google Scholar] [CrossRef]
- Abid, M.; Scheffran, J.; Schneider, U.A.; Elahi, E. Farmer Perceptions of Climate Change, Observed Trends and Adaptation of Agriculture in Pakistan. Environ. Manag. 2019, 63, 110–123. [Google Scholar] [CrossRef] [PubMed]
- Dayamba, D.S.; Ky-Dembele, C.; Bayala, J.; Dorward, P.; Clarkson, G.; Sanogo, D.; Diop Mamadou, L.; Traoré, I.; Diakité, A.; Nenkam, A.; et al. Assessment of the Use of Participatory Integrated Climate Services for Agriculture (PICSA) Approach by Farmers to Manage Climate Risk in Mali and Senegal. Clim. Serv. 2018, 12, 27–35. [Google Scholar] [CrossRef]
- Patt, A.; Suarez, P.; Gwata, C. Effects of Seasonal Climate Forecasts and Participatory Workshops among Subsistence Farmers in Zimbabwe. Proc. Natl. Acad. Sci. USA 2005, 102, 12623–12628. [Google Scholar] [CrossRef]
- Iizumi, T.; Shin, Y.; Kim, W.; Kim, M.; Choi, J. Global Crop Yield Forecasting Using Seasonal Climate Information from a Multi-Model Ensemble. Clim. Serv. 2018, 11, 13–23. [Google Scholar] [CrossRef]
- Singh, C.; Daron, J.; Bazaz, A.; Ziervogel, G.; Spear, D.; Krishnaswamy, J.; Zaroug, M.; Kituyi, E. The Utility of Weather and Climate Information for Adaptation Decision-Making: Current Uses and Future Prospects in Africa and India. Clim. Dev. 2018, 10, 389–405. [Google Scholar] [CrossRef]
- Kosoe, E.A.; Ahmed, A. Climate Change Adaptation Strategies of Cocoa Farmers in the Wassa East District: Implications for Climate Services in Ghana. Clim. Serv. 2022, 26, 100289. [Google Scholar] [CrossRef]
- Nkiaka, E.; Taylor, A.; Dougill, A.J.; Antwi-Agyei, P.; Fournier, N.; Bosire, E.N.; Konte, O.; Lawal, K.A.; Mutai, B.; Mwangi, E.; et al. Identifying User Needs for Weather and Climate Services to Enhance Resilience to Climate Shocks in Sub-Saharan Africa. Environ. Res. Lett. 2019, 14, 123003. [Google Scholar] [CrossRef]
- Nkuba, M.R.; Chanda, R.; Mmopelwa, G.; Mangheni, M.N.; Lesolle, D.; Adedoyin, A.; Mujuni, G. Determinants of Pastoralists’ Use of Indigenous Knowledge and Scientific Forecasts in Rwenzori Region, Western Uganda. Clim. Serv. 2021, 23, 100242. [Google Scholar] [CrossRef]
- Cook, B.I.; Wolkovich, E.M. Climate Change Decouples Drought from Early Wine Grape Harvests in France. Nat. Clim. Change 2016, 6, 715–719. [Google Scholar] [CrossRef]
- Mihailescu, E.; Bruno Soares, M. The Influence of Climate on Agricultural Decisions for Three European Crops: A Systematic Review. Front. Sustain. Food Syst. 2020, 4, 64. [Google Scholar] [CrossRef]
- Naab, F.Z.; Abubakari, Z.; Ahmed, A. The Role of Climate Services in Agricultural Productivity in Ghana: The Perspectives of Farmers and Institutions. Clim. Serv. 2019, 13, 24–32. [Google Scholar] [CrossRef]
- Onyeneke, C.J.; Umeh, G.N.; Onyeneke, R.U. Impact of Climate Information Services on Crop Yield in Ebonyi State, Nigeria. Climate 2023, 11, 7. [Google Scholar] [CrossRef]
- White, C.J.; Carlsen, H.; Robertson, A.W.; Klein, R.J.T.; Lazo, J.K.; Kumar, A.; Vitart, F.; Coughlan de Perez, E.; Ray, A.J.; Murray, V.; et al. Potential Applications of Subseasonal-to-Seasonal (S2S) Predictions. Meteorol. Appl. 2017, 24, 315–325. [Google Scholar] [CrossRef]
