The Impact of Meteorological Factors on Stroke Incidence in the Transdanubian Region of Hungary
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Characteristics
2.3. Meteorological Data
2.4. Statistical Analysis
2.5. Ethical Considerations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sacco, R.L.; Kasner, S.E.; Broderick, J.P.; Caplan, L.R.; Connors, J.J.; Culebras, A.; Elkind, M.S.; George, M.G.; Hamdan, A.D.; Higashida, R.T.; et al. An updated definition of stroke for the 21st century: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2013, 44, 2064–2089. [Google Scholar] [CrossRef] [PubMed]
- Coupland, A.P.; Thapar, A.; Qureshi, M.I.; Jenkins, H.; Davies, A.H. The definition of stroke. J. R. Soc. Med. 2017, 110, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Egészségügyi szakmai irányelv az akut ischaemiás stroke diagnosztikájáról és kezeléséről. Ideggyógyászati Szle. Proc. 2023, 8, 131–182.
- Global Burden of Disease Results. Available online: http://ghdx.healthdata.org/gbd-results-tool (accessed on 11 December 2023).
- GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef]
- Varga, D.; Perecz, B.; Sipos, A.; Jedlicska, D.; Pál, E. Az ischaemiás stroke kockázati tényezői 1-es típusú myotoniás dystrophiában. Orvosi Hetil. 2022, 163, 1585–1596. [Google Scholar] [CrossRef]
- Guzik, A.; Bushnell, C. Stroke Epidemiology and Risk Factor Management. Continuum 2017, 23, 15–39. [Google Scholar] [CrossRef]
- Visco, V.; Izzo, C.; Bonadies, D.; Di Feo, F.; Caliendo, G.; Loria, F.; Mancusi, C.; Chivasso, P.; Di Pietro, P.; Virtuoso, N.; et al. Interventions to Address Cardiovascular Risk in Obese Patients: Many Hands Make Light Work. J. Cardiovasc. Dev. Dis. 2023, 10, 327. [Google Scholar] [CrossRef] [PubMed]
- Fusz, K.; Kívés, Z.; Pakai, A.; Kutfej, N.; Deák, A.; Oláh, A. Health behavior, sleep quality and subjective health status among Hungarian nurses working varying shifts. Work 2021, 68, 171–180. [Google Scholar] [CrossRef]
- Fusz, K.; Pakai, A.; Kívés, Z.; Szunomár, S.; Regős, A.; Oláh, A. Munkarendek a hazai egészségügyi rendszerben, és az ápolók alvásminősége. Orvosi Hetil. 2016, 157, 379–384. [Google Scholar] [CrossRef]
- Venketasubramanian, N. Ischemic Stroke: New Insights from Risk Factors, Mechanisms and Outcomes. J. Cardiovasc. Dev. Dis. 2023, 10, 472. [Google Scholar] [CrossRef]
- Vaičiulis, V.; Jaakkola, J.J.K.; Radišauskas, R.; Tamošiūnas, A.; Lukšienė, D.; Ryti, N.R.I. Risk of ischemic and hemorrhagic stroke in relation to cold spells in four seasons. BMC Public Health 2023, 23, 554. [Google Scholar] [CrossRef] [PubMed]
- Körömi, Z.; Gergely Nagy, G. Az influenza mint a szív- és érrendszeri egészséget fenyegető veszély és a védőoltás szerepe a kockázatcsökkentésben. Orvosi Hetil. 2022, 163, 1585–1596. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Kim, J.H.; Kim, Y.H.; Wee, J.H.; Min, C.; Han, S.M.; Kim, S.; Choi, H.G. Short- and long-term exposure to air pollution increases the risk of stroke. Int. J. Stroke 2022, 17, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.; Ehrampoush, M.H. Meteorological correlates and AirQ+ health risk assessment of ambient fine particulate matter in Tehran, Iran. Environ. Res. 2019, 170, 141–150. [Google Scholar] [CrossRef]
- Cserép, Z.; Batiz, Á.; Székely, A. A szív-és érrendszeri betegségek és a pszichoszociális tényezők közötti összefüggések és a beavatkozási lehetőségek. Orvosi Hetil. 2023, 164, 411–419. [Google Scholar] [CrossRef]
