The Drought Regime in Southern Africa: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Publications Identified with the PRISMA2020 Methodology
3.2. Literature Review
3.2.1. Drought Factors
3.2.2. Drought Indices
Indices | Studies | N (#) | n (%) |
---|---|---|---|
SPI | [24,29,33,41,45,48,51,56,58,71,72,73,74,75,76] | 15 | 28 |
SPEI | [24,33,41,44,52,53,55,56,57,58,65,68,74] | 13 | 25 |
SRI | [24,69,74] | 4 | 8 |
ENSO | [50,54,55,77] | 4 | 8 |
SOI | [47,48,56] | 3 | 6 |
3.2.3. Other Drought Assessment Methodologies
3.2.4. Drought Descriptors
3.2.5. Current Drought Regime
Number/Frequency
Duration
Severity
Spatial Extension
3.2.6. Drought Impacts
3.2.7. Future Drought Regime
3.2.8. Study Limitations and Final Considerations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018; pp. 3–24. ISBN 9781009157940. [Google Scholar]
- Lloyd-Hughes, B. The Impracticality of a Universal Drought Definition. Theor. Appl. Climatol. 2014, 117, 607–611. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Estrada, J.E.; Satoh, Y.; Sheffield, J. Spatiotemporal Dynamics of Global Drought. Geophys. Res. Lett. 2017, 2254–2263. [Google Scholar] [CrossRef] [Green Version]
- WMO; GWP. Handbook of Drought Indicators and Indices; Integrated Drought Management Tools and Guidelines Series 2; World Meteorological Organization: Geneva, Switzerland, 2016; Volume 1, pp. 1068–1069. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Mirchi, A.; Madani, K.; Di Baldassarre, G.; Nazemi, A.; Alborzi, A.; Anjileli, H.; Azarderakhsh, M.; Chiang, F.; Hassanzadeh, E.; et al. Anthropogenic Drought: Definition, Challenges, and Opportunities. Rev. Geophys. 2021, 59, e2019RG000683. [Google Scholar] [CrossRef]
- Parente, J.; Amraoui, M.; Menezes, I.; Pereira, M.G. Drought in Portugal: Current Regime, Comparison of Indices and Impacts on Extreme Wildfires. Sci. Total Environ. 2019, 685, 150–173. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, M.; Landmann, T.; Cornish, N.; Wetzel, K.F.; Siebert, S.; Franke, J. A Spatially Transferable Drought Hazard and Drought Risk Modeling Approach Based on Remote Sensing Data. Remote Sens. 2020, 12, 237. [Google Scholar] [CrossRef] [Green Version]
- Blauhut, V. The Triple Complexity of Drought Risk Analysis and Its Visualisation via Mapping: A Review across Scales and Sectors. Earth-Sci. Rev. 2020, 210, 103345. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Rhee, J.; Cho, J. Future Changes in Drought Characteristics: Regional Analysis for South Korea under CMIP5 Projections. J. Hydrometeorol. 2016, 17, 437–451. [Google Scholar] [CrossRef]
- Van Loon, A.F. Hydrological Drought Explained. Wiley Interdiscip. Rev. Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Carroll, C.J.W.; Slette, I.J.; Griffin-Nolan, R.J.; Baur, L.E.; Hoffman, A.M.; Denton, E.M.; Gray, J.E.; Post, A.K.; Johnston, M.K.; Yu, Q.; et al. Is a Drought a Drought in Grasslands? Productivity Responses to Different Types of Drought. Oecologia 2021, 197, 1017–1026. [Google Scholar] [CrossRef]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B., Barros, V., Stocker, T.F., Dahe, Q., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Pauline, K.J.M., Plattner, G.-K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; Volume 9781107025, 582p, ISBN 9781139177245. [Google Scholar]
- Mehran, A.; Mazdiyasni, O.; Aghakouchak, A. A Hybrid Framework for Assessing Socioeconomic Drought: Linking Climate Variability, Local Resilience, and Demand. J. Geophys. Res. Atmos. 2015, 175, 238. [Google Scholar] [CrossRef]
- Hoffmann, D.; Gallant, A.J.E.; Arblaster, J.M. Uncertainties in Drought from Index and Data Selection. J. Geophys. Res. Atmos. 2020, 125, e2019JD031946. [Google Scholar] [CrossRef]
- Paulo, A.A.; Rosa, R.D.; Pereira, L.S. Climate Trends and Behaviour of Drought Indices Based on Precipitation and Evapotranspiration in Portugal. Nat. Hazards Earth Syst. Sci. 2012, 12, 1481–1491. [Google Scholar] [CrossRef]
- Ramirez, S.G.; Hales, R.C.; Williams, G.P.; Jones, N.L. Extending SC-PDSI-PM with Neural Network Regression Using GLDAS Data and Permutation Feature Importance. Environ. Model. Softw. 2022, 157, 105475. [Google Scholar] [CrossRef]
- Dai, A. Global Palmer Drought Severity Index (PDSI).
