Climate Change Perception and Vulnerability Assessment of the Farming Communities in the Southwest Parts of Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Descriptions
2.2. Study Design
2.2.1. Sampling Procedure and Sample Size
2.2.2. Household Perceptions of Climate Change
2.2.3. Livelihood Vulnerability Index Analysis
3. Results and Discussion
3.1. Sociodemographic Variables
3.2. Farming Communities’ Perceptions of Climate Change
3.3. Indicator of Household Vulnerability to Climate Change
3.3.1. Natural Capital
3.3.2. Social Capital
3.3.3. Financial Capital
3.3.4. Physical Capital
3.3.5. Human Capital
3.4. Household Vulnerability Based on Five Indicators
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naab, F.Z.; Abubakari, Z.; Ahmed, A. The role of climate services in agricultural productivity in Ghana: The perspectives of farmers and institutions. Clim. Serv. 2019, 13, 24–32. [Google Scholar] [CrossRef]
- Afuecheta, E.; Omar, M.H. Characterization of variability and trends in daily precipitation and temperature extremes in the Horn of Africa. Clim. Risk Manag. 2021, 32, 100295. [Google Scholar] [CrossRef]
- Alam, G.M.M.; Alam, K.; Mushtaq, S. Climate change perception and local adaptation strategies of hazard-prone rural households in Bangladesh. Clim. Risk Manag. 2017, 17, 52–63. [Google Scholar] [CrossRef]
- Thomas, D.S.G.; Twyman, C. Equity and Justice in Climate Change Adaptation amongst Natural Resource Dependent Societies. Glob. Environ. Chang. 2005, 15, 115–124. [Google Scholar] [CrossRef]
- Seaman, J.A.; Sawdon, G.E.; Acidri, J.; Petty, C. The Household Economy Approach. Managing the impact of climate change on poverty and food security in developing countries. Clim. Risk Manag. 2014, 4–5, 59–68. [Google Scholar] [CrossRef]
- Tol, R.S.J.; Downing, T.E.; Kuik, O.J.; Smith, J.B. Distributional Aspects of Climate Change Impacts. Glob. Environ. Chang. 2004, 14, 259–272. [Google Scholar] [CrossRef]
- Huq, S.; Reid, H.; Konate, M.; Rahman, A.; Sokona, Y.; Crick, F. Mainstreaming Adaptation to Climate Change in Least Developed Countries. Clim. Policy 2004, 4, 25–43. [Google Scholar] [CrossRef]
- Cairns, J.E.; Hellin, J.; Sonder, K.; Araus, J.L.; MacRobert, J.F.; Thierfelder, C.; Prasanna, B.M. Adapting maize production to climate change in sub-Saharan Africa. Food Secur. 2013, 5, 345–360. [Google Scholar] [CrossRef]
- Gemeda, D.O.; Sima, A.D. The impacts of climate change on African continent and the way forward. JENE 2015, 7, 256–262. [Google Scholar]
- Olayide, O.E.; Tetteh, I.K.; Popoola, L. Differential impacts of rainfall and irrigation on agricultural production in Nigeria: Any lessons for climate-smart agriculture? Agric. Water Manag. 2016, 178, 30–36. [Google Scholar] [CrossRef]
- Karimi, V.; Karami, E.; Keshavarz, M. Climate change and agriculture: Impacts and adaptive response in Iran. J. Integr. Agric. 2018, 17, 1–15. [Google Scholar] [CrossRef]
- Muema, E.; Mburu, J.; Coulibaly, J.; Mutune, J. Determinants of access and utilization of seasonal climate information services among smallholder farmers in Makueni Country, Kenya. Heliyon 2018, 4, e00889. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, N.; Arshad, M.; Kächele, H.; Shahzad, M.F.; Ullah, A.; Müller, K. Fatalism, climate resiliency training and farmers’ adaptation responses: Implications for sustainable rainfed-wheat production in Pakistan. Sustainability 2020, 12, 1650. [Google Scholar] [CrossRef]
