Trends and Patterns of Daily Maximum, Minimum and Mean Temperature in Brazil from 2000 to 2020
Abstract
:1. Introduction
2. Material and Methods
3. Results
3.1. Regional Analysis
3.2. Local Analysis
3.2.1. General Aspects
3.2.2. Temperature
3.2.3. Vapor Pressure Deficit and Evapotranspiration
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Midwest
Appendix A.1.1. Annual Temperatures
Appendix A.1.2. Annual VPD and ET 0
Appendix A.2. North
Appendix A.2.1. Annual Temperatures
Appendix A.2.2. Annual VPD and ET0
Appendix A.3. Northeast
Appendix A.3.1. Annual Temperatures
Appendix A.3.2. Annual VPD and ET0
Appendix A.4. Southeast
Appendix A.4.1. Annual Temperatures
Appendix A.4.2. Annual VPD and ET0
Appendix A.5. South
Appendix A.5.1. Annual Temperatures
Appendix A.5.2. Annual VPD and ET0
References
- Farooqi, T.J.A.; Irfan, M.; Portela, R.; Zhou, X.; Shulin, P.; Ali, A. Global progress in climate change and biodiversity conservation research. Glob. Ecol. Conserv. 2022, 38, e02272. [Google Scholar] [CrossRef]
- Guo, H.; Xia, Y.; Jin, J.; Pan, C. The impact of climate change on the efficiency of agricultural production in the world’s main agricultural regions. Environ. Impact Assess. Rev. 2022, 97, 106891. [Google Scholar] [CrossRef]
- Vilanova, R.S.; Delgado, R.C.; Frossard de Andrade, C.; Lopes dos Santos, G.; Magistrali, I.C.; Moreira de Oliveira, C.M.; Teodoro, P.E.; Capristo Silva, G.F.; da Silva Junior, C.A.; de Ávila Rodrigues, R. Vegetation degradation in ENSO events: Drought assessment, soil use and vegetation evapotranspiration in the Western Brazilian Amazon. Remote Sens. Appl. Soc. Environ. 2021, 23, 100531. [Google Scholar] [CrossRef]
- Guimarães Nobre, G.; Muis, S.; Veldkamp, T.I.; Ward, P.J. Achieving the reduction of disaster risk by better predicting impacts of El Niño and La Niña. Prog. Disaster Sci. 2019, 2, 100022. [Google Scholar] [CrossRef]
- Chiang, F.; Mazdiyasni, O.; AghaKouchak, A. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nat. Commun. 2021, 12, 2754. [Google Scholar] [CrossRef]
- Almagro, A.; Oliveira, P.T.S.; Rosolem, R.; Hagemann, S.; Nobre, C.A. Performance evaluation of Eta/HadGEM2-ES and Eta/MIROC5 precipitation simulations over Brazil. Atmos. Res. 2020, 244, 105053. [Google Scholar] [CrossRef]
- Siqueira, P.P.; Oliveira, P.T.S.; Bressiani, D.; Meira Neto, A.A.; Rodrigues, D.B. Effects of climate and land cover changes on water availability in a Brazilian Cerrado basin. J. Hydrol. Reg. Stud. 2021, 37, 100931. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, A.; Trenberth, K. Climate Change and Drought: A Perspective on Drought Indices. Curr. Clim. Chang. Rep. 2018, 4, 145–163. [Google Scholar] [CrossRef]
- Ndayiragije, J.; Li, F. Effectiveness of Drought Indices in the Assessment of Different Types of Droughts, Managing and Mitigating Their Effects. Climate 2022, 10, 125. [Google Scholar] [CrossRef]
