Climate Change and Extreme Events in Northeast Atlantic and Azores Islands Region
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Atmospheric CO2
3.2. Annual Mean of Daily Minimum Temperature
3.3. Annual Number of Tropical Nights
3.4. Annual Total Precipitation Amount
3.5. Annual Number of Consecutive Dry Days
3.6. Annual Number of Wet Days
4. Discussion
5. Conclusions
- The increase in CO2 observed in the Azores coincides with that estimated for the same latitude. The current SSP pathway can be identified from 2024 onwards.
- The annual average daily minimum temperature projected by the CMIP6 models in the Azores presents a significant bias compared to the ERA5 reference. This is also true to most part of the Northeast Atlantic area.
- The estimated annual precipitation total for the Azores does not show a significant bias compared to the ERA5 reference. However, there are zones of significant positive and negative bias in Northeast Atlantic area.
- Projections of annual average daily minimum temperatures in the Azores region suggest that an increase in annual average daily temperatures during this century is likely for the SSP1 2.6 scenario and very likely for the remainder. An increase in the annual number of tropical nights is also very likely in all scenarios.
- The annual precipitation projections show no significant changes. The increases in CDD and R20 mm are small but very likely for the SSP 5 8.5 scenario. These results suggest that a simultaneous increase in these two indices and in air temperature means that the CC relationship should be the dominant process in a worst-case forcing scenario, especially in the western islands.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change. Climate Change 2021—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2023; ISBN 9781009157896. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2013—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2014; ISBN 9781107057999. [Google Scholar]
- Summary for Policymakers. In Global Warming of 1.5 °C; Cambridge University Press: Cambridge, UK, 2022; pp. 1–24.
- Wallace, J.M.; Hobbs, P.V. Atmospheric Science: An Introductory Survey: Second Edition; Elsevier Inc.: Amsterdam, The Netherlands, 2006; ISBN 9780127329512. [Google Scholar]
- Schneider, T.; O’Gorman, P.A.; Levine, X.J. Water Vapor and the Dynamics of Climate Changes. Rev. Geophys. 2010, 48, 1–22. [Google Scholar] [CrossRef]
- Stensrud, D.J. Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models; Cambridge University Press: Cambridge, UK, 2009; ISBN 9780521865401. [Google Scholar]
- Feingold, G. Parameterization of the Evaporation of Rainfall for Use in General Circulation Models. J. Atmos. Sci. 1993, 50, 3454–3467. [Google Scholar] [CrossRef]
- Meirelles, M.G.; Carvalho, F.R. Perspectives of atmospheric sciences in the Azores: History of meteorology and climate change. In Archipelagos. Types, Characteristics and Conservation; Perez, M., Mills, J., Eds.; NOVA, Science Publishers: New York, NY, USA, 2019; pp. 43–69. ISBN 978-1-53614-682-0. [Google Scholar]
- Stephenson, D.B.; Wanner, H.; Brönnimann, S.; Luterbacher, J. The History of scientific research on the North Atlantic oscillation. In Geophysical Monograph Series; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2003; Volume 134, pp. 37–50. ISBN 9781118669037. [Google Scholar]
- Meirelles, M.; Carvalho, F.; Porteiro, J.; Henriques, D.; Navarro, P.; Vasconcelos, H. Climate Change and Impact on Renewable Energies in the Azores Strategic Visions for Sustainability. Sustainability 2022, 14, 15174. [Google Scholar] [CrossRef]
- Carvalho, F.; Meirelles, M.; Henriques, D.; Navarro, P. Alterações Climáticas e o Aumento de Eventos Extremos Nos Açores. Bol. Núcleo Cult. Horta 2020, 29, 95–108. [Google Scholar]
- Carvalho, F.; Meirelles, M.; Henriques, D.; Navarro, P. Alterações Climáticas e Energia No Contexto Dos Açores. Bol. Núcleo Cult. Horta 2020, 29, 95–108. [Google Scholar]
- Carvalho, F.R.S.; Meirelles, M.G.; Henriques, D.V.; Navarro, P.V.; Vasconcelos, H.C. Climate change and the increase of extreme events in Azores. In Climate Change Management; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2022; pp. 349–365. [Google Scholar]
- Peixoto, J.P.; Oort, A.H. Physics of Climate; Springer: Berlin/Heidelberg, Germany, 1992; ISBN 978-0-88318-712-8. [Google Scholar]
- Mcavaney, B.J.; Holland, G.J. Dynamics of future climates. In World Survey of Climatology; Elsevier: New York, NY, USA, 1995; pp. 281–314. [Google Scholar]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P. A New Scenario Framework for Climate Change Research: The Concept of Shared Socioeconomic Pathways. Clim. Change 2014, 122, 387–400. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Taylor, K.E.; Juckes, M.; Balaji, V.; Cinquini, L.; Durack, P.J.; Elkington, M.; Guilyardi, E.; Kharin, S.; Lautenschlager, M.; Lawrence, B.; et al. CMIP6 Global Attributes, DRS, Filenames, Directory Structure, and CV’s. Available online: http://goo.gl/v1drZl (accessed on 4 November 2023).