- Mahmood, N.; Arshad, M.; Mehmood, Y.; Shahzad, M.F.; Kächele, H. Farmers’ perceptions and role of institutional arrangements in climate change adaptation: Insights from rainfed Pakistan. Clim. Risk Manag. 2021, 32, 100288. [Google Scholar] [CrossRef]
- Aparaku, A.; Morton, J.F.; Gyampoh, B.A. Climate change and small-scale agriculture in Africa: Does indigenous knowledge matter? Insights from Kenya and South Africa. Sci. Afr. 2021, 12, e00821. [Google Scholar] [CrossRef]
- Baarsch, F.; Granadillos, J.R.; Hare, W.; Knaus, M.; Krapp, M.; Schaeffer, M.; Lotze-Campen, H. Impact of climate change on incomes and convergence in Africa. World Dev. 2020, 126, 104699. [Google Scholar] [CrossRef]
- Gemeda, D.O.; Korecha, D.; Garedew, W. Evidences of climate change presences in the wettest parts of southwest Ethiopia. Heliyon 2021, 9, e08009. [Google Scholar] [CrossRef]
- Bewket, W. Climate Change Perceptions and Adaptive Responses of Smallholders Farmers in Central Highlands of Ethiopia. Int. J. Environ. Stud. 2012, 69, 507–523. [Google Scholar] [CrossRef]
- Alemayehu, A.; Bewket, W. Local climate variability and crop production in the central highlands of Ethiopia. Environ. Dev. 2016, 19, 36–48. [Google Scholar] [CrossRef]
- Paul, A.; Deka, J.; Gujre, N.; Rangan, L.; Mitra, S. Does nature of livelihood regulate the urban community’s vulnerability to climate change? Guwahati city, a case study from North East India. J. Environ. Manag. 2019, 251, 109591. [Google Scholar] [CrossRef]
- Heltberg, R.; Siegel, P.B.; Jorgensen, S.L. Addressing human vulnerability to climate change: Toward a ‘no-regrets’ approach. Glob. Environ. Chang. 2009, 19, 89–99. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the 4th Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Hahn, M.B.; Miederer, A.M.; Foster, S.O. The Livelihood Vulnerability Index: A pragmatic approach to assessing risks from climate variability and change- A case study in Mozambique. Glob. Environ. Chang. 2009, 19, 74–88. [Google Scholar] [CrossRef]
- Tonmoy, F.N.; El-Zein, A.; Hinkel, J. Assessment of Vulnerability to climate change using indicators: A meta-analysis of the literature. WIREs Clim. Chang. 2014, 5, 775–792. [Google Scholar] [CrossRef]
- Mohan, D.; Sinha, S. Assessing vulnerability to climate change in the Ganges Basin using a combined macro-and micro-level approach. Clim. Dev. 2015, 8, 312–323. [Google Scholar] [CrossRef]
- Pandey, R.; Jha, S.K.; Alatalo, J.M.; Archie, K.M.; Gupta, A.K. Sustainable livelihood framework-based indicators for assessing climate change vulnerability and adaptation for Himalayan communities. Ecol. Indic. 2017, 79, 338–346. [Google Scholar] [CrossRef]
- Gupta, A.K.; Negi, M.; Nandy, S.; Alatalo, J.M.; Singh, V.; Pandey, R. Assessing the vulnerability of socio-environmental systems to climate change along an altitude gradient in the Indian Himalayas. Ecol. Indic. 2019, 106, 105512. [Google Scholar] [CrossRef]
- Jamshidi, O.; Asadi, A.; Kalantari, K.; Azadi, H.; Scheffran, J. Vulnerability to climate change of smallholder farmers in the Hamadan province, Iran. Clim. Risk Manag. 2019, 23, 146–159. [Google Scholar] [CrossRef]