- Xu, Y.; Wang, L.; Ross, K.W.; Liu, C.; Berry, K. Standardized Soil Moisture Index for Drought Monitoring Based on Soil Moisture Active Passive Observations and 36 Years of North American Land Data Assimilation System Data: A Case Study in the Southeast United States. Remote Sens. 2018, 10, 301. [Google Scholar] [CrossRef] [Green Version]
- Ali, Z.; Hussain, I.; Faisal, M.; Almanjahie, I.M.; Ahmad, I.; Khan, D.M.; Grzegorczyk, M.; Qamar, S. A Probabilistic Weighted Joint Aggregative Drought Index (PWJADI) Criterion for Drought Monitoring Systems. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2019, 71, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Gao, G.; An, W.; Zou, X.; Li, H.; Hou, M. Timescale Differences between SC-PDSI and SPEI for Drought Monitoring in China. Phys. Chem. Earth 2017, 102, 48–58. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Kamble, D.B.; Gautam, S.; Bisht, H.; Rawat, S.; Kundu, A. Drought Assessment for Kharif Rice Using Standardized Precipitation Index (SPI) and Vegetation Condition Index (VCI). J. Agrometeorol. 2019, 21, 182–187. [Google Scholar] [CrossRef]
- Lweendo, M.K.; Lu, B.; Wang, M.; Zhang, H.; Xu, W. Characterization of Droughts in Humid Subtropical Region, Upper Kafue River Basin (Southern Africa). Water 2017, 9, 242. [Google Scholar] [CrossRef] [Green Version]
- Paulo, A.A.; Pereira, L.S.; Matias, P.G. Analysis of Local and Regional Droughts in Southern Portugal Using the Theory of Runs and the Standardised Precipitation Index. In Tools for Drought Mitigation in Mediterranean Regions; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003; pp. 55–78. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M. Differences in Spatial Patterns of Drought on Different Time Scales: An Analysis of the Iberian Peninsula. Water Resour. Manag. 2006, 20, 37–60. [Google Scholar] [CrossRef]
- Svoboda, M.; Hayes, M.; Wood, D. Standardized Precipitation Index: User Guide; WMO-No.1090; World Meteworological Organization: Geneva, Switzerland, 2012; Volume 63, pp. 197–200. [Google Scholar]
- Singh, O.; Saini, D.; Bhardwaj, P. Characterization of Meteorological Drought over a Dryland Ecosystem in North Western India; Springer: Dordrecht, The Netherlands, 2021; Volume 109, ISBN 0123456789. [Google Scholar]
- Khan, M.Z.K.; Rahman, A.; Rahman, M.A.; Renzaho, A.M.N. Impact of Droughts on Child Mortality: A Case Study in Southern African Countries. Nat. Hazards 2021, 108, 2211–2224. [Google Scholar] [CrossRef]
- Wilhite, D.A. Drought as a Natural Hazard: Concepts and Definitions. In Droughts; Routledge: London, UK, 2021; p. 33. [Google Scholar] [CrossRef]
- Nam, W.H.; Hayes, M.J.; Svoboda, M.D.; Tadesse, T.; Wilhite, D.A. Drought Hazard Assessment in the Context of Climate Change for South Korea. Agric. Water Manag. 2015, 160, 106–117. [Google Scholar] [CrossRef]
- WMO. WMO Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2019); Weather Climate Water; WMO: Geneva, Switzerland, 2021; ISBN 9789263112675. [Google Scholar]
- Abiodun, B.J.; Makhanya, N.; Abatan, A.; Oguntunde, P.G. Future Projection of Droughts over Major River Basins in Southern Africa at Specific Global Warming Levels. Theor. Appl. Climatol. 2019, 137, 1785–1799. [Google Scholar] [CrossRef]
- Fasihi, S.; Lim, W.Z.; Wu, W.; Proverbs, D. Systematic Review of Flood and Drought Literature Based on Science Mapping and Content Analysis. Water 2021, 13, 2788. [Google Scholar] [CrossRef]
- Gautier, D.; Denis, D.; Locatelli, B. Impacts of Drought and Responses of Rural Populations in West Africa: A Systematic Review. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 666–681. [Google Scholar] [CrossRef]
- Hasan, H.H.; Fatin, S.; Razali, M.; Muhammad, N.S.; Ahmad, A. Research Trends of Hydrological Drought: A systematic review. Water 2019, 11, 2252. [Google Scholar] [CrossRef] [Green Version]
- Kamara, J.K.; Sahle, B.W.; Agho, K.E.; Renzaho, A.M.N. Governments’ Policy Response to Drought in Eswatini and Lesotho: A Systematic Review of the Characteristics, Comprehensiveness, and Quality of Existing Policies to Improve Community Resilience to Drought Hazards. Discret. Dyn. Nat. Soc. 2020, 2020, 3294614. [Google Scholar] [CrossRef]