- Roy, A.; Murtugudde, R.; Narvekar, P.; Sahai, A.K.; Ghosh, S. Remote Sensing and Climate Services Improve Irrigation Water Management at Farm Scale in Western-Central India. Sci. Total Environ. 2023, 879, 163003. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-H.; Petri, M.; Inthipunya, K.; Manivong, V.; Han, J.; Park, J.; Palao, L.K.; Phouthanoxay, S.; Keomanivong, S.; Silattana, S.; et al. Information and Communication Technology-Based Service Platform Enabling the Co-Creation of Agrometeorological Services: A Case Study of the Laos Climate Services for Agriculture. Clim. Serv. 2022, 27, 100316. [Google Scholar] [CrossRef]
- Brown, M.E.; Mugo, S.; Petersen, S.; Klauser, D. Designing a Pest and Disease Outbreak Warning System for Farmers, Agronomists and Agricultural Input Distributors in East Africa. Insects 2022, 13, 232. [Google Scholar] [CrossRef] [PubMed]
- Noar, R.D.; Jahant-Miller, C.J.; Emerine, S.; Hallberg, R. Early Warning Systems as a Component of Integrated Pest Management to Prevent the Introduction of Exotic Pests. J. Integr. Pest Manag. 2021, 12, 16. [Google Scholar] [CrossRef]
- Dong, Y.; Xu, F.; Liu, L.; Du, X.; Ren, B.; Guo, A.; Geng, Y.; Ruan, C.; Ye, H.; Huang, W.; et al. Automatic System for Crop Pest and Disease Dynamic Monitoring and Early Forecasting. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4410–4418. [Google Scholar] [CrossRef]
- von Schneidemesser, E.; Monks, P.S.; Allan, J.D.; Bruhwiler, L.; Forster, P.; Fowler, D.; Lauer, A.; Morgan, W.T.; Paasonen, P.; Righi, M.; et al. Chemistry and the Linkages between Air Quality and Climate Change. Chem. Rev. 2015, 115, 3856–3897. [Google Scholar] [CrossRef] [PubMed]
- Heeb, L.; Jenner, E.; Cock, M.J.W. Climate-Smart Pest Management: Building Resilience of Farms and Landscapes to Changing Pest Threats. J. Pest Sci. 2019, 92, 951–969. [Google Scholar] [CrossRef]
- Sutanto, S.J.; Paparrizos, S.; Kranjac-Berisavljevic, G.; Jamaldeen, B.M.; Issahaku, A.K.; Gandaa, B.Z.; Supit, I.; van Slobbe, E. The Role of Soil Moisture Information in Developing Robust Climate Services for Smallholder Farmers: Evidence from Ghana. Agronomy 2022, 12, 541. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; De Maeyer, P.; Van de Voorde, T.; Li, Y. Ecological Security Warning in Central Asia: Integrating Ecosystem Services Protection under SSPs-RCPs Scenarios. Sci. Total Environ. 2024, 912, 168698. [Google Scholar] [CrossRef] [PubMed]
- Jantke, K.; Müller, J.; Trapp, N.; Blanz, B. Is Climate-Smart Conservation Feasible in Europe? Spatial Relations of Protected Areas, Soil Carbon, and Land Values. Environ. Sci. Policy 2016, 57, 40–49. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.; Zhang, C. Impacts of Climate Change on Key Soil Ecosystem Services and Interactions in Central Asia. Ecol. Indic. 2020, 116, 106490. [Google Scholar] [CrossRef]
- Loboguerrero Rodriguez, A.M.; Hansen, J.; Baethgen, W.E.; Martínez Barón, D. Climate Services and Insurance: Scaling Climate Smart Agriculture. Agric. Dev. 2017, 30, 31–34. [Google Scholar]
