Spatiotemporal Changes in Mean and Extreme Climate: Farmers’ Perception and Its Agricultural Implications in Awash River Basin, Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Types and Sources
2.2.1. Data Preparation, Quality Control, and Analysis of Extreme Climate Indices
2.2.2. Socioeconomic Data and Method of Analysis
2.2.3. Standardized Precipitation–Evapotranspiration Index
2.3. Climate Trend Analysis
3. Results and Discussion
3.1. Observed Annual Trend in Mean Temperature and Rainfall
3.2. Observed Annual Trend in Extreme Temperature
3.2.1. Coldest Night and Warmest Night
3.2.2. Cool Days and Cool Nights
3.2.3. Warm Days and Warm Nights
3.2.4. Warmest Day and Coldest Day
3.2.5. Diurnal Temperature Range and Number of Summer Days
3.2.6. Cold Spell Duration Indicator and Warm Spell Duration Indicator
3.3. Observed Changes in Precipitation Extremes
3.3.1. Consecutive Wet Days, Consecutive Dry Days, and Simple Daily Intensity Index
3.3.2. Number of Heavy and Very Heavy Precipitation Days
3.3.3. Maximum Precipitations of One Day and Five Days
3.3.4. Very Wet Days and Extremely Wet Days
3.3.5. Annual Total Precipitation on Wet Days
3.4. Drought Indices
3.5. Farmers’ Perception and Agricultural Implications of Climate Extremes
“Climate in our area is changing. Compared to our youth time, the rain does not come on time…., sometimes we experienced unexpected rainfall. The late rain during the main season is harming our agriculture”.
“Recently, we are observing changes and variation in climatic elements, which we believe as one of the contributors to the reduction of crop yields”. The key informant further elaborated on the situation as “the variability in rainfall and temperature is affecting crop productivity by introducing crop pests and disease”.
“It is observable that there is climate change and variability in our woreda. Because of woredas’ agroecological location, where almost half of the area is located in lowland, frequent drought experience, crop pest and disease, the animal disease is the main indicator of climate change in the woreda”.
“In previous years, our area is known with better rainfall, even several times of summer season; rainfall did not allow us to out from our tukul. But, in recent years, the rain is significantly decreasing, and rainfall amount we used to see in the arid area is coming to us”.
“There are multiple effects of climate change, among others, reduction in agricultural production, introduction and expansion of crop pests like armyworm, cutworms, yellow rust, aphids and smut, livestock diseases like Blackleg, anthrax, lumpy skin disease, human disease like malaria, frequent occurrences of drought years, and scarcity of water for irrigation are visible effects of climate change in the kebele.”
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: New York, NY, USA, 2021.
- IPCC. Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. 2019; in press. [Google Scholar]
- Maxwell, S.L.; Butt, N.; Maron, M.; McAlpine, C.A.; Chapman, S.; Ullmann, A.; Segan, D.B.; Watson, J.E. Conservation implications of ecological responses to extreme weather and climate events. Divers. Distrib. 2019, 25, 613–625. [Google Scholar] [CrossRef]
- Malhi, Y.; Franklin, J.; Seddon, N.; Solan, M.; Turner, M.G.; Field, C.B.; Knowlton, N. Climate change and ecosystems: Threats, opportunities and solutions. Philos. Trans. R. Soc. B 2020, 375, 20190104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maru, H.; Haileslassie, A.; Zeleke, T.; Esayas, B. Agroecology-based analysis of meteorological drought and mapping its hotspot areas in Awash Basin, Ethiopia. Model. Earth Syst. Environ. 2022, 8, 339–360. [Google Scholar] [CrossRef]
