Co-Cultivation and Matching of Early- and Late-Maturing Pearl Millet Varieties to Sowing Windows Can Enhance Climate-Change Adaptation in Semi-Arid Sub-Saharan Agroecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location and Environmental Conditions
2.2. Rainfall Analysis
2.2.1. Standard Deviation and Mean
2.2.2. Mann–Kendall (MK) Test
2.2.3. Sen’s Slope Estimate
2.3. Agronomic Evaluation
2.3.1. Experimental Treatments, Design, and Management
2.3.2. Data Analysis
- y is the dependent variable (in this case, the grain yield).
- x is the independent variable (in this case, the sowing date).
- β0, β1, β2, …, βn are the coefficients of the polynomial, which represent the intercept and the slopes of the polynomial terms.
- x2, x3, …, xn are the higher-order polynomial terms.
- ε is the error term, representing the deviation of the actual data points from the fitted polynomial curve.
3. Results
3.1. Weather Conditions
3.1.1. Descriptive Statistics for Annual and Monthly Rainfall
3.1.2. Annual and Monthly Rainfall Trends
3.1.3. Solar Radiation, Temperature, and Rainfall during the Experiment
3.2. Grain-Yield Dynamics
3.3. Optimal Variety Sowing Windows
4. Discussion
4.1. Weather Conditions
4.2. Crop Performance
4.3. Optimal Sowing Window for the NCR
4.4. Agronomic Significance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumara Charyulu, D.; Bantilan, M.C.S.; Rajalaxmi, A.; Rai, K.N.; Yadav, O.P.; Gupta, S.K.; Singh, N.P.; Shyam, D.M. Development and Diffusion of Pearl Millet Improved Cultivars in India: Impact on Growth and Yield Stability; International Crops Research Institute for the Semi-Arid Tropics: Patancheru, India, 2014. [Google Scholar]
- Porter, J.R.; Xie, L.; Challinor, A.J.; Cochrane, K.; Howden, S.M.; Iqbal, M.M.; Lobell, D.B.; Travasso, M.I. Food Security and Food Production Systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: New York, NY, USA, 2014; pp. 485–533. [Google Scholar]
- Ausiku, A.P.; Annandale, J.G.; Steyn, J.M.; Sanewe, A.J. Improving Pearl Millet (Pennisetum glaucum) Productivity through Adaptive Management of Water and Nitrogen. Water 2020, 12, 422. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nation Statistics. Available online: https://www.fao.org/faostat/en/#data (accessed on 8 May 2023).
- Rockström, J.; Lannerstad, M.; Falkenmark, M. Assessing the Water Challenge of a New Green Revolution in Developing Countries. Proc. Natl. Acad. Sci. USA 2007, 104, 6253–6260. [Google Scholar] [CrossRef] [PubMed]
- Awala, S.K.; Yamane, K.; Izumi, Y.; Fujioka, Y.; Watanabe, Y.; Wada, K.C.; Kawato, Y.; Mwandemele, O.D.; Iijima, M. Field Evaluation of Mixed-Seedlings with Rice to Alleviate Flood Stress for Semi-Arid Cereals. Eur. J. Agron. 2016, 80, 105–112. [Google Scholar] [CrossRef]
- Thornton, P.K.; Jones, P.G.; Ericksen, P.J.; Challinor, A.J. Agriculture and Food Systems in Sub-Saharan Africa in a 4 °C+ World. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 117–136. [Google Scholar] [CrossRef]
- Azare, I.M.; Dantata, I.J.; Abdullahi, M.S.; Adebayo, A.A.; Aliyu, M. Effects of Climate Change on Pearl Millet (Pennisetum glaucum [L. R. Br.]) Production in Nigeria. J. Appl. Sci. Environ. Manag. 2020, 24, 157–162. [Google Scholar] [CrossRef]
- Macauley, H.; Ramadjita, T. Cereal Crops: Rice, Maize, Millet, Sorghum, and Wheat. In Proceedings of the Feeding Africa, Abdou Diouf International Conference Center, Dakar, Senegal, 21–23 October 2015; pp. 1–31. [Google Scholar]
- Boansi, D. Effect of Climatic and Non-Climatic Factors on Cassava Yields in Togo: Agricultural Policy Implications. Climate 2017, 5, 28. [Google Scholar] [CrossRef]
- Porter, J.R.; Semenov, M.A. Crop Responses to Climatic Variation. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 2021–2035. [Google Scholar] [CrossRef]