- Madaki, M.Y.; Kaechele, H.; Bavorova, M. Agricultural Insurance as a Climate Risk Adaptation Strategy in Developing Countries: A Case of Nigeria. Clim. Policy 2023, 23, 747–762. [Google Scholar] [CrossRef]
- Eltazarov, S.; Bobojonov, I.; Kuhn, L.; Glauben, T. Mapping Weather Risk—A Multi-Indicator Analysis of Satellite-Based Weather Data for Agricultural Index Insurance Development in Semi-Arid and Arid Zones of Central Asia. Clim. Serv. 2021, 23, 100251. [Google Scholar] [CrossRef]
- Wairimu, E.; Obare, G.; Odendo, M. Factors Affecting Weather Index-Based Crop Insurance in Laikipia County, Kenya. J. Agric. Ext. Rural Dev. 2016, 8, 111–121. [Google Scholar]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-Smart Agriculture for Food Security. Nat. Clim. Change 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Okaka, W. Effectiveness of Local Community Policy Responses to Climate Change Impact on Ecosystem Services for Biodiversity Conservation in the Semi-Arid Zones. In Effectiveness of Local Community Policy Responses to Climate Change Impact on Ecosystem Services for Biodiversity Conservation in the Semi-Arid Zones; Karmaoui, A., Ed.; Advances in Environmental Engineering and Green Technologies (AEEGT); IGI Global USA: Hershey, PA, USA, 2019; pp. 304–315. ISBN 978-1-5225-7387-6. [Google Scholar]
- Campos, J.C.; Rodrigues, S.; Sil, Â.; Hermoso, V.; Freitas, T.R.; Santos, J.A.; Fernandes, P.M.; Azevedo, J.C.; Honrado, J.P.; Regos, A. Climate Regulation Ecosystem Services and Biodiversity Conservation Are Enhanced Differently by Climate- and Fire-Smart Landscape Management. Environ. Res. Lett. 2022, 17, 054014. [Google Scholar] [CrossRef]
- Sekabira, H.; Tepa-Yotto, G.T.; Djouaka, R.; Clottey, V.; Gaitu, C.; Tamò, M.; Kaweesa, Y.; Ddungu, S.P. Determinants for Deployment of Climate-Smart Integrated Pest Management Practices: A Meta-Analysis Approach. Agriculture 2022, 12, 1052. [Google Scholar] [CrossRef]
- Vedeld, T.; Mathur, M.; Bharti, N. How Can Co-Creation Improve the Engagement of Farmers in Weather and Climate Services (WCS) in India. Clim. Serv. 2019, 15, 100103. [Google Scholar] [CrossRef]
- Gangopadhyay, P.K.; Khatri-Chhetri, A.; Shirsath, P.B.; Aggarwal, P.K. Spatial Targeting of ICT-Based Weather and Agro-Advisory Services for Climate Risk Management in Agriculture. Clim. Change 2019, 154, 241–256. [Google Scholar] [CrossRef]
- Raj, S.; Garlapati, S. Extension and Advisory Services for Climate-Smart Agriculture. In Global Climate Change: Resilient and Smart Agriculture; Venkatramanan, V., Shah, S., Prasad, R., Eds.; Springer: Singapore, 2020; pp. 273–299. ISBN 978-9-81329-856-9_13. [Google Scholar]
- Rupan, R.; Saravanan, R.; Suchiradipta, B. Climate Smart Agriculture and Advisory Services: Approaches and Implications for Future; Discussion Paper 1, MANAGE-Centre for Agricultural Extension Innovations, Reforms and Agripreneurship (CAEIRA); National Institute of Agricultural Extension Management (MANAGE): Hyderabad, India, 2018; pp. 1–42.