- Sandstad, M.; Schwingshackl, C.; Iles, C. Climate Extreme Indices and Heat Stress Indicators Derived from CMIP6 Global Climate Projections. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.776e08bd?tab=overview (accessed on 1 June 2022).
- Kim, Y.-H.; Min, S.-K.; Zhang, X.; Sillmann, J.; Sandstad, M. Evaluation of the CMIP6 Multi-Model Ensemble for Climate Extreme Indices. Weather Clim. Extrem. 2020, 29, 100269. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service CMIP6 Climate Projections. Climate Data Store 2021. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip6?tab=overview (accessed on 6 October 2023).
- Bourgault, P.; Huard, D.; Smith, T.J.; Logan, T.; Aoun, A.; Lavoie, J.; Dupuis, É.; Rondeau-Genesse, G.; Alegre, R.; Barnes, C.; et al. Xclim: Xarray-Based Climate Data Analytics. J. Open Source Softw. 2023, 8, 5415. [Google Scholar] [CrossRef]
- World Data Center for Greenhouse Gases. Available online: https://gaw.kishou.go.jp/ (accessed on 24 October 2023).
- Meinshausen, M.; Vogel, E.; Nauels, A.; Lorbacher, K.; Meinshausen, N.; Etheridge, D.M.; Fraser, P.J.; Montzka, S.A.; Rayner, P.J.; Trudinger, C.M.; et al. Historical Greenhouse Gas Concentrations for Climate Modelling (CMIP6). Geosci. Model Dev. 2017, 10, 2057–2116. [Google Scholar] [CrossRef]
- Meinshausen, M.; Nicholls, Z.R.J. UoM-IMAGE-Ssp126-1-2-1 GHG Concentrations; Version 20231024; Earth System Grid Federation: Greenbelt, MD, USA, 2018. [Google Scholar]
- Meinshausen, M.; Nicholls, Z.R.J. UoM-MESSAGE-GLOBIOM-Ssp245-1-2-1 GHG Concentrations; Version 20231024; Earth System Grid Federation: Greenbelt, MD, USA, 2018. [Google Scholar]
- Meinshausen, M.; Nicholls, Z.R.J. UoM-REMIND-MAGPIE-Ssp585-1-2-1 GHG Concentrations; Version 20231024; Earth System Grid Federation: Greenbelt, MD, USA, 2018. [Google Scholar]
- Nurse, L.A.; McLean, R.F.; Agard, J.; Briguglio, L.P.; Duvat-Magnan, V.; Pelesikoti, N.; Tompkins, E.; Webb, A. Small Islands. In Climate Change 2014: Impacts, Adaptation and Vulnerability: Part B: Regional Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2015; pp. 1613–1654. ISBN 9781107415386. [Google Scholar]
- Mycoo, M.; Wairiu, M.; Campbell, D.; Duvat, V.; Golbuu, Y.; Maharaj, S.; Nalau, J.; Nunn, P.; Pinnegar, J.; Warrick, O. Small Islands. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 2043–2121. [Google Scholar]
- Royé, D.; Sera, F.; Tobías, A.; Lowe, R.; Gasparrini, A.; Pascal, M.; de’Donato, F.; Nunes, B.; Teixeira, J.P. Effects of Hot Nights on Mortality in Southern Europe. Epidemiology 2021, 32, 487–498. [Google Scholar] [CrossRef]
- Margolis, H.G. Heat waves and rising temperatures: Human health impacts and the determinants of vulnerability. In Global Climate Change and Public Health; Springer: New York, NY, USA, 2014; pp. 85–120. [Google Scholar]