- Wichern, J.; Descheemaeker, K.; Giller, K.E.; Ebanyat, P.; Taulya, G.; van Wijk, M.T. Vulnerability and adaptation options to climate change for rural livelihoods-A country-wide analysis for Uganda. Agric. Syst. 2019, 176, 102663. [Google Scholar] [CrossRef]
- Omerkhil, N.; Chand, T.; Valente, D.; Alatalo, J.M.; Pandey, R. Climate change vulnerability and adaptation strategies for smallholder farmers in YangiQala District, Afghanistan. Ecol. Indic. 2020, 110, 105863. [Google Scholar] [CrossRef]
- Abdul-Razak, M.; Kruse, S. The adaptive capacity of smallholder farmers to climate change in the Northern Region of Ghana. Clim. Risk Manag. 2017, 17, 104–122. [Google Scholar] [CrossRef]
- Balaganesh, G.; Malhotra, R.; Sendhil, R.; Sirohi, S.; Maiti, S.; Ponnusamy, K.; Sharma, A.K. Development of composite vulnerability index and district level mapping of climate change induced drought in Tamil Nadu, India. Ecol. Indic. 2020, 113, 106197. [Google Scholar] [CrossRef]
- Nur, I.; Shrestha, K.K. An Integrative Perspective on Community Vulnerability to Flooding in Cities of Developing countries. Procedia Eng. 2016, 198, 958–967. [Google Scholar] [CrossRef]
- Mekonnen, Z.; Woldeamanuel, T.; Kassa, H. Socio-ecological vulnerability to climate change/variability in central rift valet, Ethiopia. Adv. Clim. Chang. Res. 2019, 10, 9–20. [Google Scholar] [CrossRef]
- Giri, S.; Lathrop, R.G.; Obropta, C.C. Climate change vulnerability assessment and adaptation strategies through best management Practice. J. Hydrol. 2020, 580, 124311. [Google Scholar] [CrossRef]
- Dumenu, W.K.; Obeng, E.A. Climate change and rural communities in Ghana: Social vulnerability, impacts, adaptations and policy implications. Environ. Sci. Policy 2016, 55, 208–217. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, M.; Liu, D. Exposure, sensitivity, and social adaptive capacity related to climate change: Empirical research in China. CJPRE 2017, 17, 209–219. [Google Scholar] [CrossRef]
- Adu, D.T.; Kuwornu, J.K.M.; Anim-Somuah, H.; Sasaki, N. Application of livelihood vulnerability index in assessing smallholder maize farming households’ vulnerability to climate change in Brong-Ahafo region of Ghana. Kasetsart J. Soc. Sci. 2018, 39, 22–32. [Google Scholar] [CrossRef]
- Hoddinott, J.; Quisumbing, A. Methods for Micro-Econometric Risk and Vulnerability Assessments; International Food Policy Research Institute: Washington, DC, USA, 2003. [Google Scholar]
- Kaly, U.; Pratt, C. Environmental Vulnerability Index: Development and Provisional Indices and Profiles for Fiji, Samoa, Tuvalu and Vanuatu; Phase II Report for NZODA; SOPAC Technical Report; SOPAC: Sydney, Australia, 2000; p. 306. [Google Scholar]
- Huynh, L.T.M.; Stringer, L.C. Multi-scale assessment of social vulnerability to climate change: An empirical study in coastal Vietnam. Clim. Risk Manag. 2018, 20, 165–180. [Google Scholar] [CrossRef]
- Dumenu, W.K.; Tiamgne, X.T. Social vulnerability of smallholder farmers to climate change in Zambia: The applicability of social vulnerability index. SN Appl. Sci. 2020, 2, 436. [Google Scholar] [CrossRef]
- Jha, S.K.; Negi, A.K.; Alatalo, J.M.; Negi, R.S. Socio-ecological vulnerability and resilience of mountain communities residing in capital-constrained environments. Mitig. Adapt. Strateg. Glob. Chang. 2021, 26, 38. [Google Scholar] [CrossRef]
