Regional to Mesoscale Influences of Climate Indices on Tornado Variability
Abstract
:1. Introduction
- How do climate indices affect tornado frequency regionally and at the mesoscale?
- Do these effects vary between mesoscale locations and their encompassing regions?
2. Materials and Methods
- GPUS: Kansas, Nebraska, North Dakota, Oklahoma, South Dakota, and Texas;
- MWUS: Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin;
- SEUS: Alabama, Arkansas, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, Tennessee, and South Carolina.
2.1. Monthly Tornado Frequency at the Regional Scale and Mesoscale
2.2. Pearson Correlations: Climate Indices and Regional Tornado Frequency
2.3. Generalized Linear Models: Climate Indices and Regional Tornado Frequency
2.4. Pearson Correlations: Climate Indices and Mesoscale Tornado Frequency
2.5. Generalized Linear Models: Climate Indices and Mesoscale Tornado Frequency
2.6. Summary of Climate Indices’ Influence on Tornado Frequency Regionally and at the Mesoscale
3. Results
3.1. Monthly Tornado Climatology for the Regional Scale and Mesoscale Study Areas
3.2. Regional Results for Tornado Frequency
3.3. Mesoscale Results for Tornado Frequency
3.4. Summary of the Influence of Climate Indices on Tornado Activity Regionally and at the Mesoscale
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Coleman, T.A.; Dixon, P.G. An objective analysis of tornado risk in the United States. Weather Forecast. 2014, 29, 366–376. [Google Scholar] [CrossRef]
- Long, J.A.; Stoy, P.C.; Gerken, T. Tornado seasonality in the southeastern United States. Weather Clim. Extrem. 2018, 20, 81–91. [Google Scholar] [CrossRef]
- Ashley, W.S.; Strader, S.; Rosencrants, T.; Krmenec, A.J. Spatiotemporal changes in tornado hazard exposure: The case of the expanding bull’s-eye effect in Chicago, Illinois. Weather Clim. Soc. 2014, 6, 175–193. [Google Scholar] [CrossRef]
- Strader, S.M.; Ashley, W.S.; Pingel, T.J.; Krmenec, A.J. Observed and Projected Changes in United States Tornado Exposure. Weather Clim. Soc. 2017, 9, 109–123. [Google Scholar] [CrossRef]
- Strader, S.M.; Ashley, W.S. Finescale Assessment of Mobile Home Tornado Vulnerability in the Central and Southeast United States. Weather Clim. Soc. 2018, 10, 797–812. [Google Scholar] [CrossRef]
- Cao, Z.; Cai, H.; Zhang, G.J. Geographic shift and environment change of US tornado activities in a warming climate. Atmosphere 2021, 12, 567. [Google Scholar] [CrossRef]
- Fricker, T.; Friesenhahn, C. Tornado fatalities in context: 1995–2018. Weather Clim. Soc. 2022, 14, 81–93. [Google Scholar] [CrossRef]
- Barrett, B.S.; Gensini, V.A. Variability of central United States April–May tornado day likelihood by phase of the Madden-Julian Oscillation. Geophys. Res. Lett. 2013, 40, 2790–2795. [Google Scholar] [CrossRef]
- Moore, T.W. Seasonal Frequency and Spatial Distribution of Tornadoes in the United States and Their Relationship to the El Niño/Southern Oscillation. Ann. Am. Assoc. Geogr. 2019, 109, 1033–1051. [Google Scholar] [CrossRef]