- Yihdego, Y.; Vaheddoost, B.; Al-Weshah, R.A. Drought indices and indicators revisited. Arab. J. Geosci. 2019, 12, 69. [Google Scholar] [CrossRef]
- Grossiord, C.; Buckley, T.N.; Cernusak, L.A.; Novick, K.A.; Poulter, B.; Siegwolf, R.T.W.; Sperry, J.S.; McDowell, N.G. Plant responses to rising vapor pressure deficit. New Phytol. 2020, 226, 1550–1566. [Google Scholar] [CrossRef] [Green Version]
- Massmann, A.; Gentine, P.; Lin, C. When Does Vapor Pressure Deficit Drive or Reduce Evapotranspiration? Journal of Advances in Modeling Earth Systems. J. Adv. Model. Earth Syst. 2019, 11, 3305–3320. [Google Scholar] [CrossRef] [Green Version]
- Dimitriadou, S.; Nikolakopoulos, K.G. Evapotranspiration Trends and Interactions in Light of the Anthropogenic Footprint and the Climate Crisis: A Review. Hydrology 2021, 8, 163. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, R.; Wen, Z.; Khalifa, M.; Zheng, C.; Ren, H.; Zhang, Z.; Wang, Z. Assessing the impacts of drought on net primary productivity of global land biomes in different climate zones. Ecol. Indic. 2021, 130, 108146. [Google Scholar] [CrossRef]
- Guauque-Mellado, D.; Rodrigues, A.; Terra, M.; Mantovani, V.; Yanagi, S.; Diotto, A.; de Mello, C. Evapotranspiration under Drought Conditions: The Case Study of a Seasonally Dry Atlantic Forest. Atmosphere 2022, 13, 871. [Google Scholar] [CrossRef]
- Moura, M.M.; dos Santos, A.R.; Pezzopane, J.E.M.; Alexandre, R.S.; da Silva, S.F.; Pimentel, S.M.; de Andrade, M.S.S.; Silva, F.G.R.; Branco, E.R.F.; Moreira, T.R.; et al. Relation of El Niño and La Niña phenomena to precipitation, evapotranspiration and temperature in the Amazon basin. Sci. Total Environ. 2019, 651, 1639–1651. [Google Scholar] [CrossRef]
- Chaddad, F.; Mello, F.A.; Tayebi, M.; Safanelli, J.L.; Campos, L.R.; Amorim, M.T.A.; Barbosa de Sousa, G.P.; Ferreira, T.O.; Ruiz, F.; Perlatti, F.; et al. Impact of mining-induced deforestation on soil surface temperature and carbon stocks: A case study using remote sensing in the Amazon rainforest. J. South Am. Earth Sci. 2022, 119, 103983. [Google Scholar] [CrossRef]
- Costa, R.L.; Macedo de Mello Baptista, G.; Gomes, H.B.; Daniel dos Santos Silva, F.; Lins da Rocha Júnior, R.; de Araújo Salvador, M.; Herdies, D.L. Analysis of climate extremes indices over northeast Brazil from 1961 to 2014. Weather. Clim. Extrem. 2020, 28, 100254. [Google Scholar] [CrossRef]
- da Silva, R.M.; Lopes, A.G.; Santos, C.A.G. Deforestation and fires in the Brazilian Amazon from 2001 to 2020: Impacts on rainfall variability and land surface temperature. J. Environ. Manag. 2023, 326, 116664. [Google Scholar] [CrossRef]
- Louzada, V.M.; de Melo Ribeiro, C.B. Impacts of land-use change on southeast Amazonia basin stream flow. Ambiente e Agua 2019, 14. [Google Scholar] [CrossRef]