- Lieber, M.; Chin-Hong, P.; Kelly, K.; Dandu, M.; Weiser, S.D. A Systematic Review and Meta-Analysis Assessing the Impact of Droughts, Flooding, and Climate Variability on Malnutrition. Glob. Public Health 2022, 17, 68–82. [Google Scholar] [CrossRef]
- Ngcamu, B.S.; Chari, F. Drought Influences on Food Insecurity in Africa: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 5897. [Google Scholar] [CrossRef]
- Seka, A.M.; Zhang, J.; Prodhan, F.A.; Ayele, G.T.; Finsa, M.M.; Sharma, T.P.P.; Melesse, A.M. Hydrological Drought Impacts on Water Storage Variations: A Focus on the Role of Vegetation Changes in the East Africa Region. A Systematic Review. Environ. Sci. Pollut. Res. 2022, 29, 80237–80256. [Google Scholar] [CrossRef] [PubMed]
- Coughlan de Perez, E.; Fuentes, I.; Jack, C.; Kruczkiewicz, A.; Pinto, I.; Stephens, E. Different Types of Drought under Climate Change or Geoengineering: Systematic Review of Societal Implications. Front. Clim. 2022, 4, 959519. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Limones, N.; Marzo-Artigas, J.; Wijnen, M. Evaluating Drought Risk in Data-Scarce Contexts. The Case of Southern Angola. J. Water Clim. Chang. 2020, 11, 44–67. [Google Scholar] [CrossRef]
- Luetkemeier, R.; Stein, L.; Drees, L.; Liehr, S. Blended Drought Index: Integrated Drought Hazard Assessment in the Cuvelai-Basin. Climate 2017, 5, 51. [Google Scholar] [CrossRef] [Green Version]
- Rouault, M.; Richard, Y. Intensity and Spatial Extent of Droughts in Southern Africa. Geophys. Res. Lett. 2005, 32, 2–5. [Google Scholar] [CrossRef]
- Funk, C.; Davenport, F.; Harrison, L.; Magadzire, T.; Galu, G.; Artan, G.A.; Shukla, S.; Korecha, D.; Indeje, M.; Pomposi, C.; et al. Anthropogenic Enhancement of Moderate-to-Strong El Niño Events Likely Contributed to Drought and Poor Harvests in Southern Africa during 2016. Bull. Am. Meteorol. Soc. 2018, 99, S91–S96. [Google Scholar] [CrossRef] [Green Version]
- Blamey, R.C.; Kolusu, S.R.; Mahlalela, P.; Todd, M.C.; Reason, C.J.C. The Role of Regional Circulation Features in Regulating El Niño Climate Impacts over Southern Africa: A Comparison of the 2015/2016 Drought with Previous Events. Int. J. Climatol. 2018, 38, 4276–4295. [Google Scholar] [CrossRef] [Green Version]
- Marumbwa, F.M.; Cho, M.A.; Chirwa, P.W. An Assessment of Remote Sensing-Based Drought Index over Different Land Cover Types in Southern Africa. Int. J. Remote Sens. 2020, 41, 1–15. [Google Scholar] [CrossRef]
- Marumbwa, F.M.; Cho, M.A.; Chirwa, P.W. Geospatial Analysis of Meteorological Drought Impact on Southern Africa Biomes. Int. J. Remote Sens. 2021, 42, 2155–2173. [Google Scholar] [CrossRef]
- Ambeje, P.G. Regional Drought Monitoring Centres—The Case of Eastern and Southern Africa. In Early Warning Systems for Drought Preparedness and Drought Management, Proceedings of the Expert Group Meeting, Lisbon, Portugal, 5–7 September 2000; Wilhite, D.A., Sivakumar, M.V.K., Wood, D.A., Ambenje, P.G., Eds.; World Meteorological Organization: Geneva, Switzerland, 2000; p. 147. ISBN 2013206534. [Google Scholar]
- Ujeneza, E.L.; Abiodun, B.J. Drought Regimes in Southern Africa and How Well GCMs Simulate Them. Clim. Dyn. 2015, 44, 1595–1609. [Google Scholar] [CrossRef]
- Manatsa, D.; Mushore, T.; Lenouo, A. Improved Predictability of Droughts over Southern Africa Using the Standardized Precipitation Evapotranspiration Index and ENSO. Theor. Appl. Climatol. 2017, 127, 259–274. [Google Scholar] [CrossRef]
- Gore, M.; Abiodun, B.J.; Kucharski, F. Understanding the Influence of ENSO Patterns on Drought over Southern Africa Using SPEEDY. Clim. Dyn. 2020, 54, 307–327. [Google Scholar] [CrossRef]
- Milgroom, J.; Giller, K.E. Courting the Rain: Rethinking Seasonality and Adaptation to Recurrent Drought in Semi-Arid Southern Africa. Agric. Syst. 2013, 118, 91–104. [Google Scholar] [CrossRef]
- Richard, Y.; Fauchereau, N.; Poccard, I.; Rouault, M.; Trzaska, S. 20th Century Droughts in Southern Africa: Spatial and Temporal Variability, Teleconnections with Oceanic and Atmospheric Conditions. Int. J. Climatol. 2001, 21, 873–885. [Google Scholar] [CrossRef]
- Manatsa, D.; Chingombe, W.; Matsikwa, H.; Matarira, C.H. The Superior Influence of Darwin Sea Level Pressure Anomalies over ENSO as a Simple Drought Predictor for Southern Africa. Theor. Appl. Climatol. 2008, 92, 1–14. [Google Scholar] [CrossRef]