- Mihiratu, A.; Okoyo, E.C.; Lemma, T. Causes, indicators and impacts of climate change: Understanding the public discourse in Goat based agro-pastoral livelihoods zone, Ethiopia. Heliyon 2021, 7, e06529. [Google Scholar] [CrossRef] [PubMed]
- Wu, T. Quantifying coastal flood vulnerability for climate adaptation policy using principal component analysis. Ecol. Indic. 2021, 129, 108006. [Google Scholar] [CrossRef]
- Sarker, M.; Wu, M.; Alam, G.; Shouse, R. Livelihood vulnerability of riverine-island dwellers in the face of natural disasters in Banglades. Sustanability 2019, 11, 1623. [Google Scholar] [CrossRef]
- Singhal, A.; Jha, S.K. Can the approach of vulnerability assessment facilitate identification of suitable adaptation models for risk reduction? Int. J. Disaster Risk Reduct. 2021, 63, 102469. [Google Scholar] [CrossRef]
- Eshetu, G.; Johansson, T.; Garedew, W. Rainfall trend and variability analysis in Setema-Gatira area of Jimma, South-western Ethiopia. Afr. J. Agric. Res. 2016, 11, 3037–3045. [Google Scholar]
- Eshetu, G.; Johansson, T.; Garedew, W.; Yisahak, T. Climate variability and small-scale farmer adaptation strategy in Setema-Gatira area of Jimma, Southwestern Ethiopia. J. Agric. Biol. Environ. Stat. 2018, 4, 1–9. [Google Scholar] [CrossRef]
- Wedajo, G.K.; Muleta, M.K.; Gessesse, B.; Koriche, S.A. Spatiotemporal climate and vegetation greenness changes and their nexus for Dhidhessa River Basin, Ethiopia. Environ. Syst. Res. 2019, 8, 31. [Google Scholar] [CrossRef]
- Alemayehu, A.; Maru, M.; Bewket, W.; Assen, M. Spatiotemporal variability and trends in rainfall and temperature in Alwero watershed, western Ethiopia. Environ. Syst. Res. 2020, 9, 22. [Google Scholar] [CrossRef]
- Eshetu, G.; Johansson, T.; Garedew, W.; Yisahak, T. Determinants of smallholder farmers’ adaptation options to climate change in a coffee-based farming system of Southwest Ethiopia. Clim. Dev. 2020, 13, 318–325. [Google Scholar] [CrossRef]
- Gemeda, D.O.; Feyssa, H.; Garedew, W. Meteorological data trend analysis and local community perception towards climate change: A case study of Jimma city, Southwestern Ethiopia. Environ. Dev. Sustain. 2020, 23, 5885–5903. [Google Scholar] [CrossRef]
- Ethiopian Climate Resilent Green Economy: National Adaptation Plan (NAP) Implementation Roadmap. Environment, Forest and Climate Change Commission, Federal Democratic Republic of Ethiopia. Available online: https://napglobalnetwork.org/wp-content/uploads/2020/08/napgn-en-2020-Ethiopia-climate-resilient-green-economy-nap-roadmap.pdf (accessed on 25 September 2022).
- Central Statistical Agency (CSA). 2007. Available online: http://www.csa.gov.et/census-report/complete-report/census-2007?start=5 (accessed on 14 May 2020).
- Dessu, T.; Korecha, D.; Hunde, D.; Worku, A. Long-Term Land Use Land Cover Change in Urban Centers of Southwest Ethiopia from a Climate Change Perspective. Front. Clim. 2020, 2, 577169. [Google Scholar] [CrossRef]
- Tefera, D.R.; Sinkie, S.O.; Dak, D.W. Economic Burden of Malaria and Associated Factors among Rural Households in Chewaka District, Western Ethiopia. Clin. Econ. Outcomes Res. 2020, 12, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Abera, A.; Yirgu, T.; Uncha, A. Impact of resettlement scheme on vegetation cover and its implication on conservation in Chewaka district of Ethiopia. Environ. Syst. Res. 2020, 9, 2. [Google Scholar] [CrossRef]