- Folyovich, A.; Mátis, R.; Al-Muhanna, N.; Jarecsny, T.; Dudás, E.; Jánoska, D.; Pálosi, M.; Béres-Molnár, A.K.; Toldi, G. Christmas, acute ischemic stroke and stroke-related mortality in Hungary. Brain Behav. 2021, 11, e02104. [Google Scholar] [CrossRef]
- Onozuka, D.; Nishimura, K.; Hagihara, A. Full moon and traffic accident-related emergency ambulance transport: A nationwide case-crossover study. Sci. Total Environ. 2018, 644, 801–805. [Google Scholar] [CrossRef]
- Kmetty, Z.; Tomasovszky, Á.; Bozsonyi, K. Moon/sun-suicide. Rev. Environ. 2018, 33, 213–217. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, P.; Xia, X.; Wang, L.; Li, X. Temperature variability increases the onset risk of ischemic stroke: A 10-year study in Tianjin, China. Front. Neurol. 2023, 14, 1155987. [Google Scholar] [CrossRef]
- Jimenez-Conde, J.; Ois, A.; Gomis, M.; Rodriguez-Campello, A.; Cuadrado-Godia, E.; Subirana, I.; Roquer, J. Weather as a trigger of stroke. Daily meteorological factors and incidence of stroke subtypes. Cerebrovasc. Dis. 2008, 26, 348–354. [Google Scholar] [CrossRef]
- Sharif Nia, H.; Chan, Y.H.; Froelicher, E.S.; Pahlevan Sharif, S.; Yaghoobzadeh, A.; Jafari, A.; Goudarzian, A.H.; Pourkia, R.; Haghdoost, A.A.; Arefinia, F.; et al. Weather fluctuations: Predictive factors in the prevalence of acute coronary syndrome. Health Promot. Perspect. 2019, 9, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhou, M.; Li, M.; Yin, P.; Wang, B.; Pilot, E.; Liu, Y.; van der Hoek, W.; van Asten, L.; Krafft, T.; et al. Diurnal temperature range in relation to death from stroke in China. Environ. Res. 2018, 164, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Xu, Z.; Li, Y.; Xu, J.; Shan, H.; Feng, X.; Xie, Y.; Bian, K.; Qin, D. Seasonal variation of stroke incidence in Wujin, a city in southeast China. Health Sci. Rep. 2018, 1, e29. [Google Scholar] [CrossRef]
- Ertl, M.; Beck, C.; Kühlbach, B.; Hartmann, J.; Hammel, G.; Straub, A.; Giemsa, E.; Seubert, S.; Philipp, A.; Traidl-Hoffmann, C.; et al. New Insights into Weather and Stroke: Influences of Specific Air Masses and Temperature Changes on Stroke Incidence. Cerebrovasc. Dis. 2019, 47, 275–284. [Google Scholar] [CrossRef]
- A Klímaváltozás Hatásai, Következményei, és az Alkalmazkodás Lehetőségei. Available online: http://www.kothalo.hu/kiadvanyok/klima.pdf (accessed on 1 April 2023).
- Olisarova, V.; Kaas, J.; Staskova, V.; Bartlova, S.; Papp, K.; Nagorska, M.; Korucova, R.; Reifsnider, E. Health literacy and behavioral health factors in adults. Public Health 2021, 190, 75–81. [Google Scholar] [CrossRef]
- Kiss, E.; Balla, D.; Mester, T.; Fazekas, I. Implementation of climate change strategies in Hungary. Egypt. J. Soil Sci. 2018, 58, 443–455. [Google Scholar] [CrossRef]
- Németh, N.; Boncz, I.; Pakai, A.; Elmer, D.; Horváth, L.; Pónusz, R.; Csákvári, T.; Kívés, Z.; Horváth, I.G.; Endrei, D. Inequalities in premature mortality from ischaemic heart disease in the WHO European region. Central Eur. J. Public Health 2023, 31, 120–126. [Google Scholar] [CrossRef]
- The Burden of Stroke in Hungary. Available online: https://www.safestroke.eu/wp-content/uploads/2017/12/SAFE_STROKE_HUNGARY.pdf (accessed on 12 December 2023).
- A Lakónépesség nem, Vármegye és Régió Szerint, Január 1. Available online: https://www.ksh.hu/stadat_files/nep/hu/nep0034.html (accessed on 12 December 2023).
- Születéskor Várható Átlagos Élettartam, Átlagéletkor Nem, Vármegye és Régió Szerint. Available online: https://www.ksh.hu/stadat_files/nep/hu/nep0039.html (accessed on 4 July 2024).