- Kamruzzaman, M.; Daniell, K.A.; Chowdhury, A.; Crimp, S.; James, H. How Can Agricultural Extension and Rural Advisory Services Support Agricultural Innovation to Adapt to Climate Change in the Agriculture Sector? Adv. Agric. Dev. 2020, 1, 48–62. [Google Scholar] [CrossRef]
- Terrado, M.; Calvo, L.; Bojovic, D.; Christel, I. Current Practice in Climate Service Visualization: Taking the Pulse of the Providers’ Community. Bull. Am. Meteorol. Soc. 2022, 103, E828–E837. [Google Scholar] [CrossRef]
- Christel, I.; Hemment, D.; Bojovic, D.; Cucchietti, F.; Calvo, L.; Stefaner, M.; Buontempo, C. Introducing Design in the Development of Effective Climate Services. Clim. Serv. 2018, 9, 111–121. [Google Scholar] [CrossRef]
- Buontempo, C.; Hutjes, R.; Beavis, P.; Berckmans, J.; Cagnazzo, C.; Vamborg, F.; Thépaut, J.-N.; Bergeron, C.; Almond, S.; Amici, A.; et al. Fostering the Development of Climate Services through Copernicus Climate Change Service (C3S) for Agriculture Applications. Weather Clim. Extremes 2020, 27, 100226. [Google Scholar] [CrossRef]
- Blundo-Canto, G.; Andrieu, N.; Soule Adam, N.; Ndiaye, O.; Chiputwa, B. Scaling Weather and Climate Services for Agriculture in Senegal: Evaluating Systemic but Overlooked Effects. Clim. Serv. 2021, 22, 100216. [Google Scholar] [CrossRef]
- Tran, Q.Q.; Swaans, C.P.M.; Simelton, E.; Imbach, P.; Pham, T.; Tam, L.T.; Clausen, P.; Yen, T.N.; Tran, M.H.; Barlis, A. Scaling Climate Services for Agriculture in the Global South: An Assessment of Practitioners’ Needs; CGIAR Research Program on Climate Change, Agriculture and Food Security: Hanoi, Vietnam, 2020. [Google Scholar]
- Ceglar, A.; Toreti, A.; Zampieri, M.; Manstretta, V.; Bettati, T.; Bratu, M. Clisagri: An R Package for Agro-Climate Services. Clim. Serv. 2020, 20, 100197. [Google Scholar] [CrossRef] [PubMed]
- Czernecki, B.; Głogowski, A.; Nowosad, J. Climate: An R Package to Access Free In-Situ Meteorological and Hydrological Datasets For Environmental Assessment. Sustainability 2020, 12, 394. [Google Scholar] [CrossRef]
- Pérez-Zanón, N.; Caron, L.-P.; Terzago, S.; Van Schaeybroeck, B.; Lledó, L.; Manubens, N.; Roulin, E.; Alvarez-Castro, M.C.; Batté, L.; Bretonnière, P.-A.; et al. Climate Services Toolbox (CSTools) v4.0: From Climate Forecasts to Climate Forecast Information. Geosci. Model Dev. 2022, 15, 6115–6142. [Google Scholar] [CrossRef]
- Pérez-Zanón, N.; Ho, A.-C.; Chou, C.; Lledó, L.; Marcos-Matamoros, R.; Rifà, E.; González-Reviriego, N. CSIndicators: Get Tailored Climate Indicators for Applications in Your Sector. Clim. Serv. 2023, 30, 100393. [Google Scholar] [CrossRef]
- Hall, K.J.C.; Acharya, N. XCast: A Python Climate Forecasting Toolkit. Front. Clim. 2022, 4, 953262. [Google Scholar] [CrossRef]
- Bourgault, P.; Huard, D.; Smith, T.J.; Logan, T.; Aoun, A.; Lavoie, J.; Dupuis, É.; Rondeau-Genesse, G.; Alegre, R.; Barnes, C.; et al. Xclim: Xarray-Based Climate Data Analytics. J. Open Source Softw. 2023, 8, 5415. [Google Scholar] [CrossRef]
- Buontempo, C.; Burgess, S.N.; Dee, D.; Pinty, B.; Thépaut, J.-N.; Rixen, M.; Almond, S.; Armstrong, D.; Brookshaw, A.; Alos, A.L.; et al. The Copernicus Climate Change Service: Climate Science in Action. Bull. Am. Meteorol. Soc. 2022, 103, E2669–E2687. [Google Scholar] [CrossRef]