- Östlund, U.; Kidd, L.; Wengström, Y.; Rowa-Dewar, N. Combining qualitative and quantitative research within mixed method research designs: A methodological review. Int. J. Nurs. Stud. 2011, 48, 369–383. [Google Scholar] [CrossRef] [PubMed]
- Strijker, D.; Bosworth, G.; Bouter, G. Research methods in rural studies: Qualitative, quantitative and mixed methods. J. Rural Stud. 2020, 78, 262–270. [Google Scholar] [CrossRef]
- Chambers, R.; Conway, G. Sustainable Rural Livelihoods: Practical Concepts for the 21st Century; Institute of Development Studies: Brighton, UK, 1992. [Google Scholar]
- Yamane, T. Statistics, An Introductory Analysis, 2nd ed.; Harper and Row: New York, NY, USA, 1967. [Google Scholar]
- Jick. Mixing qualitative and quantitative methods: Trangulation in action. Adm. Sci. Q. 1979, 24, 602–611. [Google Scholar] [CrossRef]
- Rossman, G.B.; Wilson, B.L. Numbers and Words: Combining Quantitative and Qualitative Methods in a Single Large-Scalee Study. Eval. Rev. 1985, 9, 627–643. [Google Scholar] [CrossRef]
- Sechrest, L.; Sidani, S. Quantitative and qualitative methods: Is There an Alternative? Eval. Program Plan. 1995, 18, 77–87. [Google Scholar] [CrossRef]
- Oleinik, A. Mixing quantitative and qualitative content analysis: Triangulation at work. Qual. Quant. 2011, 45, 859–873. [Google Scholar] [CrossRef]
- Fallucchi, F.; Ghattas, B.; Spielhaus, R.; De Luca, E.W. Digital Qualitative and Quantitative Analysis of Arabic Textbooks. Future Internet 2022, 14, 237. [Google Scholar] [CrossRef]
- Holsapple, C.W.; Joshi, K.D. Knowledge manipulation activities: Results of a Delphi study. Inf. Manag. 2002, 39, 477–490. [Google Scholar] [CrossRef]
- Lai, V.; Chung, W. Managing international data communications. Inf. Manag. 2002, 45, 89–93. [Google Scholar] [CrossRef]
- Okoli, C.; Pawlowski, S.D. The Delphi method as a research tool: An example, design considerations and applications. Inf. Manag. 2004, 42, 15–29. [Google Scholar] [CrossRef]
- Kim, B.-T.; Brown, C.L.; Kim, D.-H. Assessment on the vulnerability of Korean aquaculture to climate change. Mar. Policy 2019, 99, 111–122. [Google Scholar] [CrossRef]
- Singh, S. Farmer’s perception of climate change and adaptation decisions: A microlevel evidence from Bundelkhand Region, India. Ecol. Indic. 2020, 116, 106475. [Google Scholar] [CrossRef]
- Fahad, S.; Inayat, T.; Wang, J.; Dong, L.; Hu, G.; Khan, S.; Khan, A. Farmers’ awareness level and their perceptions of climate change: A case of Khyber Pakhtunkhwa province, Pakistan. Land Use Policy 2020, 96, 104669. [Google Scholar] [CrossRef]
- Liverpool-Tasie, L.S.O.; Pummel, H.; Tambo, J.A.; Olabisi, L.S.; Osuntade, O. Perception and exposure to climate events along agricultural value chains: Evidence from Nigeria. J. Environ. Manag. 2020, 264, 110430. [Google Scholar] [CrossRef] [PubMed]
- Dendir, Z.; Simane, B. Livelihood vulnerability to climate variability and change in different agroecological zones of Gurage Administrative Zone, Ethiopia. Prog. Disaster Sci. 2019, 3, 100035. [Google Scholar] [CrossRef]
- Mukherjee, N.; Siddique, G. Assessment of climate variability risks with applications of livelihood vulnerability indices. Environ. Dev. Sustain. 2019, 22, 5077–5103. [Google Scholar] [CrossRef]