- Brown, M.C.; Nowotarski, C.J. Southeastern U.S. Tornado Outbreak Likelihood Using Daily Climate Indices. J. Clim. 2020, 33, 3229–3252. [Google Scholar] [CrossRef]
- Lee, S.K.; Atlas, R.; Enfield, D.; Wang, C.; Liu, H. Is there an optimal ENSO pattern that enhances large-scale atmospheric processes conducive to tornado outbreaks in the United States? J. Clim. 2013, 26, 1626–1642. [Google Scholar] [CrossRef]
- Allen, J.T.; Tippett, M.K.; Sobel, A.H. Influence of the El Niño/Southern Oscillation on tornado and hail frequency in the United States. Nat. Geosci. 2015, 8, 278–283. [Google Scholar] [CrossRef]
- Cook, A.R.; Leslie, L.M.; Parsons, D.B.; Schaefer, J.T. The Impact of El Niño–Southern Oscillation (ENSO) on Winter and Early Spring U.S. Tornado Outbreaks. J. Appl. Meteorol. Climatol. 2017, 56, 2455–2478. [Google Scholar] [CrossRef]
- Moore, T.W. Annual and seasonal tornado activity in the United States and the global wind oscillation. Clim. Dyn. 2018, 50, 4323–4334. [Google Scholar] [CrossRef]
- Moore, T.W.; St Clair, J.M.; DeBoer, T.A. An analysis of anomalous winter and Spring Tornado frequency by phase of the Global wind oscillation, and the Madden-Julian oscillation. Adv. Meteorol. 2018, 2018, 3612567. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, X.; Rind, D.; Martinson, D.G. Mechanism study of the ENSO and southern high latitude climate teleconnections. Geophys. Res. Lett. 2002, 29, 24-1–24-4. [Google Scholar] [CrossRef]
- Shepherd, M.; Niyogi, D.; Mote, T. A seasonal-scale climatological analysis correlating spring tornadic activity with antecedent fall–winter drought in the southeastern United States. Environ. Res. Lett. 2009, 4, 024012. [Google Scholar] [CrossRef]
- Muñoz, E.; Enfield, D. The boreal spring variability of the Intra-Americas low-level jet and its relation with precipitation and tornadoes in the eastern United States. Clim Dyn 2011, 36, 247–259. [Google Scholar] [CrossRef]
- Weaver, S.J.; Baxter, S.; Kumar, A. Climatic Role of North American Low-Level Jets on U.S. Regional Tornado Activity. J. Clim. 2012, 25, 6666–6683. [Google Scholar] [CrossRef]
- Thompson, D.B.; Roundy, P.E. The relationship between the Madden–Julian Oscillation and US violent tornado outbreaks in the spring. Mon. Weather Rev 2013, 141, 2087–2095. [Google Scholar] [CrossRef]
- Cook, A.R.; Schaefer, J.T. The Relation of El Niño–Southern Oscillation (ENSO) to Winter Tornado Outbreaks. Mon. Weather Rev. 2018, 136, 3121–3137. [Google Scholar] [CrossRef]
- Edwards, R.; Brooks, H.E.; Cohn, H. Changes in Tornado Climatology Accompanying the Enhanced Fujita Scale. J. Appl. Meteorol. Climatol. 2021, 60, 1465–1482. [Google Scholar] [CrossRef]
- Fuhrmann, C.M.; Konrad, C.E., II; Kovach, M.M.; McLeod, J.T.; Schmitz, W.G.; Dixon, P.G. Ranking of Tornado Outbreaks across the United States and Their Climatological Characteristics. Weather Forecast. 2014, 29, 684–701. [Google Scholar] [CrossRef]
- Foglietti, R.V.; Mitchell, T.J.; Ortegren, J.T. US tornado outbreak climatologies based on different definitions of “outbreak,” 1975–2014. Southeast. Geogr. 2020, 60, 6–22. [Google Scholar] [CrossRef]