- Preuschmann, S.; Hänsler, A.; Kotova, L.; Dürk, N.; Eibner, W.; Waidhofer, C.; Haselberger, C.; Jacob, D. The IMPACT2C Web-Atlas–Conception, Organization and Aim of a Web-Based Climate Service Product. Clim. Serv. 2017, 7, 115–125. [Google Scholar] [CrossRef]
- Trendov, N.M. Digital Technologies in Agriculture and Rural Areas: Status Report; FAO: Rome, Italy, 2019; ISBN 978-92-5-131546-0. [Google Scholar]
- Meque, A.; Gamedze, S.; Moitlhobogi, T.; Booneeady, P.; Samuel, S.; Mpalang, L. Numerical Weather Prediction and Climate Modelling: Challenges and Opportunities for Improving Climate Services Delivery in Southern Africa. Clim. Serv. 2021, 23, 100243. [Google Scholar] [CrossRef]
- Cochrane, L.; Singh, R. Climate Services for Resilience: The Changing Roles of NGOs in Ethiopia Climate Services for Resilience; BRACED Knowledge Management: Zaman Lebidi, Burkina Faso; London, UK, 2017; pp. 1–33. [Google Scholar]
- Ofoegbu, C.; New, M. Evaluating the Effectiveness and Efficiency of Climate Information Communication in the African Agricultural Sector: A Systematic Analysis of Climate Services. Agriculture 2022, 12, 160. [Google Scholar] [CrossRef]
- Yaduraju, N.; Woodard, J.; Sylvester, G.; Narayan, A.; Eskandar, H. E-Agriculture Strategy Guide-Piloted in Asia-Pacific Countries; Food and Agriculture Organization of the United Nations (FAO) and International Telecommunication Union (ITU): Rome, Italy, 2016; ISBN 978-92-5-109186-9. [Google Scholar]
- Dinku, T.; Thomson, M.C.; Cousin, R.; del Corral, J.; Ceccato, P.; Hansen, J.; Connor, S.J. Enhancing National Climate Services (ENACTS) for Development in Africa. Clim. Dev. 2018, 10, 664–672. [Google Scholar] [CrossRef]
- Mapiye, O.; Makombe, G.; Molotsi, A.; Dzama, K.; Mapiye, C. Information and Communication Technologies (ICTs): The Potential for Enhancing the Dissemination of Agricultural Information and Services to Smallholder Farmers in Sub-Saharan Africa. Inf. Dev. 2023, 39, 638–658. [Google Scholar] [CrossRef]
- Pardoe, J.; Vincent, K.; Conway, D. How Do Staff Motivation and Workplace Environment Affect Capacity of Governments to Adapt to Climate Change in Developing Countries? Environ. Sci. Policy 2018, 90, 46–53. [Google Scholar] [CrossRef]
- Vincent, K.; Conway, D.; Dougill, A.J.; Pardoe, J.; Archer, E.; Bhave, A.G.; Henriksson, R.; Mittal, N.; Mkwambisi, D.; Rouhaud, E.; et al. Re-Balancing Climate Services to Inform Climate-Resilient Planning—A Conceptual Framework and Illustrations from Sub-Saharan Africa. Clim. Risk Manag. 2020, 29, 100242. [Google Scholar] [CrossRef]
- Kumar, U.; Werners, S.E.; Paparrizos, S.; Datta, D.K.; Ludwig, F. Co-Producing Climate Information Services with Smallholder Farmers in the Lower Bengal Delta: How Forecast Visualization and Communication Support Farmers’ Decision-Making. Clim. Risk Manag. 2021, 33, 100346. [Google Scholar] [CrossRef]
- Daly, M.; Dilling, L. The Politics of “Usable” Knowledge: Examining the Development of Climate Services in Tanzania. Clim. Change 2019, 157, 61–80. [Google Scholar] [CrossRef]