- Ferreira Barbosa, M.L.; Delgado, R.C.; Forsad de Andrade, C.; Teodoro, P.E.; Silva Junior, C.A.; Wanderley, H.S.; Capristo-Silva, G.F. Recent trends in the fire dynamics in Brazilian Legal Amazon: Interaction between the ENSO phenomenon, climate and land use. Environ. Dev. 2021, 39, 100648. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Mattar, C.; Barichivich, J.; Santamaría-Artigas, A.; Takahashi, K.; Malhi, Y.; Sobrino, J.A.; Schrier, G.v.d. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 2016, 6, 33130. [Google Scholar] [CrossRef] [Green Version]
- Antongiovanni, M.; Venticinque, E.M.; Matsumoto, M.; Fonseca, C.R. Chronic anthropogenic disturbance on Caatinga dry forest fragments. J. Appl. Ecol. 2020, 57, 1–10. [Google Scholar] [CrossRef]
- Caballero, C.B.; Ruhoff, A.; Biggs, T. Land use and land cover changes and their impacts on surface-atmosphere interactions in Brazil: A systematic review. Sci. Total Environ. 2022, 808, 152134. [Google Scholar] [CrossRef]
- Marengo, J.A.; Souza, C.M., Jr.; Thonicke, K.; Burton, C.; Halladay, K.; Betts, R.A.; Alves, L.M.; Soares, W.R. Changes in climate and land use over the Amazon region: Current and future variability and trends. Front. Earth Sci. 2018, 6, 1–21. [Google Scholar] [CrossRef]
- Sampaio, G.; Borma, L.S.; Cardoso, M.; Alves, L.M.; von Randow, C.; Rodriguez, D.A.; Nobre, C.A.; Alexandre, F.F. Assessing the Possible Impacts of a 4 °C or Higher Warming in Amazonia. In Climate Change Risks in Brazil; Springer Publishing: Cham, Switzerland, 2019; pp. 201–218. [Google Scholar]
- Aragão, L.E.O.C.; Anderson, L.O.; Fonseca, M.G.; Rosan, T.M.; Vedovato, L.B.; Wagner, F.H.; Silva, C.V.J.; Junior, C.H.L.S.; Egidio Arai, A.P.A.; Barlow, J.; et al. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Salazar, A.; Baldi, G.; Hirota, M.; Syktus, J.; McAlpine, C. Land use and land cover change impacts on the regional climate of non-Amazonian South America: A review. Glob. Planet. Chang. 2015, 128, 103–119. [Google Scholar] [CrossRef]
- Leal, I.R.; da Silva, J.M.C.; Tabarelli, M.; Lacher, T.E. Changing the Course of Biodiversity Conservation in the Caatinga of Northeastern Brazil. Conserv. Biol. 2005, 19, 701–706. [Google Scholar] [CrossRef]
- Alkama, R.; Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 2016, 351, 600–604. [Google Scholar] [CrossRef] [Green Version]
- Bright, R.M.; Davin, E.; O’Halloran, T.; Pongratz, J.; Zhao, K.; Cescatti, A. Local temperature response to land cover and management change driven by non-radiative processes. Nat. Clim. Chang. 2017, 7, 296–302. [Google Scholar] [CrossRef]
- Keddy, P.A.; Fraser, L.H.; Solomeshch, A.I.; Junk, W.J.; Campbell, D.R.; Arroyo, M.T.K.; Alho, C.J.R. Wet and Wonderful: The World’s Largest Wetlands Are Conservation Priorities. BioScience 2009, 59, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Brasil, M.C.O.; de Magalhães Filho, R.; do Espírito-Santo, M.M.; Leite, M.E.; das Dores Magalhães Veloso, M.; Falcão, L.A.D. Land-cover changes and drivers of palm swamp degradation in southeastern Brazil from 1984 to 2018. Appl. Geogr. 2021, 137, 102604. [Google Scholar] [CrossRef]