- Leal Filho, W.; Al-Amin, A.Q.; Nagy, G.J.; Azeiteiro, U.M.; Wiesböck, L.; Ayal, D.Y.; Morgan, E.A.; Mugabe, P.; Aparicio-Effen, M.; Fudjumdjum, H. A comparative analysis of climate-risk and extreme event-related impacts on well-being and health: Policy implications. Int. J. Environ. Res. 2018, 15, 331. [Google Scholar] [CrossRef] [Green Version]
- Raymond, C.; Horton, R.M.; Zscheischler, J.; Martius, O.; AghaKouchak, A.; Balch, J.; Bowen, S.G.; Camargo, S.J.; Hess, J.; Kornhuber, K. Understanding and managing connected extreme events. Nat. Clim. Chang. 2020, 10, 611–621. [Google Scholar] [CrossRef]
- Pasquier, U.; Few, R.; Goulden, M.; Hooton, S.; He, Y.; Hiscock, K. Integrating stakeholder and scientific knowledge of future flood risk to inform climate change adaptation planning in a coastal region. Geophys. Res. Abstr. 2020, 103, 50–57. [Google Scholar] [CrossRef]
- Ongoma, V.; Chen, H.; Omony, G.W. Variability of extreme weather events over the equatorial East Africa, a case study of rainfall in Kenya and Uganda. Theor. Appl. Climatol. 2018, 131, 295–308. [Google Scholar] [CrossRef]
- Ayugi, B.; Zhihong, J.; Zhu, H.; Ngoma, H.; Babaousmail, H.; Rizwan, K.; Dike, V. Comparison of CMIP6 and CMIP5 models in simulating mean and extreme precipitation over East Africa. Int. J. Climatol. 2021, 41, 6474–6496. [Google Scholar] [CrossRef]
- Ojara, M.A.; Yunsheng, L.; Babaousmail, H.; Wasswa, P. Trends and zonal variability of extreme rainfall events over East Africa during 1960–2017. Nat. Hazards 2021, 109, 33–61. [Google Scholar] [CrossRef]
- Kilavi, M.; MacLeod, D.; Ambani, M.; Robbins, J.; Dankers, R.; Graham, R.; Titley, H.; Salih, A.A.; Todd, M.C. Extreme rainfall and flooding over central Kenya including Nairobi city during the long-rains season 2018: Causes, predictability, and potential for early warning and actions. Atmosphere 2018, 9, 472. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Dettinger, M.D.; Michaelsen, J.C.; Verdin, J.P.; Brown, M.E.; Barlow, M.; Hoell, A. Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proc. Natl. Acad. Sci. USA 2008, 105, 11081–11086. [Google Scholar] [CrossRef] [Green Version]
- Kiros, G.; Shetty, A.; Nandagiri, L. Analysis of variability and trends in rainfall over northern Ethiopia. Arab. J. Geosci. 2016, 9, 451. [Google Scholar] [CrossRef]
- Alemu, M.M.; Bawoke, G.T. Analysis of spatial variability and temporal trends of rainfall in Amhara region, Ethiopia. J. Water Clim. Chang. 2020, 11, 1505–1520. [Google Scholar] [CrossRef]
- Belay, A.; Demissie, T.; Recha, J.W.; Oludhe, C.; Osano, P.M.; Olaka, L.A.; Solomon, D.; Berhane, Z. Analysis of Climate Variability and Trends in Southern Ethiopia. Climate 2021, 9, 96. [Google Scholar] [CrossRef]
- Esayas, B.; Simane, B.; Teferi, E.; Ongoma, V.; Tefera, N. Climate variability and farmers’ perception in Southern Ethiopia. Adv. Meteorol. 2019, 2019, 7341465. [Google Scholar] [CrossRef]
- Etana, D.; Snelder, D.J.; van Wesenbeeck, C.F.; de Cock Buning, T. Trends of climate change and variability in three agro-ecological settings in Central Ethiopia: Contrasts of meteorological data and farmers’ perceptions. Climate 2020, 8, 121. [Google Scholar] [CrossRef]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Changes in temperature and precipitation extremes in Ethiopia, Kenya, and Tanzania. Int. J. Climatol. 2019, 39, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Wiebe, K.; Robinson, S.; Cattaneo, A. Climate change, agriculture and food security: Impacts and the potential for adaptation and mitigation. In Sustainable Food and Agriculture; Academic Press: Cambridge, MA, USA, 2019; pp. 55–74. [Google Scholar] [CrossRef]