- Porter, J.R. Rising Temperatures Are Likely to Reduce Crop Yields. Nature 2005, 436, 174. [Google Scholar] [CrossRef]
- Cai, W.; Cowan, T. Evidence of Impacts from Rising Temperature on Inflows to the Murray-Darling Basin. Geophys. Res. Lett. 2008, 35, L07701. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Lopez-Moreno, J.-I.; Beguería, S.; Lorenzo-Lacruz, J.; Sanchez-Lorenzo, A.; García-Ruiz, J.M.; Azorin-Molina, C.; Morán-Tejeda, E.; Revuelto, J.; Trigo, R.; et al. Evidence of Increasing Drought Severity Caused by Temperature Rise in Southern Europe. Environ. Res. Lett. 2014, 9, 044001. [Google Scholar] [CrossRef]
- Song, M.; Wang, J.; Zhao, J. Effects of Rising and Extreme Temperatures on Production Factor Efficiency: Evidence from China’s Cities. Int. J. Prod. Econ. 2023, 260, 108847. [Google Scholar] [CrossRef]
- Lloyd, J.; Farquhar, G.D. Effects of Rising Temperatures and [CO 2 ] on the Physiology of Tropical Forest Trees. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 1811–1817. [Google Scholar] [CrossRef] [PubMed]
- Hübler, M.; Klepper, G.; Peterson, S. Costs of Climate Change. Ecol. Econ. 2008, 68, 381–393. [Google Scholar] [CrossRef]
- Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M.; Brown, V.K.; Butterfield, J.; Buse, A.; Coulson, J.C.; Farrar, J.; et al. Herbivory in Global Climate Change Research: Direct Effects of Rising Temperature on Insect Herbivores. Glob. Chang. Biol. 2002, 8, 1–16. [Google Scholar] [CrossRef]
- Zhao, T.; Chen, L.; Ma, Z. Simulation of Historical and Projected Climate Change in Arid and Semiarid Areas by CMIP5 Models. Chin. Sci. Bull. 2014, 59, 412–429. [Google Scholar] [CrossRef]
- Mongi, H.; Majule, A.E.; Lyimo, J.G. Vulnerability and Adaptation of Rain Fed Agriculture to Climate Change and Variability in Semi-Arid Tanzania. Afr. J. Environ. Sci. Technol. 2010, 4, 371–381. [Google Scholar] [CrossRef]
- Tabari, H. Climate Change Impact on Flood and Extreme Precipitation Increases with Water Availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef]
- Hao, Y.B.; Zhou, C.T.; Liu, W.J.; Li, L.F.; Kang, X.M.; Jiang, L.L.; Cui, X.Y.; Wang, Y.F.; Zhou, X.Q.; Xu, C.Y. Aboveground Net Primary Productivity and Carbon Balance Remain Stable under Extreme Precipitation Events in a Semiarid Steppe Ecosystem. Agric. For. Meteorol. 2017, 240–241, 1–9. [Google Scholar] [CrossRef]
- Oliveira, P.T.; Santos e Silva, C.M.; Lima, K.C. Climatology and Trend Analysis of Extreme Precipitation in Subregions of Northeast Brazil. Theor. Appl. Climatol. 2017, 130, 77–90. [Google Scholar] [CrossRef]
- Esfandiari, N.; Lashkari, H. The Effect of Atmospheric Rivers on Cold-Season Heavy Precipitation Events in Iran. J. Water Clim. Chang. 2021, 12, 596–611. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, X.; Hao, F.; Wu, Y.; Li, C.; Xu, Y. Evaluating the Contributions of Climate Change and Human Activities to Runoff in Typical Semi-Arid Area, China. J. Hydrol. 2020, 590, 125555. [Google Scholar] [CrossRef]
- Herrera-Pantoja, M.; Hiscock, K.M. Projected Impacts of Climate Change on Water Availability Indicators in a Semi-Arid Region of Central Mexico. Environ. Sci. Policy 2015, 54, 81–89. [Google Scholar] [CrossRef]
- Traore, B.; Corbeels, M.; van Wijk, M.T.; Rufino, M.C.; Giller, K.E. Effects of Climate Variability and Climate Change on Crop Production in Southern Mali. Eur. J. Agron. 2013, 49, 115–125. [Google Scholar] [CrossRef]
- Yamusa, A.M.; Abubakar, I.U.; Falaki, A.M. Rainfall Variability and Crop Production in the North-Western Semi-Arid Zone of Nigeria. J. Soil Sci. Environ. Manag. 2015, 6, 125–131. [Google Scholar] [CrossRef]
- Sarr, B. Present and Future Climate Change in the Semi-arid Region of West Africa: A Crucial Input for Practical Adaptation in Agriculture. Atmos. Sci. Lett. 2012, 13, 108–112. [Google Scholar] [CrossRef]