- Thomson, M.C.; Abayomi, K.; Barnston, A.G.; Levy, M.; Dilley, M. El Niño and Drought in Southern Africa. Lancet 2003, 361, 437–438. [Google Scholar] [CrossRef]
- Lawal, S.; Lennard, C.; Jack, C.; Wolski, P.; Hewitson, B. The Observed and Model-Simulated Response of Southern African Vegetation to Drought. Agric. For. Meteorol. 2019, 279, 107698. [Google Scholar] [CrossRef]
- Mason, S.J.; Lindesay, J.A.; Tyson, P.D. Simulating Drought in Southern Africa Using Sea Surface Temperature Variations. Water SA 1994, 20, 15–22. [Google Scholar]
- Zeidler, J.; Chunga, R. Drought Hazard and Land Management in the Drylands of Southern Africa. In Climate and Land Degradation; Sivakumar, K., NdegwaNdiang’ui, M.V., Eds.; Tanzania Meteorological Agency (TMA): Dar es Salaam, Tanzania; United Nations Conventionto Combat Desertification (UNCCD): Bonn, Germany; World Meteorological Organization (WMO): Geneva, Switzerland, 2007; p. 309. ISBN 9783540724377. [Google Scholar]
- Yuan, X.; Wang, L.; Wood, E.F. Anthropogenic Intensification of Southern African Flash Droughts as Exemplified by the 2015/16 Season. Bull. Am. Meteorol. Soc. 2018, 99, S86–S90. [Google Scholar] [CrossRef]
- Funk, C.; Harrison, L.; Shukla, S.; Hoell, A.; Korecha, D.; Magadzire, T.; Husak, G.; Galu, G. Assessing the Contributions of Local and East Pacific Warming to the 2015 Droughts in Ethiopia and Southern Africa. Bull. Am. Meteorol. Soc. 2016, 97, S75–S80. [Google Scholar] [CrossRef] [Green Version]
- Msangi, J.P. Drought Hazard and Desertification Management in the Drylands of Southern Africa. Environ. Monit. Assess. 2004, 99, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Lyon, B. Southern Africa Summer Drought and Heat Waves: Observations and Coupled Model Behavior. J. Clim. 2009, 22, 6033–6046. [Google Scholar] [CrossRef]
- Meque, A.; Abiodun, B.J. Simulating the Link between ENSO and Summer Drought in Southern Africa Using Regional Climate Models. Clim. Dyn. 2015, 44, 1881–1900. [Google Scholar] [CrossRef]
- Tate, E.L.; Freeman, S.N. Three Modelling Approaches for Seasonal Streamflow Droughts in Southern Africa: The Use of Censored Data. Hydrol. Sci. J. 2000, 45, 27–42. [Google Scholar] [CrossRef]
- Shukla, S.; Arsenault, K.R.; Hazra, A.; Peters-Lidard, C.; Koster, R.D.; Davenport, F.; Magadzire, T.; Funk, C.; Kumar, S.; McNally, A.; et al. Improving Early Warning of Drought-Driven Food Insecurity in Southern Africa Using Operational Hydrological Monitoring and Forecasting Products. Nat. Hazards Earth Syst. Sci. 2020, 20, 1187–1201. [Google Scholar] [CrossRef]
- Lawal, S.; Sitch, S.; Lombardozzi, D.; Nabel, J.E.M.S.; Wey, H.W.; Friedlingstein, P.; Tian, H.; Hewitson, B. Investigating the Response of Leaf Area Index to Droughts in Southern African Vegetation Using Observations and Model Simulations. Hydrol. Earth Syst. Sci. 2022, 26, 2045–2071. [Google Scholar] [CrossRef]
- Trambauer, P.; Maskey, S.; Werner, M.; Pappenberger, F.; Van Beek, L.P.H.; Uhlenbrook, S. Identification and Simulation of Space-Time Variability of Past Hydrological Drought Events in the Limpopo River Basin, Southern Africa. Hydrol. Earth Syst. Sci. 2014, 18, 2925–2942. [Google Scholar] [CrossRef] [Green Version]
- Unganai, L.S.; Kogan, F.N. Southern Africa’s Recent Droughts from Space. Adv. Space Res. 1998, 21, 507–511. [Google Scholar] [CrossRef]
- Unganai, L.S.; Kogan, F.N. Drought Monitoring and Corn Yield Estimation in Southern Africa from AVHRR Data. Remote Sens. Environ. 1998, 63, 219–232. [Google Scholar] [CrossRef]
- Rusca, M.; Savelli, E.; Di Baldassarre, G.; Biza, A.; Messori, G. Unprecedented Droughts Are Expected to Exacerbate Urban Inequalities in Southern Africa. Nat. Clim. Chang. 2023, 13, 98–105. [Google Scholar] [CrossRef]
- Tesfaye, K.; Sonder, K.; Cairns, J.; Magorokosho, C.; Tarekegn, A.; Kassie, G.T.; Getaneh, F.; Abdoulaye, T.; Abate, T.; Erenstein, O. Targeting Drought-Tolerant Maize Varieties in Southern Africa: A Geospatial Crop Modeling Approach Using Big Data. Int. Food Agribus. Manag. Rev. 2016, 19, 75–92. [Google Scholar]
- Trambauer, P.; Werner, M.; Winsemius, H.C.; Maskey, S.; Dutra, E.; Uhlenbrook, S. Hydrological Drought Forecasting and Skill Assessment for the Limpopo River Basin, Southern Africa. Hydrol. Earth Syst. Sci. 2015, 19, 1695–1711. [Google Scholar] [CrossRef] [Green Version]