- Nhemachena, C.; Nhamo, L.; Matchaya, G.; Nhemachena, C.R.; Muchara, B.; Karuaihe, S.T.; Mpandeli, S. Climate change impacts on water and agriculture sectors in Southern Africa: Threats and opportunities for sustainable development. Water 2020, 12, 2673. [Google Scholar] [CrossRef]
- Asfaw, A.; Bantider, A.; Simane, B.; Hassen, A. Smallholder farmers’ livelihood vulnerability to climate change-induced hazards: Agroecology-based comparative analysis in Northcentral Ethiopia (Woleka Sub-basin). Heliyon 2021, 7, e06761. [Google Scholar] [CrossRef]
- Habte, A.; Mamo, G.; Worku, W.; Ayalew, D.; Gayler, S. Spatial Variability and Temporal Trends of Climate Change in Southwest Ethiopia: Association with Farmers’ Perception and Their Adaptation Strategies. Adv. Meteorol. 2021, 2021, 3863530. [Google Scholar] [CrossRef]
- Teshome, A.; Zhang, J. Increase of extreme drought over Ethiopia under climate warming. Adv. Meteorol. 2019, 2019, 5235429. [Google Scholar] [CrossRef] [Green Version]
- Geremew, G.M.; Mini, S.; Abegaz, A. Spatiotemporal variability and trends in rainfall extremes in Enebsie Sar Midir district, northwest Ethiopia. Model. Earth Syst. Environ. 2020, 6, 1177–1187. [Google Scholar] [CrossRef]
- Mekasha, A.; Tesfaye, K.; Duncan, A.J. Trends in daily observed temperature and precipitation extremes over three Ethiopian eco-environments. Int. J. Climatol. 2014, 34, 1990–1999. [Google Scholar] [CrossRef]
- Maru, H.; Haileslassie, A.; Zeleke, T.; Esayas, B. Analysis of Smallholders’ Livelihood Vulnerability to Drought across Agroecology and Farm Typology in the Upper Awash Sub-Basin, Ethiopia. Sustainability 2021, 13, 9764. [Google Scholar] [CrossRef]
- Tadese, M.; Kumar, L.; Koech, R.; Kogo, B.K. Mapping of land-use/land-cover changes and its dynamics in Awash River Basin using remote sensing and GIS. Remote Sens. Appl. Soc. Environ. 2020, 19, 100352. [Google Scholar] [CrossRef]
- Damtew, A.; Teferi, E.; Ongoma, V. Farmers’ perceptions and spatial statistical modeling of most systematic LULC transitions: Drivers and livelihood implications in Awash Basin, Ethiopia. Remote Sens. Appl. Soc. Environ. 2022, 25, 100661. [Google Scholar] [CrossRef]
- Bekele, D.; Alamirew, T.; Kebede, A.; Zeleke, G.; Melesse, A.M. Land use and land cover dynamics in the Keleta watershed, Awash River basin, Ethiopia. Environ. Hazards 2019, 18, 246–265. [Google Scholar] [CrossRef]
- Degefa, S.; Saito, O. Assessing the impacts of large-scale agro-industrial sugarcane production on biodiversity: A case study of Wonji Shoa Sugar Estate, Ethiopia. Agriculture 2017, 7, 99. [Google Scholar] [CrossRef] [Green Version]
- Whitmarsh, L.; Capstick, S. Perceptions of climate change. In Psychology and Climate Change: Human Perceptions, Impacts, and Responses; Elsevier: Amsterdam, The Netherlands, 2018; pp. 13–33. [Google Scholar] [CrossRef]
- Dendir, Z.; Simane, B. Farmers’ perceptions about changes in climate variables: Perceived risks and household responses in different agro-ecological communities, Southern Ethiopia. Clim. Serv. 2021, 22, 100236. [Google Scholar] [CrossRef]
- Ayal, D.Y.; Tilahun, K.; Ture, K.; Terefe Zeleke, T. Psychological dimensions of climate change: Perceptions, collective efficacy, and responses in Berehet District, north Shoa, Ethiopia. Clim. Chang. 2021, 165, 32. [Google Scholar] [CrossRef]