- Mubvuma, M.T. Climate Change: Matching Growing Season Length with Maize Crop Varietal Life Cycles in Semi-Arid Regions of Zimbabwe. Greener J. Agric. Sci. 2013, 3, 809–816. [Google Scholar] [CrossRef]
- Roshan, G.; Oji, R.; Al-Yahyai, S. Impact of Climate Change on the Wheat-Growing Season over Iran. Arab. J. Geosci. 2014, 7, 3217–3226. [Google Scholar] [CrossRef]
- Serdeczny, O.; Adams, S.; Baarsch, F.; Coumou, D.; Robinson, A.; Hare, W.; Schaeffer, M.; Perrette, M.; Reinhardt, J. Climate Change Impacts in Sub-Saharan Africa: From Physical Changes to Their Social Repercussions. Reg. Environ. Chang. 2017, 17, 1585–1600. [Google Scholar] [CrossRef]
- van Oort, P.A.J.; Zwart, S.J. Impacts of Climate Change on Rice Production in Africa and Causes of Simulated Yield Changes. Glob. Chang. Biol. 2018, 24, 1029–1045. [Google Scholar] [CrossRef]
- Dhaliwal, D.S.; Williams, M.M. Evidence of Sweet Corn Yield Losses from Rising Temperatures. Sci. Rep. 2022, 12, 18218. [Google Scholar] [CrossRef]
- Huang, S.; Lv, L.; Zhu, J.; Li, Y.; Tao, H.; Wang, P. Extending Growing Period Is Limited to Offsetting Negative Effects of Climate Changes on Maize Yield in the North China Plain. Field Crops Res. 2018, 215, 66–73. [Google Scholar] [CrossRef]
- Cudjoe, G.P.; Antwi-Agyei, P.; Gyampoh, B.A. The Effect of Climate Variability on Maize Production in the Ejura-Sekyedumase Municipality, Ghana. Climate 2021, 9, 145. [Google Scholar] [CrossRef]
- Poudel, S.; Shaw, R. The Relationships between Climate Variability and Crop Yield in a Mountainous Environment: A Case Study in Lamjung District, Nepal. Climate 2016, 4, 13. [Google Scholar] [CrossRef]
- Cammarano, D.; Zierden, D.; Stefanova, L.; Asseng, S.; O’Brien, J.J.; Jones, J.W. Using Historical Climate Observations to Understand Future Climate Change Crop Yield Impacts in the Southeastern US. Clim. Chang. 2016, 134, 311–326. [Google Scholar] [CrossRef]
- Kucharik, C.J.; Serbin, S.P. Impacts of Recent Climate Change on Wisconsin Corn and Soybean Yield Trends. Environ. Res. Lett. 2008, 3, 034003. [Google Scholar] [CrossRef]
- Olabanji, M.F.; Ndarana, T.; Davis, N. Impact of Climate Change on Crop Production and Potential Adaptive Measures in the Olifants Catchment, South Africa. Climate 2021, 9, 6. [Google Scholar] [CrossRef]
- Petersen, L.K. Impact of Climate Change on Twenty-First Century Crop Yields in the U.S. Climate 2019, 7, 40. [Google Scholar] [CrossRef]
- Awala, S.K.; Hove, K.; Wanga, M.A.; Valombola, J.S.; Mwandemele, O.D. Rainfall Trend and Variability in Semi-Arid Northern Namibia: Implications for Smallholder Agricultural Production. Welwitschai Int. J. Agric. Sci. 2019, 1, 1–25. [Google Scholar]
- McCarthy, N.; Kilic, T.; Brubaker, J.; Murray, S.; de la Fuente, A. Droughts and Floods in Malawi: Impacts on Crop Production and the Performance of Sustainable Land Management Practices under Weather Extremes. Environ. Dev. Econ. 2021, 26, 432–449. [Google Scholar] [CrossRef]
- Barber, A.; Müller, C. Drought and Subsequent Soil Flooding Affect the Growth and Metabolism of Savoy Cabbage. Int. J. Mol. Sci. 2021, 22, 13307. [Google Scholar] [CrossRef]
- Akhtar, I.; Nazir, N. Effect of Waterlogging and Drought Stress in Plants. Int. J. Water Resour. Environ. Sci. 2013, 2, 34–40. [Google Scholar]
- Jaiphong, T.; Tominaga, J.; Watanabe, K.; Nakabaru, M.; Takaragawa, H.; Suwa, R.; Ueno, M.; Kawamitsu, Y. Effects of Duration and Combination of Drought and Flood Conditions on Leaf Photosynthesis, Growth and Sugar Content in Sugarcane. Plant Prod. Sci. 2016, 19, 427–437. [Google Scholar] [CrossRef]