- Brooks, H.; Doswell, C.A., III. CA Some aspects of the international climatology of tornadoes by damage classification. Atmos. Res. 2001, 56, 191–201. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Schuur, T.J.; Burgess, D.W.; Zrnic, D.S. Polarimetric tornado detection. J. Appl. Meteorol. Climatol. 2005, 44, 557–570. [Google Scholar] [CrossRef]
- Marzban, C.; Schaefer, J.T. The correlation between U.S. tornadoes and Pacific sea surface temperatures. Mon. Weath. Rev. 2001, 129, 884–895. [Google Scholar] [CrossRef]
- Switanek, M.B.; Troch, P.A.; Castro, C.L. Improving seasonal predictions of climate variability and water availability at the catchment scale. J. Hydrometeorol. 2009, 10, 1521–1533. [Google Scholar] [CrossRef]
- Shah, L.; Arnillas, C.A.; Arhonditsis, G.B. Characterizing temporal trends of meteorological extremes in Southern and Central Ontario, Canada. Weather Clim. Extrem. 2022, 35, 100411. [Google Scholar] [CrossRef]
- Gibbs, J.G. Evaluating precursor signals for QLCS tornado and higher impact straight-line wind events. J. Operational Meteor. 2021, 9, 62–75. [Google Scholar] [CrossRef]
- Tippett, M.K.; Sobel, A.H.; Camargo, S.J. Association of US tornado occurrence with monthly environmental parameters. Geophys. Res. Lett. 2012, 39, L02801. [Google Scholar] [CrossRef]
- McCullagh, P. Generalized Linear Models; Routledge: Abingdon, UK, 2019. [Google Scholar]
- Bonat, W.H.; Jørgensen, B.; Kokonendji, C.C.; Hinde, J.; Demétrio, C.G. Extended Poisson–Tweedie: Properties and regression models for count data. Stat. Model. 2018, 18, 24–49. [Google Scholar] [CrossRef]
- Suckling, P.W.; Ashley, W.S. Spatial and temporal characteristics of tornado path direction. Prof. Geogr. 2016, 58, 20–38. [Google Scholar] [CrossRef]
- Daneshvaran, S.; Morden, R.E. Tornado risk analysis in the United States. J. Risk Financ. 2007, 8, 97–111. [Google Scholar] [CrossRef]
- Dixon, P.G.; Mercer, A.E.; Choi, J.; Allen, J.S. Tornado risk analysis: Is Dixie Alley an extension of Tornado Alley? Bull. Am. Meteorol. Soc. 2011, 92, 433–441. [Google Scholar] [CrossRef]
Mesoscale Tornado Statistics | ||
---|---|---|
Tornadoes > EF0 in Study Area | Intersecting > EF0s (% Total > EF0s) | |
Birmingham, AL | 109 | 28 (25.7%) |
Cincinnati, OH/KY | 31 | 4 (12.9%) |
Kansas City, KS/MO | 94 | 17 (18.1%) |
Moore, OK | 145 | 14 (9.65%) |
Tanner, AL | 79 | 7 (8.9%) |
Tuscaloosa, AL | 52 | 11 (21.2%) |
Wichita, KS | 40 | 20 (50%) |
Mesoscale Study Areas | |
---|---|
Included Counties | |
Birmingham | Jefferson and Shelby |
Cincinnati | Hamilton, Boone, Kenton, and Campbell |
Kansas City | Jackson, Clay, Wyandotte, Platte, Leavenworth, and Johnson |
Moore | Oklahoma and Cleveland |
Tanner | Limestone and Madison |
Tuscaloosa | Tuscaloosa |
Wichita | Sedgwick |
EUS > EF0 Tornadoes and Climate Indices | GPUS > EF0 Tornadoes and Climate Indices | ||||||
---|---|---|---|---|---|---|---|
Index | Tri-Monthly Index Value | Index | Tri-Monthly Index Value | ||||