- Rom, W.N.; Pinkerton, K.E. Introduction: Consequences of global warming to planetary and human health. In Climate Change and Global Public Health; Springer Nature: Cham, Switzerland, 2021; pp. 1–33. [Google Scholar]
Model | Nominal Horizontal Resolution | Institution |
---|---|---|
ACCESS-CM2 | 250 km | CSIRO-ARCCSS |
ACCESS-ESM1-5 | 250 km | CSIRO |
AWI-ESM-1-1-LR | 250 km | AWI |
BCC-ESM1 | 250 km | BCC |
CanESM5 | 500 km | CCCma |
CESM2-FV2 | 250 km | NCAR |
CESM2-WACCM | 100 km | NCAR |
CESM2 | 100 km | NCAR |
CMCC-CM2-HR4 | 100 km | CMCC |
CMCC-CM2-SR5 | 100 km | CMCC |
CMCC-ESM2 | 100 km | CMCC |
EC-Earth3-AerChem | 100 km | EC-Earth-Consortium |
EC-Earth3-CC | 100 km | EC-Earth-Consortium |
EC-Earth3-Veg-LR | 250 km | EC-Earth-Consortium |
FGOALS-f3-L | 100 km | CAS |
FGOALS-g3 | 250 km | CAS |
GFDL-ESM4 | 100 km | NOAA-GFDL |
IITM-ESM | 250 km | CCCR-IITM |
INM-CM4-8 | 100 km | INM |
INM-CM5-0 | 100 km | INM |
IPSL-CM5A2-INCA | 500 km | IPSL |
IPSL-CM6A-LR | 250 km | IPSL |
KACE-1-0-G | 250 km | NIMS-KMA |
KIOST-ESM | 250 km | KIOST |
MIROC6 | 250 km | MIROC |
MPI-ESM1-2-HR | 100 km | MPI-M |
MPI-ESM1-2-LR | 250 km | MPI-M |
MRI-ESM2-0 | 100 km | MRI |
NESM3 | 250 km | NUIST |
NorCPM1 | 250 km | NCC |
NorESM2-MM | 100 km | NCC |
SAM0-UNICON | 100 km | SNU |
TaiESM1 | 100 km | AS-RCEC |
Model | Daily Total Precipitation | Daily Minimum Temperature |
---|---|---|
ACCESS-CM2 | x | x |
ACCESS-ESM1-5 | x | x |
AWI-ESM-1-1-LR | x | x |
BCC-ESM1 | x | x |
CanESM5 | x | x |
CESM2-FV2 | x | |
CESM2-WACCM | x | |
CESM2 | x | |
CMCC-CM2-HR4 | x | |
CMCC-CM2-SR5 | x | |
CMCC-ESM2 | x | x |
EC-Earth3-AerChem | x | x |
EC-Earth3-CC | x | x |
EC-Earth3-Veg-LR | x | x |
FGOALS-f3-L | x | x |
FGOALS-g3 | x | x |
GFDL-ESM4 | x | x |
IITM-ESM | x | |
INM-CM4-8 | x | x |
INM-CM5-0 | x | x |
IPSL-CM5A2-INCA | x | |
IPSL-CM6A-LR | x | x |
KACE-1-0-G | x | x |
KIOST-ESM | x | x |
MIROC6 | x | x |
MPI-ESM1-2-HR | x | x |
MPI-ESM1-2-LR | x | x |
MRI-ESM2-0 | x | x |
NESM3 | x | x |
NorCPM1 | x | x |
NorESM2-MM | x | x |
SAM0-UNICON | x | x |
TaiESM1 | x |
Model | SSP1 2.6 | SSP2 4.5 | SSP5 8.5 |
---|---|---|---|
ACCESS-CM2 | x | x | x |
AWI-CM-1-1-MR | x | x | x |
BCC-CSM2-MR | x | x | x |
CanESM5 | x | x | x |
CESM2-WACCM | x | ||
CMCC-CM2-SR5 | x | x | |
CMCC-ESM2 | x | x | x |
EC-Earth3-CC | x | x | |
EC-Earth3-Veg-LR | x | x | x |
FGOALS-g3 | x | x | x |
GFDL-ESM4 | x | x | x |
IITM-ESM | x | x | x |
INM-CM4-8 | x | x | x |
INM-CM5-0 | x | x | x |
IPSL-CM5A2-INCA | x | ||
IPSL-CM6A-LR | x | x | x |
KACE-1-0-G | x | x | x |
KIOST-ESM | x | x | x |
MIROC6 | x | x | x |
MPI-ESM1-2-LR | x | x | x |