- Awala, S.K. Mitigation of Flood Stress for Semi-Arid Cereals by the Mixed-Seedling with Rice (Oryza sativa). Ph.D. Thesis, Kindai University, Higashiosaka, Japan, 2017. [Google Scholar]
- Bello, A.H.; Scholes, M.; Newete, S.W. Impacts of Agroclimatic Variability on Maize Production in the Setsoto Municipality in the Free State Province, South Africa. Climate 2020, 8, 147. [Google Scholar] [CrossRef]
- Cook, K.H.; Vizy, E.K. Impact of Climate Change on Mid-Twenty-First Century Growing Seasons in Africa. Clim. Dyn. 2012, 39, 2937–2955. [Google Scholar] [CrossRef]
- Pathak, T.B.; Stoddard, C.S. Climate Change Effects on the Processing Tomato Growing Season in California Using Growing Degree Day Model. Model. Earth Syst. Environ. 2018, 4, 765–775. [Google Scholar] [CrossRef]
- Yoon, P.R.; Choi, J.-Y. Effects of Shift in Growing Season Due to Climate Change on Rice Yield and Crop Water Requirements. Paddy Water Environ. 2020, 18, 291–307. [Google Scholar] [CrossRef]
- Kihupi, N.I.; Tarimo, A.K.P.R.; Masika, R.J.; Boman, B.; Dick, W.A. Trend of Growing Season Characteristics of Semi-Arid Arusha District in Tanzania. J. Agric. Sci. 2015, 7, 45–55. [Google Scholar] [CrossRef]
- Mupangwa, W.; Walker, S.; Twomlow, S. Start, End and Dry Spells of the Growing Season in Semi-Arid Southern Zimbabwe. J. Arid Environ. 2011, 75, 1097–1104. [Google Scholar] [CrossRef]
- Herslund, L.B.; Jalayer, F.; Jean-Baptiste, N.; Jørgensen, G.; Kabisch, S.; Kombe, W.; Lindley, S.; Nyed, P.K.; Pauleit, S.; Printz, A.; et al. A Multi-Dimensional Assessment of Urban Vulnerability to Climate Change in Sub-Saharan Africa. Nat. Hazards 2016, 82, 149–172. [Google Scholar] [CrossRef]
- Vicuña, S.; McPhee, J.; Garreaud, R.D. Agriculture Vulnerability to Climate Change in a Snowmelt-Driven Basin in Semiarid Chile. J. Water Resour. Plan. Manag. 2012, 138, 431–441. [Google Scholar] [CrossRef]
- Zhou, L.; Kori, D.S.; Sibanda, M.; Nhundu, K. An Analysis of the Differences in Vulnerability to Climate Change: A Review of Rural and Urban Areas in South Africa. Climate 2022, 10, 118. [Google Scholar] [CrossRef]
- Ramin, B.M.; McMichael, A.J. Climate Change and Health in Sub-Saharan Africa: A Case-Based Perspective. Ecohealth 2009, 6, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Connolly-Boutin, L.; Smit, B. Climate Change, Food Security, and Livelihoods in Sub-Saharan Africa. Reg. Environ. Chang. 2016, 16, 385–399. [Google Scholar] [CrossRef]
- De Souza, K.; Kituyi, E.; Harvey, B.; Leone, M.; Murali, K.S.; Ford, J.D. Vulnerability to Climate Change in Three Hot Spots in Africa and Asia: Key Issues for Policy-Relevant Adaptation and Resilience-Building Research. Reg. Environ. Chang. 2015, 15, 747–753. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2019: Safeguarding against Economic Slowdowns and Downturns; FAO: Rome, Italy, 2019; ISBN 9789251315705. [Google Scholar]
- FSIN. Global Report on Food Crises. Joint Analysis for Better Decisions; Food Security Information Network (FSIN): New York, NY, USA; Global Network against Food Crises: Rome, Italy, 2020. [Google Scholar]
- Awala, S.K.; Hove, K.; Simasiku, E.K.; Izumi, Y.; Mwandemele, O.D.; Iijima, M. Performance of Rice Genotypes under Temporally Variable Wetland Salinity Conditions of a Semiarid Sub-Saharan Climatic Environment. Land 2023, 12, 888. [Google Scholar] [CrossRef]
- Heyns, P.S.V.H. Guidelines for the Utilisation of Water Resources and Protection of Wetlands in Namibia. Madoqua 1991, 17, 249–251. [Google Scholar]
- Mendelsohn, J.; Jarvis, A.; Roberts, C.; Robertson, T. Atlas of Namibia: A Portrait of the Land and Its People; David Philip Publishers: Cape Town, South Africa, 2002; ISBN 0-86486-516-3. [Google Scholar]
- Namibia Statistics Agency. Namibia Population Projections 2011–2041; Namibia Statistics Agency: Windhoek, Namibia, 2014. [Google Scholar]