- Pakai, A.; Kívés, Z. Research for Nurses. Part 2: Methods of sampling and data collection in health science research. A Hung. J. Nurs. Theory Pract. 2013, 26, 20–43. [Google Scholar]
- Guan, W.; Clay, S.J.; Sloan, G.J.; Pretlow, L.G. Effects of Barometric Pressure and Temperature on Acute Ischemic Stroke Hospitalization in Augusta, GA. Transl. Stroke Res. 2018, 10, 259–264. [Google Scholar] [CrossRef]
- Shimomura, R.; Hosomi, N.; Tsunematsu, M.; Mukai, T.; Sueda, Y.; Shimoe, Y.; Ohshita, T.; Torii, T.; Nezu, T.; Aoki, S.; et al. Warm Front Passage on the Previous Day Increased Ischemic Stroke Events. J. Stroke Cerebrovasc. Dis. 2019, 28, 1873–1878. [Google Scholar] [CrossRef]
- Danh, N.; Ho, C.; Ford, E.; Zhang, J.; Hong, H.; Reid, C.; Xu, D. Association between ambient temperature and stroke risk in high-risk populations: A systematic review. Front. Neurol. 2024, 14, 1323224. [Google Scholar] [CrossRef] [PubMed]
- Qian, K.; Sun, Q.; Li, Y.; Chen, J. Association of ambient temperature on acute ischemic stroke in Yancheng, China. BMC Public Health 2024, 24, 1879. [Google Scholar] [CrossRef]
- Helsper, M.; Agarwal, A.; Aker, A.; Herten, A.; Darkwah-Oppong, M.; Gembruch, O.; Deuschl, C.; Forsting, M.; Dammann, P.; Pierscianek, D.; et al. The Subarachnoid Hemorrhage-Weather Myth: A Long-Term Big Data and Deep Learning Analysis. Front. Neurol. 2021, 12, 653483. [Google Scholar] [CrossRef]
- Ikefuti, P.V.; Barrozo, L.V.; Braga, A.L.F. Mean air temperature as a risk factor for stroke mortality in São Paulo, Brazil. Int. J. Biometeorol. 2018, 62, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Breitner, S.; Zhang, S.; Huber, V.; Naumann, M.; Traidl-Hoffmann, C.; Hammel, G.; Peters, A.; Ertl, M.; Schneider, A. Nocturnal heat exposure and stroke risk. Eur. Hear. J. 2024, 45, 2158–2166. [Google Scholar] [CrossRef]
- Lewington, S.; Li, L.; Sherliker, P.; Guo, Y.; Millwood, I.; Bian, Z.; Whitlock, G.; Yang, L.; Collins, R.; Chen, J.; et al. Seasonal variation in blood pressure and its relationship with outdoor temperature in 10 diverse regions of China: The China Kadoorie Biobank. J. Hypertens. 2012, 30, 1383–1391. [Google Scholar] [CrossRef]
- Vaneckova, P.; Neville, G.; Tippett, V.; Aitken, P.; FitzGerald, G.; Tong, S. Do Biometeorological Indices Improve Modeling Outcomes of Heat-Related Mortality? Appl. Meteorol. Clim. 2011, 50, 1165–1176. [Google Scholar] [CrossRef]
- Reid, C.E.; Gamble, J.L. Aeroallergens, allergic disease, and climate change: Impacts and adaptation. EcoHealth 2009, 6, 458–470. [Google Scholar] [CrossRef]
- Kim, S.H.; Jang, J.Y. Correlations between climate change-related infectious diseases and meteorological factors in Korea. J. Prev. Med. Public Health 2010, 43, 436–444. [Google Scholar] [CrossRef]
- Gerstl, J.V.; Blitz, S.E.; Qu, Q.R.; Yearley, A.G.; Lassarén, P.; Lindberg, R.; Gupta, S.; Kappel, A.D.; Vicenty-Padilla, J.C.; Gaude, E.; et al. Global, Regional, and National Economic Consequences of Stroke. Stroke 2023, 54, 2380–2389. [Google Scholar] [CrossRef]