- Fernandes, M.M.; de Moura Fernandes, M.R.; Garcia, J.R.; Matricardi, E.A.T.; de Souza Lima, A.H.; de Araújo Filho, R.N.; Filho, R.R.G.; Piscoya, V.C.; Piscoya, T.O.F.; Filho, M.C. Land use and land cover changes and carbon stock valuation in the São Francisco river basin, Brazil. Environ. Chall. 2021, 5, 100247. [Google Scholar] [CrossRef]
- Lucas, E.W.M.; de Assis Salviano de Sousa, F.; dos Santos Silva, F.D.; da Rocha Júnior, R.L.; Pinto, D.D.C.; de Paulo Rodrigues da Silva, V. Trends in climate extreme indices assessed in the Xingu river basin—Brazilian Amazon. Weather. Clim. Extrem. 2021, 31, 100306. [Google Scholar] [CrossRef]
- Ouyang, Y.; Wan, Y.; Jin, W.; Leininger, T.D.; Feng, G.; Han, Y. Impact of climate change on groundwater resource in a region with a fast depletion rate: The Mississippi Embayment. Water Clim. Chang. 2021, 12, 2245. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Soares, M.d.O. Effects of el niño on the coastal ecosystems and their related services. Mercator 2017, 16, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Liu, Z.; Zhu, J.; Cobb, K.M. A Review of Paleo El Niño-Southern Oscillation. Atmosphere 2018, 9, 130. [Google Scholar] [CrossRef] [Green Version]
North Region | Northeast Region | Midwest region | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | Tmax | Tavg | Tmin | VPD | ET0 | Tmax | Tavg | Tmin | VPD | ET0 | Tmax | Tavg | Tmin | VPD | ET0 |
2000 | 32.20 | 26.30 | 22.22 | 0.62 | 4.38 | 30.99 | 25.36 | 21.07 | 0.85 | 4.62 | 30.20 | 23.50 | 18.53 | 0.85 | 4.24 |
2001 | 32.52 | 26.54 | 22.41 | 0.63 | 4.46 | 31.75 | 25.82 | 21.23 | 1.01 | 5.02 | 30.50 | 23.69 | 18.62 | 0.88 | 4.33 |
2002 | 32.78 | 26.82 | 22.64 | 0.69 | 4.63 | 31.68 | 25.86 | 21.41 | 1.01 | 5.02 | 31.16 | 24.28 | 19.05 | 1.00 | 4.69 |
2003 | 32.75 | 26.88 | 22.77 | 0.70 | 4.66 | 31.89 | 26.09 | 21.58 | 1.05 | 5.15 | 30.40 | 23.62 | 18.59 | 0.90 | 4.35 |
2004 | 32.59 | 26.75 | 22.67 | 0.69 | 4.62 | 31.42 | 25.79 | 21.37 | 0.96 | 4.91 | 30.28 | 23.60 | 18.68 | 0.89 | 4.33 |
2005 | 33.19 | 27.13 | 22.92 | 0.77 | 4.85 | 31.77 | 26.10 | 21.64 | 1.02 | 5.10 | 30.59 | 23.80 | 18.85 | 0.92 | 4.43 |
2006 | 32.67 | 26.80 | 22.71 | 0.71 | 4.66 | 31.61 | 25.94 | 21.48 | 0.99 | 5.01 | 30.50 | 23.80 | 18.89 | 0.86 | 4.31 |
2007 | 32.87 | 26.88 | 22.60 | 0.75 | 4.76 | 31.68 | 25.93 | 21.27 | 1.06 | 5.13 | 31.38 | 24.24 | 18.78 | 1.05 | 4.77 |
2008 | 32.53 | 26.64 | 22.54 | 0.70 | 4.61 | 31.58 | 25.87 | 21.24 | 1.02 | 5.05 | 30.66 | 23.65 | 18.42 | 0.96 | 4.47 |
2009 | 32.85 | 27.11 | 23.06 | 0.71 | 4.73 | 31.62 | 26.01 | 21.62 | 0.94 | 4.93 | 30.79 | 23.96 | 19.04 | 0.86 | 4.35 |
2010 | 33.27 | 27.28 | 23.07 | 0.75 | 4.84 | 32.27 | 26.49 | 21.88 | 1.06 | 5.25 | 31.34 | 24.04 | 18.59 | 1.02 | 4.67 |