- Mendelsohn, J.; Firm, R. Farming Systems in Namibia; RAISON: Windhoek, Namibia, 2006; ISBN 9991678042. [Google Scholar]
- Matanyaire, C.M. Pearl millet production system(s) in the communal areas of northern Namibia: Priority research foci arising from a diagnostic study. In Drought-Tolerant Crops for Southern Africa, Proceedings of the SADC/ICRISAT Regional Sorghum and Pearl Millet Workshop, 25–29 July 1994, Gaborone, Botswana; Leuschner, K., Manthe, C.S., Eds.; ICRISAT: Patancheru, India, 1996; pp. 43–58. [Google Scholar]
- Namibia Statistics Agency. Namibia 2011 Population & Housing Census—Main Report; Namibia Statistics Agency: Windhoek, Namibia, 2013. [Google Scholar]
- Wang, J.; Vanga, S.; Saxena, R.; Orsat, V.; Raghavan, V. Effect of Climate Change on the Yield of Cereal Crops: A Review. Climate 2018, 6, 41. [Google Scholar] [CrossRef]
- Rohrbach, D.D.; Lechner, W.R.; Ipinge, S.A.; Monyo, E.S. Impact from Investments in Crop Breeding: The Case of Okashana 1 in Namibia; Impact Ser. International Crops Research Institute for the Semi-Arid Tropics: Patancheru, India, 1999; ISBN 92-9066-405-3. [Google Scholar]
- Monyo, E.S.; Gupta, S.C.; Muuka, F.; Ipinge, S.A.; Chambo, H.; Mpofu, L.; Chintu, E.; Mogorosi, M.; Mutaliano, J. Pearl Millet Cultivars Released in the SADC Region; ICRISAT: Bulawayo, Zimbabwe, 2002. [Google Scholar]
- Matanyaire, C.M. Sustainability of Pearl Millet (Pennisetum glaucum) Productivity in Northern Namibia: Current Situation and Challenges. S. Afr. J. Sci. 1998, 94, 157–166. [Google Scholar]
- Kangalawe, R.Y.M.; Lyimo, J.G. Climate Change, Adaptive Strategies and Rural Livelihoods in Semiarid Tanzania. Nat. Resour. 2013, 4, 266–278. [Google Scholar] [CrossRef]
- Dhanya, P.; Ramachandran, R. Farmers’ Perceptions of Climate Change and the Proposed Agriculture Adaptation Strategies in a Semi Arid Region of South India. J. Integr. Environ. Sci. 2016, 13, 1–18. [Google Scholar] [CrossRef]
- Hirooka, Y.; Masuda, T.; Watanabe, Y.; Izumi, Y.; Inai, H.; Awala, S.K.; Iijima, M. Agronomic and Socio-Economic Assessment of the Introduction of a Rice-Based Mixed Cropping System to Cuvelai Seasonal Wetland System in Northern Namibia. Agrekon 2021, 60, 145–156. [Google Scholar] [CrossRef]
- Nwajei, S.E.; Omoregie, A.U.; Ogedegbe, F.O. Effects of Planting Dates on the Growth and Grain Yield of Two Indigenous Varieties of Pearl Millet (Pennisetum glaucum (L.) R.Br.) in a Forest-Savanna Transition Zone of Edo State, Nigeria. Acta Agric. Slov. 2019, 114, 169–181. [Google Scholar] [CrossRef]
- Nwajei, S.E. Effects of planting dates on the crude protein and nutrient uptake of two varieties of millet (Pennisetum typhoides (Burm. f.)) Stapf & Hubbard in a forest-savanna transition zone of Edo state. Sustain. Agri Food Environ. Res. 2023, 11, 1–14. [Google Scholar]
- Hirooka, Y.; Shoji, K.; Watanabe, Y.; Izumi, Y.; Awala, S.K.; Iijima, M. Ridge Formation with Strip Tillage Alleviates Excess Moisture Stress for Drought-Tolerant Crops. Soil Tillage Res. 2019, 195, 104429. [Google Scholar] [CrossRef]
- Iijima, M.; Awala, S.K.; Nanhapo, P.I.; Wanga, A.; Mwandemele, O.D. Development of flood-and drought-adaptive cropping systems in Namibia. In Crop Production under Stressful Conditions; Springer: Berlin/Heidelberg, Germany, 2018; pp. 49–70. [Google Scholar]
- Siyambango, N.; Togarepi, C.; Mudamburi, B.; Mupambwa, H.A.; Awala, S. Climate-Smart Agriculture: Perspectives for Subsistence Crop Farming in Namibia. In Food Security for African Smallholder Farmers; Springer: Berlin/Heidelberg, Germany, 2022; pp. 251–266. [Google Scholar]
- Jha, A.; Malla, R.; Sharma, M.; Panthi, J.; Lakhankar, T.; Krakauer, N.; Pradhanang, S.; Dahal, P.; Shrestha, M. Impact of Irrigation Method on Water Use Efficiency and Productivity of Fodder Crops in Nepal. Climate 2016, 4, 4. [Google Scholar] [CrossRef]