- Khatatbeh, H.; Al-Dwaikat, T.; Alfatafta, H.; Ali, A.M.; Pakai, A. Burnout, quality of life and perceived patient adverse events among paediatric nurses during the COVID-19 pandemic. J. Clin. Nurs. 2023, 32, 3874–3886. [Google Scholar] [CrossRef] [PubMed]
- Venketasubramanian, N.; Pokharkar, Y.; Chai, J.H.; Chen, C.L.H. Ischemic Stroke and Savings in Time to Achieve Functional Recovery: Experience from NeuroAiD. J. Cardiovasc. Dev. Dis. 2023, 10, 117. [Google Scholar] [CrossRef] [PubMed]
- Szabó, J.; Tóth, S.; Karamánné Pakai, A. Narrative Group Therapy for Alcohol Dependent Patients. Int. J. Ment. Health Addict. 2014, 12, 470–476. [Google Scholar] [CrossRef]
Subtype | Front Change | No Front Change | p | ||||
---|---|---|---|---|---|---|---|
Number of Cases (Mean per Day) | SD | Total Number of Cases | Number of Cases (Mean per Day) | SD | Total Number of Cases | ||
Spring (n = 466) | |||||||
Hemorrhagic (female) | 0.16 | 0.36 | 14 | 0.09 | 0.32 | 8 | 0.366 |
Hemorrhagic (male) | 0.12 | 0.36 | 11 | 0.14 | 0.35 | 13 | 0.858 |
Hemorrhagic (total) | 0.28 | 0.54 | 25 | 0.22 | 0.47 | 21 | 0.723 |
Ischemic (female) | 1.02 | 1.07 | 92 | 1.22 | 1.03 | 115 | 0.907 |
Ischemic (male) | 1.10 | 1.25 | 99 | 1.21 | 1.02 | 114 | 0.994 |
Ischemic (total) | 2.12 | 1.60 | 191 | 2.44 | 1.35 | 229 | 0.620 |
Total | 2.40 | 1.68 | 216 | 2.66 | 1.41 | 250 | 0.622 |
Summer (n = 445) | |||||||
Hemorrhagic (female) | 0.11 | 0.31 | 13 | 0.11 | 0.31 | 7 | 0.372 |
Hemorrhagic (male) | 0.12 | 0.33 | 14 | 0.14 | 0.35 | 9 | 0.133 |
Hemorrhagic (total) | 0.23 | 0.46 | 27 | 0.24 | 0.47 | 16 | 0.150 |
Ischemic (female) | 1.08 | 1.15 | 127 | 1.15 | 1.01 | 76 | 0.534 |
Ischemic (male) * | 1.12 | 1.06 | 132 | 1.02 | 0.90 | 67 | 0.016 |
Ischemic (total) * | 2.19 | 1.45 | 259 | 2.17 | 1.41 | 143 | 0.041 |
Total * | 2.42 | 1.57 | 286 | 2.41 | 1.56 | 159 | 0.022 |
Autumn (n = 445) | |||||||
Hemorrhagic (female) | 0.14 | 0.35 | 13 | 0.03 | 0.18 | 3 | 0.128 |
Hemorrhagic (male) | 0.11 | 0.31 | 10 | 0.20 | 0.50 | 17 | 0.700 |
Hemorrhagic (total) | 0.24 | 0.46 | 23 | 0.23 | 0.54 | 20 | 0.702 |
Ischemic (female) | 0.91 | 0.92 | 86 | 1.16 | 1.11 | 101 | 0.382 |
Ischemic (male) | 1.22 | 1.22 | 116 | 1.14 | 1.00 | 99 | 0.250 |
Ischemic (total) | 2.13 | 1.50 | 202 | 2.30 | 1.57 | 200 | 0.925 |
Total | 2.37 | 1.56 | 225 | 2.53 | 1.67 | 220 | 0.886 |
Winter (n = 406) | |||||||
Hemorrhagic (female) | 0.11 | 0.31 | 8 | 0.12 | 0.32 | 12 | 0.562 |
Hemorrhagic (male) | 0.20 | 0.43 | 15 | 0.11 | 0.31 | 11 | 0.495 |
Hemorrhagic (total) | 0.30 | 0.52 | 23 | 0.22 | 0.44 | 23 | 0.458 |
Ischemic (female) | 0.71 | 0.83 | 54 | 1.00 | 1.02 | 103 | 0.756 |
Ischemic (male) | 1.26 | 1.12 | 96 | 1.04 | 1.10 | 107 | 0.914 |
Ischemic (total) | 1.97 | 1.41 | 150 | 2.04 | 1.42 | 210 | 0.865 |
Total | 2.28 | 1.48 | 173 | 2.26 | 1.48 | 233 | 0.867 |
Independent Variables | Total | Ischemic | Hemorrhagic | ||||
---|---|---|---|---|---|---|---|
Exp(B) (95%CI) | p | Exp(B) (95%CI) | p | Exp(B) (95%CI) | p | ||