MRI-ESM2-0 | x | x | x |
NESM3 | x | x | |
NorESM2-LM | x | x | x |
NorESM2-MM | x | x | x |
TaiESM1 | x |
Trend (ppm/Year) | |
---|---|
Measurements | 1.73 ± 0.03 |
Historical | 1.85 ± 0.03 |
Scenario | Trend (K/Decade) | Trend p-Value | Δ (K) | Δ p-Value |
---|---|---|---|---|
ssp126 | 0.055 ± 0.006 | 3.68 × 10−15 | 0.073 ± 0.289 | 1.72 × 10−1 |
ssp245 | 0.118 ± 0.004 | 5.14 × 10−47 | 0.539 ± 0.293 | 1.08 × 10−14 |
ssp585 | 0.225 ± 0.003 | 1.91 × 10−79 | 1.221 ± 0.347 | 2.01 × 10−27 |
Scenario | Trend (Day/Decade) | Trend p-Value | Δ (Day) | Δ p-Value |
---|---|---|---|---|
ssp126 | 0.20 ± 0.02 | 1.21 × 10−14 | −7.57 ± 12.57 | 1.38 × 10−3 |
ssp245 | 0.38 ± 0.01 | 2.47 × 10−41 | 6.71 ± 12.03 | 3.23 × 10−3 |
ssp585 | 0.72 ± 0.01 | 5.48 × 10−74 | 28.15 ± 12.56 | 8.69 × 10−17 |
Scenario | Trend (mm/Decade) | Trend p-Value | Δ (K) | Δ p-Value |
---|---|---|---|---|
ssp126 | 3.79 ± 1.33 | 5.65 × 10−3 | 18.5 ± 126.9 | 4.31 × 10−1 |
ssp245 | 2.11 ± 0.89 | 2.01 × 10−2 | 7.2 ± 126.4 | 7.55 × 10−1 |
ssp585 | −1.23 ± 0.69 | 7.84 × 10−2 | −10.1 ± 126.0 | 6.60 × 10−1 |
Scenario | Trend (Day/Decade) | Trend p-Value | Δ (Day) | Δ p-Value |
---|---|---|---|---|
ssp126 | −0.19 ± 0.06 | 1.24 × 10−3 | 2.83 ± 5.20 | 4.83 × 10−3 |
ssp245 | −0.02 ± 0.04 | 5.97 × 10−1 | 3.78 ± 5.01 | 2.06 × 10−4 |
ssp585 | 0.27 ± 0.03 | 1.19 × 10−13 | 5.64 ± 4.96 | 1.62 × 10−7 |
Scenario | Trend (Day/Decade) | Trend p-Value | Δ (Day) | Δ p-Value |
---|---|---|---|---|
ssp126 | 0.077 ± 0.021 | 5.25 × 10−4 | 1.0 ± 1.8 | 4.44 × 10−3 |
ssp245 | 0.082 ± 0.015 | 4.09 × 10−7 | 1.1 ± 1.9 | 2.26 × 10−3 |
ssp585 | 0.080 ± 0.012 | 9.97 × 10−10 | 1.1 ± 1.9 | 1.35 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, F.S.; Meirelles, M.G.; Henriques, D.; Porteiro, J.; Navarro, P.; Vasconcelos, H.C. Climate Change and Extreme Events in Northeast Atlantic and Azores Islands Region. Climate 2023, 11, 238. https://doi.org/10.3390/cli11120238
Carvalho FS, Meirelles MG, Henriques D, Porteiro J, Navarro P, Vasconcelos HC. Climate Change and Extreme Events in Northeast Atlantic and Azores Islands Region. Climate. 2023; 11(12):238. https://doi.org/10.3390/cli11120238
Chicago/Turabian StyleCarvalho, Fernanda Silva, Maria Gabriela Meirelles, Diamantino Henriques, João Porteiro, Patrícia Navarro, and Helena Cristina Vasconcelos. 2023. "Climate Change and Extreme Events in Northeast Atlantic and Azores Islands Region" Climate 11, no. 12: 238. https://doi.org/10.3390/cli11120238
APA StyleCarvalho, F. S., Meirelles, M. G., Henriques, D., Porteiro, J., Navarro, P., & Vasconcelos, H. C. (2023). Climate Change and Extreme Events in Northeast Atlantic and Azores Islands Region. Climate, 11(12), 238. https://doi.org/10.3390/cli11120238