- Silungwe, F.R.; Graef, F.; Bellingrath-Kimura, S.D.; Tumbo, S.D.; Kahimba, F.C.; Lana, M.A. The Management Strategies of Pearl Millet Farmers to Cope with Seasonal Rainfall Variability in a Semi-Arid Agroclimate. Agronomy 2019, 9, 400. [Google Scholar] [CrossRef]
- Minoli, S.; Jägermeyr, J.; Asseng, S.; Urfels, A.; Müller, C. Global Crop Yields Can Be Lifted by Timely Adaptation of Growing Periods to Climate Change. Nat. Commun. 2022, 13, 7079. [Google Scholar] [CrossRef]
- Marteau, R.; Sultan, B.; Moron, V.; Alhassane, A.; Baron, C.; Traoré, S.B. The Onset of the Rainy Season and Farmers’ Sowing Strategy for Pearl Millet Cultivation in Southwest Niger. Agric. For. Meteorol. 2011, 151, 1356–1369. [Google Scholar] [CrossRef]
- Agoungbome, S.M.D.; ten Veldhuis, M.-C.; van de Giesen, N. Optimal Sowing Windows under Rainfall Variability in Rainfed Agriculture in West Africa. Agronomy 2023, 13, 167. [Google Scholar] [CrossRef]
- Detroja, A.C.; Bhuva, H.M.; Chaudhari, N.N.; Patel, P.R.; Kikani, V.L. Production Potential of Improved Pearlmillet (Pennisetum glaucum L.) Cultivars under Staggered Sowing in Raifed Areas of Western India. Int. J. Environ. Sci. Nat. Resour. 2018, 12, 555845. [Google Scholar] [CrossRef]
- Dera, J.; Mpofu, L.; Tavirimirwa, B. Response of Pearl Millet Varieties to Different Dates of Sowing at Makoholi and Kadoma Research Stations, Zimbabwe. Acad. J. Agric. Res. 2014, 2, 110–113. [Google Scholar]
- Omoregie, A.U.; Nwajei, S.E.; Iredia, B.E. Effects of Planting Density on the Growth and Forage Yield of Two Varieties of Millet (Pennisetum typhoides Burm. F.) Grown in Ekpoma, Nigeria. Sustain. Agri Food Environ. Res. 2020, 8, 118–128. [Google Scholar] [CrossRef]
- Mendelsohn, J.; Weber, B. Cuvelai: The Cuvelai Basin, Its Water and People in Angola and Namibia; Development Workshop Angola: Luanda, Angola, 2011; ISBN 978-99916-780-7-8. [Google Scholar]
- Hove, K.; Johannes, J.; Hatutale, G.; Awala, S.K.; Ausiku, P. Growth and Yield Response of Swiss Chard (Beta vulgaris (L.) to Media Mixture Ratios of Sand, Acacia Soil, and Goat Manure. Magna Sci. Adv. Biol. Pharm. 2020, 1, 018–024. [Google Scholar] [CrossRef]
- McDonagh, J.F.; Hillyer, A.E.M. Grain Legumes in Pearl Millet Systems in Northern Namibia: An Assessment of Potential Nitrogen Contributions. Exp. Agric. 2003, 39, 349–362. [Google Scholar] [CrossRef]
- Mendelsohn, J.; Jarvis, A.; Robertson, T. A Profile and Atlas of the Cuvela—Etosha Basin; RAISON: Windhoek, Namibia, 2013; ISBN 9991678077. [Google Scholar]
- Brown, C.E. Coefficient of Variation. In Applied Multivariate Statistics in Geohydrology and Related Sciences; Springer: Berlin/Heidelberg, Germany, 1998; pp. 155–157. [Google Scholar]
- Mann, H.B. Nonparametric Tests against Trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G.; Stuart, A. The Advanced Theory of Statistics, Vol. 2: Inference and Relationship; Waffler Publishing: New York, NY, USA, 1967; ISBN 0852640110. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of Trend Analysis for Monthly Water Quality Data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef]
- Modarres, R.; de Paulo Rodrigues da Silva, V. Rainfall Trends in Arid and Semi-Arid Regions of Iran. J. Arid Environ. 2007, 70, 344–355. [Google Scholar] [CrossRef]
- Blain, G.C. The Mann-Kendall Test: The Need to Consider the Interaction between Serial Correlation and Trend. Acta Sci. Agron. 2013, 35, 393–402. [Google Scholar] [CrossRef]
- Mgonja, M.A.; Monyo, E.S.; Chandra, S. Enhancing Crop Breeding Programmes: The Case of Sorghum and Pearl Millet in Southern Africa. Afr. Crop Sci. J. 2005, 13, 201–208. [Google Scholar]