- Chisadza, B.; Tumbare, M.J.; Nyabeze, W.R.; Nhapi, I. Linkages between Local Knowledge Drought Forecasting Indicators and Scientific Drought Forecasting Parameters in the Limpopo River Basin in Southern Africa. Int. J. Disaster Risk Reduct. 2015, 12, 226–233. [Google Scholar] [CrossRef]
- Sifundza, L.; van der Zaag, P.; Masih, I. Evaluation of the Responses of Institutions and Actors to the 2015/2016 El Niño Drought in the Komati Catchment in Southern Africa: Lessons to Support Future Drought Management. Water SA 2019, 45, 547–559. [Google Scholar] [CrossRef]
- Nangombe, S.; Zhou, T.; Zhang, L.; Zhang, W. Attribution of the 2018 October–December Drought over South Southern Africa. Bull. Am. Meteorol. Soc. 2020, 101, S135–S140. [Google Scholar] [CrossRef]
- Meigh, J.; Tate, E.; McCartney, M. Methods for Identifying and Monitoring River Flow Drought in Southern Africa. IAHS-AISH Publ. 2002, 274, 181–188. [Google Scholar]
- Vogel, C.; Koch, I.; Van Zyl, K. “A Persistent Truth”-Reflections on Drought Risk Management in Southern Africa. Weather Clim. Soc. 2010, 2, 9–22. [Google Scholar] [CrossRef]
- Makondo, C.C.; Thomas, D.S.G. Seasonal and Intra-Seasonal Rainfall and Drought Characteristics as Indicators of Climate Change and Variability in Southern Africa: A Focus on Kabwe and Livingstone in Zambia. Theor. Appl. Climatol. 2020, 140, 271–284. [Google Scholar] [CrossRef]
- Nash, D.J.; Klein, J.; Endfield, G.H.; Pribyl, K.; Adamson, G.C.D.; Grab, S.W. Narratives of Nineteenth Century Drought in Southern Africa in Different Historical Source Types. Clim. Chang. 2019, 152, 467–485. [Google Scholar] [CrossRef] [Green Version]
- Ruwanza, S.; Thondhlana, G.; Falayi, M. Research Progress and Conceptual Insights on Drought Impacts and Responses among Smallholder Farmers in South Africa: A Review. Land 2022, 11, 159. [Google Scholar] [CrossRef]
- Villholth, K.G.; Tøttrup, C.; Stendel, M.; Maherry, A. Integrated Mapping of Groundwater Drought Risk in the Southern African Development Community (SADC) Region. Hydrogeol. J. 2013, 21, 863–885. [Google Scholar] [CrossRef]
- Watson, A.; Miller, J.; Künne, A.; Kralisch, S. Using Soil-Moisture Drought Indices to Evaluate Key Indicators of Agricultural Drought in Semi-Arid Mediterranean Southern Africa. Sci. Total Environ. 2022, 812, 152464. [Google Scholar] [CrossRef] [PubMed]
- Tallaksen, L.M.; Van Lanen, H.A.J. Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Hänsel, S.; Ustrnul, Z.; Łupikasza, E.; Skalak, P. Assessing Seasonal Drought Variations and Trends over Central Europe. Adv. Water Resour. 2019, 127, 53–75. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Bai, Y.; Zhang, S.; Yang, S.; Henchiri, M.; Seka, A.M.; Nanzad, L. Drought Monitoring and Performance Evaluation Based on Machine Learning Fusion of Multi-Source Remote Sensing Drought Factors. Remote Sens. 2022, 14, 6398. [Google Scholar] [CrossRef]
- Gyaneshwar, A.; Mishra, A.; Chadha, U.; Raj Vincent, P.M.D.; Rajinikanth, V.; Pattukandan Ganapathy, G.; Srinivasan, K. A Contemporary Review on Deep Learning Models for Drought Prediction. Sustainability 2023, 15, 6160. [Google Scholar] [CrossRef]
- Prodhan, F.A.; Zhang, J.; Hasan, S.S.; Pangali Sharma, T.P.; Mohana, H.P. A Review of Machine Learning Methods for Drought Hazard Monitoring and Forecasting: Current Research Trends, Challenges, and Future Research Directions. Environ. Model. Softw. 2022, 149, 105327. [Google Scholar] [CrossRef]
- Felsche, E.; Ludwig, R. Applying Machine Learning for Drought Prediction in a Perfect Model Framework Using Data from a Large Ensemble of Climate Simulations. Nat. Hazards Earth Syst. Sci. 2021, 21, 3679–3691. [Google Scholar] [CrossRef]
- Brust, C.; Kimball, J.S.; Maneta, M.P.; Jencso, K.; Reichle, R.H. DroughtCast: A Machine Learning Forecast of the United States Drought Monitor. Front. Big Data 2021, 4, 773478. [Google Scholar] [CrossRef]
- Leuenberger, M.; Parente, J.; Tonini, M.; Pereira, M.G.; Kanevski, M. Wildfire Susceptibility Mapping: Deterministic vs. Stochastic Approaches. Environ. Model. Softw. 2018, 101, 194–203. [Google Scholar] [CrossRef]