AO | JFM | FMA | MAM | PDO | JFM | FMA | MAM |
April Tornadoes | 0.138 | 0.274 | 0.251 | April Tornadoes | −0.265 | −0.279 | −0.288 |
ONI (ENSO) | JFM | FMA | MAM | PNA | JFM | FMA | MAM |
April Tornadoes | −0.257 | −0.249 | −0.233 | April Tornadoes | −0.319 | −0.390 | −0.344 |
PNA | JFM | FMA | MAM | RMM (MJO) | JFM | FMA | MAM |
April Tornadoes | −0.231 | −0.309 | −0.269 | April Tornadoes | 0.310 | 0.298 | 0.111 |
RMM (MJO) | JFM | FMA | MAM | June Tornadoes | −0.294 | 0.010 | 0.278 |
June Tornadoes | −0.350 | −0.089 | 0.235 | SOI Anomaly (ENSO) | JFM | FMA | MAM |
SOI Anomaly (ENSO) | JFM | FMA | MAM | April Tornadoes | 0.247 | 0.227 | 0.171 |
April Tornadoes | 0.427 | 0.427 | 0.383 | SOI Standardized (ENSO) | JFM | FMA | MAM |
SOI Standardized (ENSO) | JFM | FMA | MAM | April Tornadoes | 0.245 | 0.223 | 0.164 |
April Tornadoes | 0.426 | 0.426 | 0.385 | SEUS > EF0 Tornadoes and Climate Indices | |||
MWUS > EF0 Tornadoes and Climate Indices | Index | Tri-Monthly Index Value | |||||
Index | Tri-Monthly Index Value | AO | DJF | JFM | FMA | ||
ONI (ENSO) | JFM | FMA | MAM | April Tornadoes | 0.072 | 0.202 | 0.330 |
April Tornadoes | −0.306 | −0.312 | −0.301 | ONI (ENSO) | DJF | JFM | FMA |
PNA | JFM | FMA | MAM | March Tornadoes | −0.250 | −0.256 | −0.236 |
April Tornadoes | −0.202 | −0.292 | −0.342 | SOI Anomaly (ENSO) | DJF | JFM | FMA |
June Tornadoes | 0.300 | 0.320 | 0.296 | March Tornadoes | 0.296 | 0.229 | 0.174 |
RMM (MJO) | JFM | FMA | MAM | April Tornadoes | 0.301 | 0.300 | 0.320 |
June Tornadoes | −0.269 | −0.132 | 0.156 | SOI Standardized (ENSO) | DJF | JFM | FMA |
SOI Anomaly (ENSO) | JFM | FMA | MAM | March Tornadoes | 0.279 | 0.228 | 0.172 |
April Tornadoes | 0.457 | 0.426 | 0.354 | April Tornadoes | 0.285 | 0.299 | 0.320 |
SOI Standardized (ENSO) | JFM | FMA | MAM | ||||
April Tornadoes | 0.458 | 0.429 | 0.356 | ||||
June Tornadoes | −0.204 | −0.178 | −0.061 |
Seasonal Tornado Totals vs. Tri-monthly Climate Indices | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Birmingham | Cincinnati | Kansas City | Moore | Tanner | Tuscaloosa | Wichita | |||||||
None | None | AO JFM | −0.319 | AO JFM | −0.503 | PNA FMA | −0.349 | ONI OND | −0.360 | AO FMA | −0.414 | ||
NAO JFM | −0.463 | AO FMA | −0.464 | ASOI DJF | 0.392 | PDO OND | −0.374 | NAO FMA | −0.338 | ||||
NAO FMA | −0.348 | AO MAM | −0.332 | ASOI JFM | 0.367 | PDO JFM | −0.386 | ||||||
PNA JFM | −0.313 | NAO JFM | −0.485 | ASOI FMA | 0.395 | PNA ASO | 0.524 | ||||||
NAO FMA | −0.493 | SSOI DJF | 0.387 | ASOI OND | 0.586 | ||||||||
MJO JFM | −0.322 | SSOI JFM | 0.363 | ASOI JFM | 0.443 | ||||||||
MJO FMA | −0.376 | SSOI FMA | 0.393 | SSOI OND | 0.585 | ||||||||
SSOI JFM | 0.439 | ||||||||||||
Seasonal Tornado Totals vs. Seasonal Tri-monthlies | |||||||||||||
Birmingham | Cincinnati | Kansas City | Moore | Tanner | Tuscaloosa | Wichita | |||||||
ASOI | 0.362 | AO | 1.000 | NAO | −0.386 | AO | −0.486 | ASOI | 0.391 | ONI | −0.353 | AO | −0.361 |
SSOI | 0.361 | PNA | −0.320 | NAO | −0.450 | SSOI | 0.388 | PDO | −0.392 | ||||