Season (ref: winter) | Spring | 1.359 (1.088–1.698) | 0.007 | 1.371 (1.084–1.734) | 0.009 | 1.296 (0.652–2.576) | 0.460 |
Summer | 1.590 (1.089–2.319) | 0.016 | 1.613 (1.082–2.404) | 0.019 | 1.444 (0.447–4.658) | 0.539 | |
Autumn | 1.365 (1.076–1.731) | 0.010 | 1.387 (1.079–1.784) | 0.011 | 1.193 (0.577–2.468) | 0.633 | |
Front (ref: no front) | Warm | 0.960 (0.832–1.108) | 0.575 | 0.944 (0.810–1.099) | 0.454 | 1.112 (0.724–1.706) | 0.628 |
Cold | 0.976 (0.831–1.145) | 0.763 | 0.968 (0.818–1.146) | 0.709 | 1.052 (0.634–1.745) | 0.844 | |
Mixed | 0.906 (0.775–1.059) | 0.216 | 0.922 (0.783–1.086) | 0.331 | 0.748 (0.437–1.279) | 0.288 | |
Mean daily temperature compared to seasonal average (ref: average) | Below average | 0.801 (0.661–0.971) | 0.024 | 0.778 (0.634–0.954) | 0.016 | 1.008 (0.571–1.779) | 0.978 |
Above average | 1.124 (0.953–1.324) | 0.164 | 1.111 (0.934–1.321) | 0.233 | 1.262 (0.751–2.120) | 0.379 | |
Front changed? (ref: yes) | 0.942 (0.850–1.045) | 0.258 | 0.924 (0.829–1.030) | 0.155 | 1.125 (0.816–1.551) | 0.472 | |
Air pressure (hPa) | 1.002 (0.994–1.010) | 0.591 | 1.000 (0.992–1.008) | 0.990 | 1.020 (0.995–1.045) | 0.114 | |
Air pressure change from previous day (hPa) | 1.003 (0.992–1.013) | 0.624 | 1.002 (0.991–1.014) | 0.665 | 1.003 (0.970–1.037) | 0.847 | |
Wind speed (km/h) | 0.978 (0.915–1.044) | 0.499 | 0.953 (0.889–1.022) | 0.181 | 1.184 (0.973–1.441) | 0.092 | |
Precipitation (mm) | 1.009 (1.000–1.018) | 0.038 | 1.009 (0.999–1.018) | 0.068 | 1.014 (0.987–1.041) | 0.302 | |
Daily average temperature (°C) | 0.979 (0.963–0.997) | 0.020 | 0.979 (0.961–0.997) | 0.024 | 0.983 (0.932–1.038) | 0.547 | |
Daily average temperature change from previous day (°C) | 1.029 (1.005–1.054) | 0.017 | 1.035 (1.010–1.062) | 0.007 | 0.982 (0.912–1.057) | 0.627 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horváth, L.; Verzár, Z.; Csákvári, T.; Szapáry, L.; Domján, P.; Bálint, C.; Khatatbeh, H.; Ali, A.M.; Pakai, A. The Impact of Meteorological Factors on Stroke Incidence in the Transdanubian Region of Hungary. Climate 2024, 12, 160. https://doi.org/10.3390/cli12100160
Horváth L, Verzár Z, Csákvári T, Szapáry L, Domján P, Bálint C, Khatatbeh H, Ali AM, Pakai A. The Impact of Meteorological Factors on Stroke Incidence in the Transdanubian Region of Hungary. Climate. 2024; 12(10):160. https://doi.org/10.3390/cli12100160
Chicago/Turabian StyleHorváth, László, Zsófia Verzár, Tímea Csákvári, László Szapáry, Péter Domján, Csaba Bálint, Haitham Khatatbeh, Amira Mohammed Ali, and Annamária Pakai. 2024. "The Impact of Meteorological Factors on Stroke Incidence in the Transdanubian Region of Hungary" Climate 12, no. 10: 160. https://doi.org/10.3390/cli12100160
APA StyleHorváth, L., Verzár, Z., Csákvári, T., Szapáry, L., Domján, P., Bálint, C., Khatatbeh, H., Ali, A. M., & Pakai, A. (2024). The Impact of Meteorological Factors on Stroke Incidence in the Transdanubian Region of Hungary. Climate, 12(10), 160. https://doi.org/10.3390/cli12100160