- Tonini, M.; Pereira, M.G.; Fiorucci, P. Performance and Efficiency of Machine Learning Based Approaches for Wildfire Susceptibility Mapping. Environ. Sci. Proc. 2022, 17, 38. [Google Scholar] [CrossRef]
- Hermanns, F.; Pohl, F.; Rebmann, C.; Schulz, G.; Werban, U.; Lausch, A. Inferring Grassland Drought Stress with Unsupervised Learning from Airborne Hyperspectral VNIR Imagery. Remote Sens. 2021, 13, 1885. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, D.; Tian, W.; Zhao, H.; Geng, S.; Lu, H.; Ma, G.; Huang, J.; Lim, C.; Sian, K.; et al. Construction of an Integrated Drought Monitoring Model Based on Deep Learning Algorithms. Remote Sens. 2023, 15, 667. [Google Scholar] [CrossRef]
- Agana, N.A.; Homaifar, A. A Deep Learning Based Approach for Long-Term Drought Prediction. In Proceedings of the IEEE Southeastcon, Concord, NC, USA, 30 March–2 April 2017. [Google Scholar] [CrossRef]
- Barradas, A.; Correia, P.M.P.; Silva, S.; Mariano, P.; Pires, M.C.; Matos, A.R.; da Silva, A.B.; Marques da Silva, J. Comparing Machine Learning Methods for Classifying Plant Drought Stress from Leaf Reflectance Spectra in Arabidopsis Thaliana. Appl. Sci. 2021, 11, 6392. [Google Scholar] [CrossRef]
- Sundararajan, K.; Garg, L.; Srinivasan, K.; Bashir, A.K.; Kaliappan, J.; Ganapathy, G.P.; Selvaraj, S.K.; Meena, T. A Contemporary Review on Drought Modeling Using Machine Learning Approaches. CMES-Comput. Model. Eng. Sci. 2021, 128, 447–487. [Google Scholar] [CrossRef]
- Mahesh, B. Machine Learning Algorithms—A Review Machine Learning Algorithms—A Review View Project Self Flowing Generator View Project Batta Mahesh Independent Researcher Machine Learning Algorithms—A Review. Int. J. Sci. Res. 2018. [Google Scholar] [CrossRef]
- Le, T.S.; Harper, R.; Dell, B. Application of Remote Sensing in Detecting and Monitoring Water Stress in Forests. Remote Sens. 2023, 15, 3360. [Google Scholar] [CrossRef]
- Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V061. NASA EOSDIS Land Processes DAAC. Available online: https://doi.org/10.5067/MODIS/MCD12Q1.061 (accessed on 27 June 2023). [CrossRef]
- Hulley, G.; Hook, S. MOD21A2 MODIS/Terra Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1 km SIN Grid V061. NASA EOSDIS Land Processes DAAC. Available online: https://doi.org/10.5067/MODIS/MOD21A2.061 (accessed on 27 June 2023). [CrossRef]
- Wan, Z.; Hook, S.; Hulley, G. MOD11A2 MODIS/Aqua Land Surface Temperature/Emissivity 8-Day L3 Global 1 km SIN Grid V061. NASA EOSDIS Land Processes DAAC. Available online: https://doi.org/10.5067/MODIS/MOD11A2.061 (accessed on 27 June 2023). [CrossRef]
- Myneni, R.; Knyazikhin, T.P. MCD15A2H MODIS/Terra+Aqua Leaf Area Index/FPAR 8-Day L4 Global 500 m SIN Grid V061. NASA EOSDIS Land Processes DAAC. Available online: https://doi.org/10.5067/MODIS/MCD15A2H.061 (accessed on 27 June 2023). [CrossRef]
- Running, S.; Mu, Q.; Zhao, M.; Moreno, A. MOD16A2GF MODIS/Terra Net Evapotranspiration Gap-Filled 8-Day L4 Global 500 m SIN Grid V061. NASA EOSDIS Land Processes DAAC. Available online: https://doi.org/10.5067/MODIS/MOD16A2GF.061 (accessed on 27 June 2023). [CrossRef]
- Running, S.; Mu, Q.; Zhao, M. MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500 m SIN Grid V061. NASA EOSDIS Land Processes DAAC. Available online: https://doi.org/10.5067/MODIS/MOD16A2.061 (accessed on 27 June 2023). [CrossRef]
- Vermote, E. MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500 m SIN Grid V061. NASA EOSDIS Land Processes DAAC. Available online: https://doi.org/10.5067/MODIS/MOD09A1.061 (accessed on 27 June 2023). [CrossRef]
- Giglio, L.; Justice, C. MOD14A2 MODIS/Terra Thermal Anomalies/Fire 8-Day L3 Global 1 km SIN Grid V061. NASA EOSDIS Land Processes DAAC. Available online: https://doi.org/10.5067/MODIS/MOD14A2.061 (accessed on 27 June 2023). [CrossRef]
- DiMiceli, C.R.; Sohlberg, J.T. MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250 m SIN Grid V061. 2022. Distributed by NASA EOSDIS Land Processes DAAC. Available online: https://doi.org/10.5067/MODIS/MOD44B.061 (accessed on 27 June 2023). [CrossRef]
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid V006. NASA EOSDIS Land Process. DAAC 2015, Volume 10, p. 415. Available online: https://cmr.earthdata.nasa.gov/search/concepts/C194001241-LPDAAC_ECS.html (accessed on 27 June 2023).