- O’Brien, K.; Leichenko, R.; Kelkar, U.; Venema, H.; Aandahl, G.; Tompkins, H.; Javed, A.; Bhadwal, S.; Barg, S.; Nygaard, L.; et al. Mapping vulnerability to multiple stressors: Climate change and globalization in India. Glob. Environ. Chang. 2004, 14, 303–313. [Google Scholar] [CrossRef]
- Zurovec, O.; Cadro, S.; Sitaula, B.K. Quantitative Assessment of Vulnerability to Climate change in Rural Municipalities of Bosnia and Herzegovina. Sustainability 2017, 9, 1208. [Google Scholar] [CrossRef]
- Dhamija, V.; Shukla, R.; Gornott, C.; Joshi, P. Consistency in Vulnerability Assessment of Wheats to Climate Change-A District-Level Analysis in India. Sustainability 2020, 12, 8256. [Google Scholar] [CrossRef]
- Leis, J.-L.; Kienberger, S. Climate Risk and Vulnerability Assessment of Floods in Austria: Mapping Homogenous Regions, Hotspots and Typologies. Sustainability 2020, 12, 6458. [Google Scholar] [CrossRef]
- Deressa, T.T.; Hassan, R.M.; Ringler, C.; Alemu, T.; Yesuf, M. Determinants of Farmers’ choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Glob. Environ. Chang. 2009, 19, 248–255. [Google Scholar] [CrossRef]
- Ali, A.; Erenstein, O. Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim. Risk Manag. 2017, 16, 183–194. [Google Scholar] [CrossRef]
- Jha, C.K.; Gupta, V. Farmers perception and factors determining the adaptation decisions to cope with climate change: Evidence from rural India. Environ. Sustain. Indic. 2021, 10, 100112. [Google Scholar] [CrossRef]
- Hitayezu, P.; Wale, E.; Ortmann, G. Assessing farmers’ perceptions about climate change: A double-hurdle approach. Clim. Risk Manag. 2017, 17, 123–138. [Google Scholar] [CrossRef]
- Yegbemey, B.N.; Yabi, J.A.; Silvere, D.T.; Gantoli, G.; Senakpon, E.; Kokoye, H. Farmers’ decisions to adapt to climate change under various property rights: A case study of maize farming in northern Benin (West Africa). Land Use Policy 2013, 34, 168–175. [Google Scholar] [CrossRef]
- Patnaik, U.; Das, P.K. Do development interventions confer adaptive capacity? Insights from rural India. World Dev. 2017, 97, 298–312. [Google Scholar] [CrossRef]
- Central Statistical Agency (CSA). Household Population and Characteristics. 1999. Available online: https://dhsprogram.com/pubs/pdf/FR118/02Chapter02.pdf (accessed on 2 November 2021).
- World Bank Group. Age Dependency Ratio (% of Working-Age Population)-Ethiopia. 2019. Available online: https://data.worldbank.org/indicator/SP.POP.DPND?locations=ET (accessed on 2 November 2021).
- Gemeda, D.O.; Korecha, D.; Garedew, W. Determinants of climate change adaptation strategies and existing barriers in Southwestern parts of Ethiopia. Clim. Serv. 2023, 30, 100376. [Google Scholar] [CrossRef]
- Hartter, J.; Hamilton, L.C.; Boag, A.E.; Stevens, F.R.; Ducey, M.J.; Christoffersen, N.D.; Oester, P.T.; Palace, M.W. Does it matter if people think climate change is human caused? Clim. Serv. 2018, 10, 53–62. [Google Scholar] [CrossRef]
- Nkiruka, O.; Prasad, R.; Clement, O. Prediction of malaria incidence using climate variability and machine learning. Inform. Med. Unlocked 2021, 22, 100508. [Google Scholar] [CrossRef]
- Connolly-Boutin, L.; Smit, B. Climate change, food security, and livelihoods in sub-Saharan Africa. Reg. Environ. Chang. 2016, 16, 385–399. [Google Scholar] [CrossRef]