- Ipinge, S.A. The Effects of Dates of Planting on Yield and Yield Components of Pearl Millet. Agricola 2001, 12, 50–51. [Google Scholar]
- Monyo, E.S. 15 Years of Pearl Millet Improvement in the SADC Region. Int. Sorghum Millet Newsl. 1998, 39, 17–33. [Google Scholar]
- Eckardt, F.D.; Soderberg, K.; Coop, L.J.; Muller, A.A.; Vickery, K.J.; Grandin, R.D.; Jack, C.; Kapalanga, T.S.; Henschel, J. The Nature of Moisture at Gobabeb, in the Central Namib Desert. J. Arid Environ. 2013, 93, 7–19. [Google Scholar] [CrossRef]
- Lu, X.; Wang, L.; Pan, M.; Kaseke, K.F.; Li, B. A Multi-Scale Analysis of Namibian Rainfall over the Recent Decade—Comparing TMPA Satellite Estimates and Ground Observations. J. Hydrol. Reg. Stud. 2016, 8, 59–68. [Google Scholar] [CrossRef]
- Tschakert, P.; Sagoe, R.; Ofori-Darko, G.; Codjoe, S.N. Floods in the Sahel: An Analysis of Anomalies, Memory, and Anticipatory Learning. Clim. Chang. 2010, 103, 471–502. [Google Scholar] [CrossRef]
- Anthonj, C.; Nkongolo, O.T.; Schmitz, P.; Hango, J.N.; Kistemann, T. The Impact of Flooding on People Living with HIV: A Case Study from the Ohangwena Region, Namibia. Glob. Health Action 2015, 8, 26441. [Google Scholar] [CrossRef]
- Mendelsohn, J.M.; El Obeid, S.; Roberts, C. A Profile of North-Central Namibia; Gamsberg Macmillan Publishers: Windhoek, Namibia, 2000; ISBN 99916-0-215-1. [Google Scholar]
- Vicente-Serrano, S.M.; Cabello, D.; Tomás-Burguera, M.; Martín-Hernández, N.; Beguería, S.; Azorin-Molina, C.; Kenawy, A. El Drought Variability and Land Degradation in Semiarid Regions: Assessment Using Remote Sensing Data and Drought Indices (1982–2011). Remote Sens. 2015, 7, 4391–4423. [Google Scholar] [CrossRef]
- Persendt, F.C.; Gomez, C.; Zawar-Reza, P. Identifying Hydro-Meteorological Events from Precipitation Extremes Indices and Other Sources over Northern Namibia, Cuvelai Basin. Jàmbá J. Disaster Risk Stud. 2015, 7, 1–18. [Google Scholar] [CrossRef]
- Mphale, K.M.; Dash, S.K.; Adedoyin, A.; Panda, S.K. Rainfall Regime Changes and Trends in Botswana Kalahari Transect’s Late Summer Precipitation. Theor. Appl. Climatol. 2014, 116, 75–91. [Google Scholar] [CrossRef]
- Batisani, N.; Yarnal, B. Rainfall Variability and Trends in Semi-Arid Botswana: Implications for Climate Change Adaptation Policy. Appl. Geogr. 2010, 30, 483–489. [Google Scholar] [CrossRef]
- Chikodzi, D.; Murwendo, T.; Simba, F.M. Climate Change and Variability in Southeast Zimbabwe: Scenarios and Societal Opportunities. Am. J. Clim. Chang. 2013, 2, 36–46. [Google Scholar] [CrossRef]
- Kiros, G.; Shetty, A.; Nandagiri, L. Extreme Rainfall Signatures under Changing Climate in Semi-Arid Northern Highlands of Ethiopia. Cogent Geosci. 2017, 3, 1353719. [Google Scholar] [CrossRef]
- Addisu, S.; Selassie, Y.G.; Fissha, G.; Gedif, B. Time Series Trend Analysis of Temperature and Rainfall in Lake Tana Sub-Basin, Ethiopia. Environ. Syst. Res. 2015, 4, 25. [Google Scholar] [CrossRef]
- Cerioli, T.; Gentimis, T.; Linscombe, S.D.; Famoso, A.N. Effect of Rice Planting Date and Optimal Planting Window for Southwest Louisiana. Agron. J. 2021, 113, 1248–1257. [Google Scholar] [CrossRef]
- Slaton, N.A.; Linscombe, S.D.; Norman, R.J.; Gbur, E.E. Seeding Date Effect on Rice Grain Yields in Arkansas and Louisiana. Agron. J. 2003, 95, 218–223. [Google Scholar] [CrossRef]
- Namibian Agronomic Board. Annual Report 2018/2019; Namibian Agronomic Board: Windhoek, Namibia, 2019. [Google Scholar]
- Awala, S.K.; Hove, K.; Shivute, V.; Valombola, J.S.; Nanhapo, P.I.; Hirooka, Y.; Mwandemele, O.D.; Iijima, M. Growth and Productivity Assessment of Short-Duration Rice (Oryza sativa L. and Upland NERICA) Genotypes in Semiarid North-Central Namibia. Adv. Agric. 2021, 2021, 6676081. [Google Scholar] [CrossRef]