- Giglio, C.L.; Justice, L.; Boschetti, D.R. MCD64A1 MODIS/Terra+Aqua Burned Area Monthly L3 Global 500 m SIN Grid V061. NASA EOSDIS Land Processes DAAC. Available online: https://doi.org/10.5067/MODIS/MCD64A1.061 (accessed on 27 June 2023). [CrossRef]
- Amraoui, M.; DaCamara, C.C.; Pereira, J.M.C. Detection and Monitoring of African Vegetation Fires Using MSG-SEVIRI Imagery. Remote Sens. Environ. 2010, 114, 1038–1052. [Google Scholar] [CrossRef]
- Roberts, G.; Wooster, M.J.; Xu, W.; Freeborn, P.H.; Morcrette, J.J.; Jones, L.; Benedetti, A.; Jiangping, H.; Fisher, D.; Kaiser, J.W. LSA SAF Meteosat FRP Products-Part 2: Evaluation and Demonstration for Use in the Copernicus Atmosphere Monitoring Service (CAMS). Atmos. Chem. Phys. 2015, 15, 13241–13267. [Google Scholar] [CrossRef] [Green Version]
- Trigo, I.F.; de Bruin, H.; Beyrich, F.; Bosveld, F.C.; Gavilán, P.; Groh, J.; López-Urrea, R. Validation of Reference Evapotranspiration from Meteosat Second Generation (MSG) Observations. Agric. For. Meteorol. 2018, 259, 271–285. [Google Scholar] [CrossRef]
- Meyer Normalised Difference Vegetation Index: Product Guide.
- Martínez, B.; Sanchez-Ruiz, S.; Gilabert, M.A.; Moreno, A.; Campos-Taberner, M.; García-Haro, F.J.; Trigo, I.F.; Aurela, M.; Brümmer, C.; Carrara, A.; et al. Retrieval of Daily Gross Primary Production over Europe and Africa from an Ensemble of SEVIRI/MSG Products. Int. J. Appl. Earth Obs. Geoinf. 2018, 65, 124–136. [Google Scholar] [CrossRef]
- Campos-Taberner, M.; García-Haro, F.J.; Busetto, L.; Ranghetti, L.; Martínez, B.; Gilabert, M.A.; Camps-Valls, G.; Camacho, F.; Boschetti, M. A Critical Comparison of Remote Sensing Leaf Area Index Estimates over Rice-Cultivated Areas: From Sentinel-2 and Landsat-7/8 to MODIS, GEOV1 and EUMETSAT Polar System. Remote Sens. 2018, 10, 763. [Google Scholar] [CrossRef] [Green Version]
- Ceamanos, X.; Carrer, D.; Roujean, J.L. Improved Retrieval of Direct and Diffuse Downwelling Surface Shortwave Flux in Cloudless Atmosphere Using Dynamic Estimates of Aerosol Content and Type: Application to the LSA-SAF Project. Atmos. Chem. Phys. 2014, 14, 8209–8232. [Google Scholar] [CrossRef] [Green Version]
- Trigo, I.F.; Peres, L.F.; DaCamara, C.C.; Freitas, S.C. Thermal Land Surface Emissivity Retrieved from SEVIRI/Meteosat. IEEE Trans. Geosci. Remote Sens. 2008, 46, 307–315. [Google Scholar] [CrossRef]
- Trigo, I.F.; Monteiro, I.T.; Olesen, F.; Kabsch, E. An Assessment of Remotely Sensed Land Surface Temperature. J. Geophys. Res. Atmos. 2008, 113, 17108. [Google Scholar] [CrossRef]
- Carrer, D.; Moparthy, S.; Lellouch, G.; Ceamanos, X.; Pinault, F.; Freitas, S.C.; Trigo, I.F. Land Surface Albedo Derived on a Ten Daily Basis from Meteosat Second Generation Observations: The NRT and Climate Data Record Collections from the EUMETSAT LSA SAF. Remote Sens. 2018, 10, 1262. [Google Scholar] [CrossRef] [Green Version]
- Geiger, B.; Carrer, D.; Franchistéguy, L.; Roujean, J.L.; Meurey, C. Land Surface Albedo Derived on a Daily Basis from Meteosat Second Generation Observations. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3841–3856. [Google Scholar] [CrossRef]
- WMO Drought. Available online: https://public.wmo.int/en/resources/world-meteorological-day/previous-world-meteorological-days/climate-and-water/drought (accessed on 28 June 2023).
- NWS Drought. Available online: https://www.weather.gov/safety/drought (accessed on 28 June 2023).
- EDO European Drought Observatory. Available online: https://www.copernicus.eu/en/european-drought-observatory (accessed on 28 June 2023).