- Ha-Mim, N.M.; Hossain, M.Z.; Rahaman, K.R.; Mallick, B. Exploring vulnerability-Resilience-Livelihood Nexus in the Face of Climate Change: A Multi-Criteria Analysis for Mongla, Bangladesh. Sustainability 2020, 12, 7054. [Google Scholar] [CrossRef]
- Muhammed, S.M.K.; Reddy, M.R. Viability and practice of interest-free microfinance in the state of Kerala: An analytical study based on customers’ perceptions. IIMB Manag. Rev. 2019, 31, 350–367. [Google Scholar]
- Sam, A.S.; Abbas, A.; Padmaja, S.S.; Sathyan, A.R.; Vijayan, D.; Kächele, H.; Kumar, R.; Müller, K. Flood vulnerability and food security in eastern India: A threat to the achievement of the Sustainable Development Goals. Int. J. Disaster Risk Reduct. 2021, 66, 102589. [Google Scholar] [CrossRef]
- Dunford, R.; Harrison, P.A.; Jager, J.; Rounsevell, M.D.A.; Tinch, R. Exploring climate change vulnerability across sectors and scenarios using indicators of impacts and coping capacity. Clim. Chang. 2015, 128, 339–354. [Google Scholar] [CrossRef]
- Gabil, H.; Bensaid, B.; Tayachil, T.; Jamaldeen, F. The Need for Shari’ah-Compliant Awqaf Banks. J. Risks Financ. Manag. 2020, 13, 76. [Google Scholar] [CrossRef]
- Bunce, M.; Rosendo, S.; Brown, K. Perceptions of climate change, multiple stressors and livelihoods on marginal African costs. Environ. Dev. Sustain. 2010, 12, 407–440. [Google Scholar] [CrossRef]
- Thathsarani, U.S.; Gunaratne, L.H.P. Constructing and Index to Measure the Adaptive Capacity to Climate Change in Sri Lanka. Procedia Eng. 2018, 212, 278–285. [Google Scholar] [CrossRef]
- Sam, A.S.; Abbas, A.; Pasmaja, S.S.; Kaechele, H.; Kumar, R.; Muller, K. Linking Food Security with Household’s Adaptive Capacity and Drought Risk: Implications for Sustainable Rural Development. Soc. Indic. Res. 2018, 142, 363–365. [Google Scholar] [CrossRef]
- Egeh, A.A.; Dugsieh, O.; Erlandsson, K.; Osman, F. The views of Somali religious leaders on birt spacing-A qualitative study. Sex. Reprod. Healthc. 2019, 20, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Msoka, A.C.; Pallangyo, E.S.; Brownie, S.; Holroyd, E. My husband will love me more if I give birth to more children: Rural women’s perceptions and beliefs on family planning services utilization in a low resource setting. Int. J. Afr. Nurs. Sci. 2019, 10, 152–158. [Google Scholar] [CrossRef]
- Gemeda, D.O.; Korecha, D.; Garedew, W. Monitoring climate extremes using standardized evapotranspiration index and future projection of rainfall and temperature in the wettest parts of southwest Ethiopia. Environ. Chall. 2022, 7, 100517. [Google Scholar] [CrossRef]
Indicators of Climate Change | Perceived | Not Perceived | Chi-Square | p Value |
---|---|---|---|---|
Change in rainfall pattern | 75.6 | 24.4 | 37.14 | <0.001 ** |
Change in temperature pattern | 69.7 | 30.3 | 50.38 | <0.001 ** |
Occurrence of drought events | 41.6 | 58.4 | 5.76 | 0.016 * |
Recent drought occurrence | 33.7 | 66.3 | 17.83 | <0.001 ** |
Recent flood occurrence | 44.1 | 55.9 | 13.48 | 0.000 ** |
Recent flood frequency | 43.2 | 56.8 | 6.66 | 0.009 ** |
Occurrence of early rain | 53.2 | 46.8 | 16.27 | <0.001 ** |
Occurrence of late rain | 55.9 | 44.1 | 50.79 | <0.001 ** |
Taking action against climate change | 43.2 | 56.8 | 44.81 | <0.001 ** |
Crop loss due to rain deficit | 47.5 | 52.5 | 33.88 | <0.001 ** |
Food insecurity due to climate change | 49.3 | 50.7 | 22.65 | <0.001 ** |
Climate change affects human health | 47.7 | 52.3 | 17.18 | <0.001 ** |