2011 | 32.66 | 26.77 | 22.66 | 0.69 | 4.61 | 31.48 | 25.80 | 21.29 | 0.94 | 4.88 | 30.62 | 23.66 | 18.46 | 0.93 | 4.42 |
2012 | 32.64 | 26.79 | 22.67 | 0.70 | 4.64 | 32.41 | 26.42 | 21.66 | 1.17 | 5.45 | 30.97 | 23.97 | 18.78 | 0.97 | 4.56 |
2013 | 32.66 | 26.94 | 22.99 | 0.68 | 4.64 | 32.17 | 26.46 | 21.89 | 1.10 | 5.31 | 30.72 | 23.90 | 18.87 | 0.89 | 4.40 |
2014 | 32.50 | 26.86 | 22.96 | 0.67 | 4.59 | 31.79 | 26.09 | 21.41 | 1.01 | 5.08 | 31.22 | 24.19 | 19.01 | 0.95 | 4.58 |
2015 | 33.17 | 27.35 | 23.24 | 0.77 | 4.89 | 32.66 | 26.67 | 21.76 | 1.17 | 5.49 | 31.86 | 24.62 | 19.19 | 1.00 | 4.76 |
2016 | 33.40 | 27.43 | 23.06 | 0.78 | 4.92 | 32.76 | 26.86 | 21.98 | 1.15 | 5.50 | 31.68 | 24.43 | 19.13 | 1.04 | 4.79 |
2017 | 32.95 | 27.11 | 22.99 | 0.73 | 4.76 | 32.07 | 26.38 | 21.69 | 1.06 | 5.23 | 31.59 | 24.48 | 19.30 | 1.00 | 4.72 |
2018 | 32.90 | 27.04 | 22.94 | 0.74 | 4.76 | 32.22 | 26.35 | 21.55 | 1.04 | 5.19 | 31.13 | 24.28 | 19.42 | 0.91 | 4.52 |
2019 | 32.95 | 27.20 | 23.10 | 0.70 | 4.73 | 32.45 | 26.53 | 21.65 | 1.03 | 5.20 | 31.70 | 24.62 | 19.45 | 1.06 | 4.87 |
2020 | 33.27 | 27.37 | 23.10 | 0.77 | 4.89 | 32.05 | 26.42 | 21.74 | 0.87 | 4.82 | 31.45 | 24.63 | 19.44 | 1.11 | 4.96 |
2000–2009 | 32.69 | 26.78 | 22.65 | 0.70 | 4.60 | 31.60 | 25.88 | 21.39 | 0.99 | 4.99 | 30.65 | 23.81 | 18.74 | 0.92 | 4.43 |
2010–2020 | 32.94 | 27.11 | 22.98 | 0.73 | 4.75 | 32.21 | 26.41 | 21.68 | 1.05 | 5.22 | 31.30 | 24.26 | 19.06 | 0.99 | 4.66 |
Southeast Region | South Region | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Year | Tmax | Tavg | Tmin | VPD | ET0 | Tmax | Tavg | Tmin | VPD | ET0 |
2000 | 28.69 | 22.53 | 18.00 | 0.76 | 3.77 | 24.02 | 17.94 | 13.55 | 0.57 | 2.54 |
2001 | 29.40 | 23.06 | 18.37 | 0.74 | 3.96 | 25.44 | 19.16 | 14.90 | 0.53 | 2.72 |
2002 | 29.62 | 23.23 | 18.70 | 0.74 | 3.98 | 24.99 | 19.11 | 14.85 | 0.55 | 2.76 |
2003 | 29.35 | 22.90 | 18.25 | 0.82 | 3.97 | 24.92 | 18.67 | 14.12 | 0.57 | 2.71 |
2004 | 28.28 | 22.29 | 17.95 | 0.67 | 3.65 | 24.69 | 18.42 | 13.76 | 0.59 | 2.69 |
2005 | 28.87 | 22.88 | 18.55 | 0.70 | 3.83 | 25.02 | 18.92 | 14.46 | 0.62 | 2.85 |
2006 | 28.93 | 22.63 | 18.05 | 0.72 | 3.78 | 25.27 | 18.89 | 14.24 | 0.62 | 2.83 |
2007 | 29.52 | 23.04 | 18.25 | 0.86 | 4.03 | 25.13 | 18.91 | 14.38 | 0.59 | 2.79 |
2008 | 28.85 | 22.49 | 17.93 | 0.79 | 3.79 | 24.42 | 18.25 | 13.75 | 0.55 | 2.57 |
2009 | 29.20 | 23.08 | 18.64 | 0.71 | 3.96 | 24.66 | 18.55 | 14.15 | 0.51 | 2.56 |
2010 | 29.43 | 22.95 | 18.13 | 0.80 | 3.96 | 23.64 | 18.10 | 14.08 | 0.48 | 2.42 |
2011 | 28.81 | 22.47 | 17.80 | 0.79 | 3.76 | 23.66 | 18.00 | 13.98 | 0.50 | 2.43 |
2012 | 29.43 | 23.02 | 18.32 | 0.78 | 4.03 | 24.78 | 18.90 | 14.67 | 0.57 | 2.75 |
2013 | 29.03 | 22.78 | 18.45 | 0.71 | 3.85 | 23.70 | 18.03 | 13.90 | 0.49 | 2.42 |
2014 | 29.79 | 23.27 | 18.46 | 0.88 | 4.19 | 24.72 | 19.14 | 15.18 | 0.51 | 2.69 |
2015 | 30.19 | 23.72 | 19.03 | 0.91 | 4.26 | 24.35 | 18.94 | 15.21 | 0.46 | 2.55 |