ASOI | 0.532 | ||||||||||||
SSOI | 0.531 |
EUS | Significant Relationships | Relationship Phase | Phase Characteristics |
---|---|---|---|
AO | 3 | Positive | strong mid-latitude jet stream, northward storm track, reduced cold air outbreaks |
ENSO | 5 | Negative | anomalously cool SST in the Tropical Pacific Ocean |
MJO | 3 | Negative | enhanced rainfall in the Maritime Continent |
NAO | 0 | - | - |
PNA | 3 | Negative | ridging over the majority of EUS |
PDO | 0 | - | - |
GPUS | Significant Relationships | Relationship Phase | Phase Characteristics |
AO | 2 | Positive | strong mid-latitude jet stream, northward storm track, reduced cold air outbreaks |
ENSO | 5 | Negative | anomalously cool SST in the Tropical Pacific Ocean |
MJO | 4 | Positive | suppressed rainfall in the Maritime Continent |
NAO | 3 | Negative | wavier jet stream, negative values linked to cold conditions in EUS |
PNA | 7 | Negative | ridging over the majority of EUS, ridging weaker over GPUS |
PDO | 5 | Negative | positive SST in Central and Western North Pacific, negative SST in Eastern North Pacific |
MWUS | Significant Relationships | Relationship Phase | Phase Characteristics |
AO | 2 | Positive | strong mid-latitude jet stream, northward storm track, reduced cold air outbreaks |
ENSO | 11 | Negative | anomalously cool SST in the Tropical Pacific Ocean |
MJO | 3 | Negative | enhanced rainfall in the Maritime Continent |
NAO | 6 | Negative | wavier jet stream, negative values linked to cold conditions in EUS |
PNA | 9 | Positive | ridging over the WUS, trough in EUS |
PDO | 5 | Positive | negative SST in Central and Western North Pacific, positive SST in Eastern North Pacific |
SEUS | Significant Relationships | Relationship Phase | Phase Characteristics |
AO | 7 | Positive | strong mid-latitude jet stream, northward storm track, reduced cold air outbreaks |
ENSO | 6 | Negative | anomalously cool SST in the Tropical Pacific Ocean |
MJO | 2 | Negative | enhanced rainfall in the Maritime Continent |
NAO | 5 | Positive | zonal mid latitude jet stream, positive values linked to warm conditions in EUS |
PNA | 1 | Negative | ridging over the majority of EUS |
PDO | 1 | Negative | positive SST in Central and Western North Pacific, negative SST in Eastern North Pacific |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corey, C.P.; Senkbeil, J.C. Regional to Mesoscale Influences of Climate Indices on Tornado Variability. Climate 2023, 11, 223. https://doi.org/10.3390/cli11110223
Corey CP, Senkbeil JC. Regional to Mesoscale Influences of Climate Indices on Tornado Variability. Climate. 2023; 11(11):223. https://doi.org/10.3390/cli11110223
Chicago/Turabian StyleCorey, Cooper P., and Jason C. Senkbeil. 2023. "Regional to Mesoscale Influences of Climate Indices on Tornado Variability" Climate 11, no. 11: 223. https://doi.org/10.3390/cli11110223
APA StyleCorey, C. P., & Senkbeil, J. C. (2023). Regional to Mesoscale Influences of Climate Indices on Tornado Variability. Climate, 11(11), 223. https://doi.org/10.3390/cli11110223