- Carr, E.R.; Fleming, G.; Kalala, T. Understanding Women’s Needs for Weather and Climate Information in Agrarian Settings: The Case of Ngetou Maleck, Senegal. Weather Clim. Soc. 2016, 8, 247–264. [Google Scholar] [CrossRef]
- Carr, E.R.; Goble, R.; Rosko, H.M.; Vaughan, C.; Hansen, J. Identifying Climate Information Services Users and Their Needs in Sub-Saharan Africa: A Review and Learning Agenda. Clim. Dev. 2020, 12, 23–41. [Google Scholar] [CrossRef]
CS Name | Short Description | Link |
---|---|---|
Copernicus (Climate Change) Services | The Copernicus infrastructure for climatic data dissemination. | https://www.copernicus.eu/en/copernicus-services/climate-change (accessed on 23 December 2023) |
European Flood Awareness System | The web-based system for preparatory measures before major flood events. | https://www.efas.eu/en (accessed on 23 December 2023 (accessed on 23 December 2023) |
The European Forest Fire Information System | A digital toolbox for the monitoring of forest fires. | https://effis.jrc.ec.europa.eu/ (accessed on 23 December 2023) |
The European Drought Observatory | The web-based drought-relevant information infrastructure. | https://edo.jrc.ec.europa.eu/edov2/ (accessed on 23 December 2023) |
My Climate View | A climate digital toolbox for the farmers of Australia. | https://myclimateview.com.au/ (accessed on 23 December 2023) |
BlightSpy | A climate service for the prediction of blight. | https://blightspy.huttonltd.com/ (accessed on 23 December 2023) |
CLIMALERT | Web-based climate services focused on sustainable water and agriculture. | https://jpi-climate.eu/project/climalert/ (accessed on 23 December 2023) |
Agrometeorological Indicators Explorer and Data Extractor | A repository of the agrometeorological data in a worldwide spatial scale. | https://cds.climate.copernicus.eu/cdsapp#!/software/app-agriculture-agera5-explorer-data-extractor?tab=app (accessed on 23 December 2023) |
U.S. Climate Resilience Toolkit | A web-based climate toolbox that helps people to build climate resilience in one easy-to-use location. | https://toolkit.climate.gov/ (accessed on 23 December 2023) |
U.S Drought Monitor | Digital map for drought monitoring on a weekly basis. | https://droughtmonitor.unl.edu/ (accessed on 23 December 2023) |
Climate in a Glance | A web page containing climatic data presented in maps, timeseries and tabular formats. | https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/ (accessed on 23 December 2023) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charalampopoulos, I.; Droulia, F. A Pathway towards Climate Services for the Agricultural Sector. Climate 2024, 12, 18. https://doi.org/10.3390/cli12020018
Charalampopoulos I, Droulia F. A Pathway towards Climate Services for the Agricultural Sector. Climate. 2024; 12(2):18. https://doi.org/10.3390/cli12020018
Chicago/Turabian StyleCharalampopoulos, Ioannis, and Fotoula Droulia. 2024. "A Pathway towards Climate Services for the Agricultural Sector" Climate 12, no. 2: 18. https://doi.org/10.3390/cli12020018
APA StyleCharalampopoulos, I., & Droulia, F. (2024). A Pathway towards Climate Services for the Agricultural Sector. Climate, 12(2), 18. https://doi.org/10.3390/cli12020018