- Iijima, M.; Awala, S.K.; Watanabe, Y.; Kawato, Y.; Fujioka, Y.; Yamane, K.; Wada, K.C. Mixed Cropping Has the Potential to Enhance Flood Tolerance of Drought-Adapted Grain Crops. J. Plant Physiol. 2016, 192, 21–25. [Google Scholar] [CrossRef]
- Mudamburi, B.; Ogunmokun, A.A.; Kachigunda, B. A Comparison of the Effects of Conventional and Namibia Specific Conservation Tillage Methods Used in Ogongo, Namibia on Root Development and Yield of Pearl Millet. Volume 1. Am. Sci. Res. J. Eng. Technol. Sci. 2018, 40, 27–39. [Google Scholar]
- Ajeigbe, H.A.; Akinseye, F.M.; Kunihya, A.; Abdullahi, I.; Kamara, A.Y. Response of Pearl Millet (Pennisetum glaucum L.) to Plant Population in the Semi-Arid Environments of Nigeria. Net J. Agric. Sci. 2019, 7, 13–22. [Google Scholar] [CrossRef]
- Reddy, S.B.P.; Madhuri, K.V.N.; Venkaiah, K.; Prathima, T. Effect of Nitrogen and Potassium on Yield and Quality of Pearl Millet (Pennisetum glaucum L.). Int. J. Agric. Innov. Res. Vol. 2016, 4, 678–681. [Google Scholar]
Statistic | Annual | Month | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Jan | Feb | Mar | Apr | ||
Mean (mm) | 475.1 | 1.5 | 0.0 | 0.0 | 0.0 | 0.2 | 10.3 | 38.5 | 71.6 | 103.4 | 107.3 | 112.6 | 29.7 |
SD | 185.4 | 5.7 | 0.0 | 0.0 | 0.0 | 1.1 | 18.5 | 31.6 | 65.3 | 66.4 | 86.8 | 72.4 | 35.6 |
Statistic | Annual | Dry Season | Rainy Season | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Jan | Feb | Mar | Apr | ||
ZMK | −0.002 | – | – | – | – | 0.116 | −0.094 | −0.011 | −0.097 | −0.062 | −0.140 | 0.083 | 0.102 |
p-value | 1.000 ns | – | – | – | – | 0.488 ns | 0.498 ns | 0.943 ns | 0.464 ns | 0.643 ns | 0.284 ns | 0.532 ns | 0.442 ns |
Sen’s slope (mm/year) | −0.036 | – | – | – | – | 0.000 | 0.000 | −0.033 | −0.800 | −0.833 | −1.727 | 0.763 | 0.194 |
Day of the Year | Calendar Date | Relative Yield (%) | |
---|---|---|---|
Kantana | Okashana-2 | ||
1 | 1 January | 100 | 64 |
7 | 7 January | 82 | 67 |
14 | 14 January | 66 | 67 |
21 | 21 January | 55 | 63 |
28 | 28 January | 47 | 57 |
35 | 4 February | 43 | 50 |
42 | 11 February | 40 | 44 |
49 | 18 February | 38 | 40 |
56 | 27 February | 36 | 38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awala, S.K.; Hove, K.; Valombola, J.S.; Nafuka, H.N.; Simasiku, E.K.; Chataika, B.; Horn, L.N.; Angombe, S.; Akundabweni, L.S.M.; Mwandemele, O.D. Co-Cultivation and Matching of Early- and Late-Maturing Pearl Millet Varieties to Sowing Windows Can Enhance Climate-Change Adaptation in Semi-Arid Sub-Saharan Agroecosystems. Climate 2023, 11, 227. https://doi.org/10.3390/cli11110227
Awala SK, Hove K, Valombola JS, Nafuka HN, Simasiku EK, Chataika B, Horn LN, Angombe S, Akundabweni LSM, Mwandemele OD. Co-Cultivation and Matching of Early- and Late-Maturing Pearl Millet Varieties to Sowing Windows Can Enhance Climate-Change Adaptation in Semi-Arid Sub-Saharan Agroecosystems. Climate. 2023; 11(11):227. https://doi.org/10.3390/cli11110227
Chicago/Turabian StyleAwala, Simon Kamwele, Kudakwashe Hove, Johanna Shekupe Valombola, Helena Nalitende Nafuka, Evans Kamwi Simasiku, Barthlomew Chataika, Lydia Ndinelao Horn, Simon Angombe, Levi S. M. Akundabweni, and Osmund D. Mwandemele. 2023. "Co-Cultivation and Matching of Early- and Late-Maturing Pearl Millet Varieties to Sowing Windows Can Enhance Climate-Change Adaptation in Semi-Arid Sub-Saharan Agroecosystems" Climate 11, no. 11: 227. https://doi.org/10.3390/cli11110227
APA StyleAwala, S. K., Hove, K., Valombola, J. S., Nafuka, H. N., Simasiku, E. K., Chataika, B., Horn, L. N., Angombe, S., Akundabweni, L. S. M., & Mwandemele, O. D. (2023). Co-Cultivation and Matching of Early- and Late-Maturing Pearl Millet Varieties to Sowing Windows Can Enhance Climate-Change Adaptation in Semi-Arid Sub-Saharan Agroecosystems. Climate, 11(11), 227. https://doi.org/10.3390/cli11110227