Indicators of Household Vulnerability Index | Composite Index | |||
---|---|---|---|---|
Jimma Arjo | Bako Tibe | Chewaka | Sekoru | |
Availability of fertile land for agriculture | 0.45 | 0.62 | 0.76 | 0.94 |
Existence of water resources for irrigation | 0.58 | 0.77 | 0.73 | 0.82 |
Existence of grazing land for livestock | 0.19 | 0.76 | 0.68 | 0.83 |
Potable water for household | 0.57 | 0.47 | 0.61 | 0.67 |
Agricultural drought occurrence | 1.00 | 1.00 | 1.00 | 1.00 |
Climate suitability for agricultural production | 0.09 | 0.22 | 0.57 | 0.23 |
Rainfall deficit in the study area | 0.08 | 0.56 | 0.60 | 0.35 |
Floods hazardous | 0.12 | 0.68 | 0.70 | 0.45 |
Extreme cold occurrence | 0.08 | 0.46 | 0.70 | 0.69 |
Exposures to extreme high temperature | 0.10 | 0.74 | 0.56 | 0.74 |
Occurrence of late rain | 0.37 | 0.56 | 0.60 | 0.41 |
Occurrence of early rain | 0.36 | 0.61 | 0.66 | 0.40 |
Natural capital vulnerability index | 0.33 | 0.62 | 0.68 | 0.63 |
Indicators of Household Vulnerability Index | Composite Index | |||
---|---|---|---|---|
Jimma Arjo | Bako Tibe | Chewaka | Sekoru | |
Use of bank services | 0.62 | 0.73 | 0.40 | 0.51 |
Use of microcredit services | 0.61 | 0.44 | 0.40 | 0.83 |
Use of micro-saving services | 0.60 | 0.46 | 0.45 | 0.83 |
Borrow from financial organizations in the past | 0.38 | 0.46 | 0.66 | 0.79 |
Ability to purchase food in case of crop loss | 0.21 | 0.37 | 0.73 | 0.55 |
Off-farm income generation mechanisms | 0.69 | 0.56 | 0.79 | 0.55 |
Household income diversification | 0.50 | 0.62 | 0.63 | 0.51 |
Financial capital vulnerability index | 0.52 | 0.52 | 0.58 | 0.65 |
Indicators of Household Vulnerability Index | Composite Index | |||
---|---|---|---|---|
Jimma Arjo | Bako Tibe | Chewaka | Sekoru | |
Household land assets | 0.17 | 0.18 | 0.42 | 0.19 |
Cultivated farmland in hectare in hectare <1.5 | 0.52 | 0.71 | 0.41 | 0.59 |
Use of solar energy for cooking | 0.85 | 0.90 | 0.92 | 0.89 |
Use of agricultural farm machinery | 0.95 | 0.91 | 0.88 | 0.87 |
Modern irrigation infrastructure | 0.78 | 0.94 | 0.85 | 0.90 |
Access to health lefts within <1 km | 0.89 | 0.56 | 0.18 | 0.47 |
Access to electricity for cooking | 0.96 | 0.96 | 0.79 | 0.93 |
Access to road transport services | 0.42 | 0.17 | 0.53 | 0.07 |
Physical capital vulnerability index | 0.69 | 0.67 | 0.62 | 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gemeda, D.O.; Korecha, D.; Garedew, W. Climate Change Perception and Vulnerability Assessment of the Farming Communities in the Southwest Parts of Ethiopia. Climate 2023, 11, 183. https://doi.org/10.3390/cli11090183
Gemeda DO, Korecha D, Garedew W. Climate Change Perception and Vulnerability Assessment of the Farming Communities in the Southwest Parts of Ethiopia. Climate. 2023; 11(9):183. https://doi.org/10.3390/cli11090183
Chicago/Turabian StyleGemeda, Dessalegn Obsi, Diriba Korecha, and Weyessa Garedew. 2023. "Climate Change Perception and Vulnerability Assessment of the Farming Communities in the Southwest Parts of Ethiopia" Climate 11, no. 9: 183. https://doi.org/10.3390/cli11090183
APA StyleGemeda, D. O., Korecha, D., & Garedew, W. (2023). Climate Change Perception and Vulnerability Assessment of the Farming Communities in the Southwest Parts of Ethiopia. Climate, 11(9), 183. https://doi.org/10.3390/cli11090183