2016 | 30.11 | 23.54 | 18.82 | 0.89 | 4.21 | 23.68 | 18.08 | 14.09 | 0.50 | 2.45 |
2017 | 29.55 | 23.09 | 18.34 | 0.84 | 4.09 | 24.86 | 19.23 | 15.24 | 0.54 | 2.76 |
2018 | 29.51 | 23.12 | 18.47 | 0.75 | 4.08 | 24.58 | 18.95 | 14.89 | 0.52 | 2.66 |
2019 | 30.41 | 23.83 | 18.89 | 0.78 | 4.26 | 24.73 | 19.12 | 15.09 | 0.55 | 2.76 |
2020 | 30.10 | 23.81 | 19.17 | 0.65 | 4.18 | 24.73 | 18.73 | 14.25 | 0.61 | 2.80 |
2000–2009 | 29.07 | 22.81 | 18.27 | 0.75 | 3.87 | 24.85 | 18.68 | 14.22 | 0.569 | 2.70 |
2010–2020 | 29.67 | 23.24 | 18.53 | 0.80 | 4.08 | 24.31 | 18.66 | 14.60 | 0.521 | 2.61 |
Tmax | Tmean | Tmin | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Region | R | Intercept | Slope | RMSE | R | Intercept | Slope | RMSE | R | Intercept | Slope | RMSE |
North | 0.697 | 0 *** | 0.012 * | 5.369 | 0.512 | 0 *** | 0.0003 *** | 4.456 | 0.584 | 0 *** | 0.0001 *** | 4.106 |
Midwest | 0.424 | 0 *** | 0.0001 *** | 4.189 | 0.599 | 0 *** | 0 *** | 4.032 | 0.544 | 0 *** | 0.0001 *** | 4.297 |
Northeast | 0.5 | 0 *** | 0.0003 *** | 4.504 | 0.612 | 0 *** | 0 *** | 3.968 | 0.386 | 0 *** | 0.0027 ** | 4.99 |
Southeast | 0.264 | 0 *** | 0.0015 ** | 4.848 | 0.264 | 0 *** | 0.0021 ** | 4.923 | 0.142 | 0 *** | 0.0114 * | 5.355 |
South | 0.062 | 0 *** | 0.216 | 6.108 | 0.027 | 0 *** | 0.555 | 6.306 | 0.178 | 0 *** | 0.068 | 5.818 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curado, L.F.A.; de Paulo, S.R.; de Paulo, I.J.C.; de Oliveira Maionchi, D.; da Silva, H.J.A.; de Oliveira Costa, R.; da Silva, I.M.C.B.; Marques, J.B.; de Souza Lima, A.M.; Rodrigues, T.R. Trends and Patterns of Daily Maximum, Minimum and Mean Temperature in Brazil from 2000 to 2020. Climate 2023, 11, 168. https://doi.org/10.3390/cli11080168
Curado LFA, de Paulo SR, de Paulo IJC, de Oliveira Maionchi D, da Silva HJA, de Oliveira Costa R, da Silva IMCB, Marques JB, de Souza Lima AM, Rodrigues TR. Trends and Patterns of Daily Maximum, Minimum and Mean Temperature in Brazil from 2000 to 2020. Climate. 2023; 11(8):168. https://doi.org/10.3390/cli11080168
Chicago/Turabian StyleCurado, Leone Francisco Amorim, Sérgio Roberto de Paulo, Iramaia Jorge Cabral de Paulo, Daniela de Oliveira Maionchi, Haline Josefa Araujo da Silva, Rayanna de Oliveira Costa, Ian Maxime Cordeiro Barros da Silva, João Basso Marques, André Matheus de Souza Lima, and Thiago Rangel Rodrigues. 2023. "Trends and Patterns of Daily Maximum, Minimum and Mean Temperature in Brazil from 2000 to 2020" Climate 11, no. 8: 168. https://doi.org/10.3390/cli11080168
APA StyleCurado, L. F. A., de Paulo, S. R., de Paulo, I. J. C., de Oliveira Maionchi, D., da Silva, H. J. A., de Oliveira Costa, R., da Silva, I. M. C. B., Marques, J. B., de Souza Lima, A. M., & Rodrigues, T. R. (2023). Trends and Patterns of Daily Maximum, Minimum and Mean Temperature in Brazil from 2000 to 2020. Climate, 11(8), 168. https://doi.org/10.3390/cli11080168