- Vicente-Serrano, S.M.; Domínguez-Castro, F.; Reig, F.; Tomas-Burguera, M.; Peña-Angulo, D.; Latorre, B.; Beguería, S.; Rabanaque, I.; Noguera, I.; Lorenzo-Lacruz, J.; et al. A Global Drought Monitoring System and Dataset Based on ERA5 Reanalysis: A Focus on Crop-Growing Regions. Geosci. Data J. 2022, 1–14. [Google Scholar] [CrossRef]
- Joubert, A.M.; Mason, S.J.; Galpin, J.S. Droughts over Southern Africa in a Double-CO2 Climate. Int. J. Climatol. 1996, 16, 1149–1150. [Google Scholar] [CrossRef]
- Dent, M.; Schulze, R.E.; Wills, H.; Lynch, S.D. Spatial and Temporal Analysis of the Recent Drought in the Summer Rainfall Region of Southern Africa. Water SA 1987, 13, 37–42. [Google Scholar]
- Nhamo, L.; Mabhaudhi, T.; Modi, A.T. Preparedness or Repeated Short-Term Relief Aid? Building Drought Resilience through Early Warning in Southern Africa. Water SA 2019, 45, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Militao, E.M.A.; Salvador, E.M.; Uthman, O.A.; Vinberg, S.; Macassa, G. Food Insecurity and Health Outcomes Other than Malnutrition in Southern Africa: A Descriptive Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 5082. [Google Scholar] [CrossRef]
- Hope, A.; Fouad, G.; Granovskaya, Y. Evaluating Drought Response of Southern Cape Indigenous Forests, South Africa, Using MODIS Data. Int. J. Remote Sens. 2014, 35, 4852–4864. [Google Scholar] [CrossRef]
- Orievulu, K.S.; Ayeb-Karlsson, S.; Ngema, S.; Baisley, K.; Tanser, F.; Ngwenya, N.; Seeley, J.; Hanekom, W.; Herbst, K.; Kniveton, D.; et al. Exploring Linkages between Drought and HIV Treatment Adherence in Africa: A Systematic Review. Lancet Planet. Health 2022, 6, e359–e370. [Google Scholar] [CrossRef]
- O’farrell, P.J.; Anderson, P.M.L.; Milton, S.J.; Dean, W.R.J. Human Response and Adaptation to Drought in the Arid Zone: Lessons from Southern Africa. S. Afr. J. Sci. 2009, 105, 34–39. [Google Scholar] [CrossRef]
- Samways, M.J.; Deacon, C.; Kietzka, G.J.; Pryke, J.S.; Vorster, C.; Simaika, J.P. Value of Artificial Ponds for Aquatic Insects in Drought-Prone Southern Africa: A Review. Biodivers. Conserv. 2020, 29, 3131–3150. [Google Scholar] [CrossRef]
- Dean, W.R.J.; Barnard, P.; Anderson, M.D. When to Stay, When to Go: Trade-Offs for Southern African Arid-Zone Birds in Times of Drought. S. Afr. J. Sci. 2009, 105, 24–28. [Google Scholar] [CrossRef] [Green Version]
Drought Class | PDSI Value | SPI and SPEI Value |
---|---|---|
Extremely wet | ≥4.00 | ≥2.00 |
Severely wet | 3.00 to 3.99 | 1.50 to 1.99 |
Moderately wet | 2.00 to 2.99 | 1.00 to 1.49 |
Slightly wet | 1.00 to 1.99 | 0.50 to 0.99 |
Near Normal | −0.99 to 0.99 | −0.49 to 0.49 |
Mild dry | −1.99 to −1.00 | −0.99 to −0.50 |
Moderate dry | −2.99 to −2.00 | −1.49 to −1.00 |
Severe dry | −3.99 to −3.00 | −1.99 to −1.50 |
Extremely dry | ≤−4.00 | ≤−2.00 |
Inclusion Criteria | Exclusion Criteria |
---|---|
Written in English. | Not be written in English. |
Peer-reviewed articles and journals. | Non-peer-reviewed articles and journals. |
Focus on the drought descriptors, factors, and impacts. | Not focused on drought descriptors, factors and impacts. |
WMO Reports. | Documents not published by WMO and indexed journals. |
Study area outside SA. |
Database | Website Address | N | Access Date | Search Procedure |
---|---|---|---|---|
WoS | https://www.webofscience.com/ | 75 | 14 March 2023 | Research equation |
SCOPUS | https://www.scopus.com/ | 77 | 14 March 2023 | Research equation |
Google Scholar | https://www.mdpi.com/2225-1154/5/3/51 | 1 | 22 April 2023 | Citation searching |
https://iwaponline.com/jwcc/article/ | 1 | 22 April 2023 | Citation searching | |
https://centaur.reading.ac.uk/108297/ | 1 | 28 June 2023 | Citation searching | |
https://www.mdpi.com/2073-445X/11/2/159 | 1 | 28 June 2023 | Citation searching | |
https://www.mdpi.com/1660-4601/19/9/5082 | 1 | 28 June 2023 | Citation searching |
Factors | Studies | N (#) | n (%) |
---|---|---|---|
El Niño Southern Oscillation (ENSO) | [29,45,46,47,48,49,50,51,52,53,54,55,56,57] | 14 | 26 |
Other Ocean–Atmosphere interactions | [33,48,51,54,56,57,58] | 7 | 13 |
Sea surface temperature (SST) | [47,48,50,51,55,59] | 6 | 11 |
Anthropic influence (e.g., fires, gas emissions, and global warming) | [24,33,52,60,61,62,63] | 7 | 13 |
Heatwaves | [61,64] | 2 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chivangulula, F.M.; Amraoui, M.; Pereira, M.G. The Drought Regime in Southern Africa: A Systematic Review. Climate 2023, 11, 147. https://doi.org/10.3390/cli11070147
Chivangulula FM, Amraoui M, Pereira MG. The Drought Regime in Southern Africa: A Systematic Review. Climate. 2023; 11(7):147. https://doi.org/10.3390/cli11070147
Chicago/Turabian StyleChivangulula, Fernando Maliti, Malik Amraoui, and Mário Gonzalez Pereira. 2023. "The Drought Regime in Southern Africa: A Systematic Review" Climate 11, no. 7: 147. https://doi.org/10.3390/cli11070147
APA StyleChivangulula, F. M., Amraoui, M., & Pereira, M. G. (2023). The Drought Regime in Southern Africa: A Systematic Review. Climate, 11(7), 147. https://doi.org/10.3390/cli11070147