- Gebrehiwot, T.; van der Veen, A. Farmers’ drought experience, risk perceptions, and behavioural intentions for adaptation: Evidence from Ethiopia. Clim Dev. 2021, 13, 493–502. [Google Scholar] [CrossRef]
- Nguyen, T.P.L.; Mula, L.; Cortignani, R.; Seddaiu, G.; Dono, G.; Virdis, S.G.; Pasqui, M.; Roggero, P.P. Perceptions of present and future climate change impacts on water availability for agricultural systems in the western Mediterranean region. Water 2016, 8, 523. [Google Scholar] [CrossRef]
- Aidoo, D.C.; Boateng, S.D.; Freeman, C.K.; Anaglo, J.N. The effect of smallholder maize farmers’ perceptions of climate change on their adaptation strategies: The case of two agro-ecological zones in Ghana. Heliyon 2021, 7, e08307. [Google Scholar] [CrossRef]
- Ayanlade, A.; Radeny, M.; Morton, J.F. Comparing smallholder farmers’ perception of climate change with meteorological data: A case study from southwestern Nigeria. Weather Clim. Extrem. 2017, 15, 24–33. [Google Scholar] [CrossRef]
- Foguesatto, C.R.; Artuzo, F.D.; Talamini, E.; Machado, J.A.D. Understanding the divergences between farmer’s perception and meteorological records regarding climate change: A review. Environ. Dev. Sustain. 2020, 22, 1–16. [Google Scholar] [CrossRef]
- Mase, A.S.; Gramig, B.M.; Prokopy, L.S. Climate change beliefs, risk perceptions, and adaptation behavior among Midwestern US crop farmers. Clim. Risk Manag. 2017, 15, 8–17. [Google Scholar] [CrossRef]
- Reser, J.P.; Bradley, G.L. The nature, significance, and influence of perceived personal experience of climate change. Wiley Interdiscip. Rev. Clim. Chang. 2020, 11, e668. [Google Scholar] [CrossRef]
- Gari, A.; Getnet, M.; Nigatu, L. Observed and future climate variability, trend, and extremes in central highlands of Ethiopia: A case study at Arsi Robe, Asasa, Debre Zeit and Kulumsa Areas. Environ. Pollut. Clim. Chang. 2018, 2, 163. [Google Scholar] [CrossRef]
- Halcrow, S.W. Master Plan for the Development of Surface Water Resources in the Awash Basin. 1989. Available online: http://197.156.72.153:8080/xmlui/handle/123456789/1486 (accessed on 3 August 2021).
- Ministry of Agriculture (MoA). Agro-ecological zones of Ethiopia. Natural Resources Management and Regulatory Department. With support of German Agency for Technical Cooperation (GTZ) 1998. Available online: http://197.156.72.153:8080/xmlui/handle/123456789/2517 (accessed on 3 August 2021).
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Dinku, T.; Block, P.; Sharoff, J.; Hailemariam, K.; Osgood, D.; del Corral, J.; Cousin, R.; Thomson, M.C. Bridging critical gaps in climate services and applications in Africa. Earth Perspect. 2014, 1, 15. [Google Scholar] [CrossRef] [Green Version]
- Alemayehu, A.; Bewket, W. Smallholder farmers’ coping and adaptation strategies to climate change and variability in the central highlands of Ethiopia. Local Environ. 2017, 22, 825–839. [Google Scholar] [CrossRef]
- Dinku, T.; Faniriantsoa, R.; Islam, S.; Nsengiyumva, G.; Grossi, A. The Climate Data Tool: Enhancing Climate Services Across Africa. Front. Clim. 2022, 3, 185. [Google Scholar] [CrossRef]
- Wang, X.L.; Feng, Y. Overview of the RHtests_dlyPrcp Software Package for Homogenization of Daily Precipitation. 2015. Available online: https://meetingorganizer.copernicus.org/EMS2015/EMS2015-76.pdf (accessed on 15 November 2021).
- Alexander, L.; Herold, N. ClimPACTv2 Indices and Software. A Document Prepared on Behalf of the Commission for Climatology (CCl) Expert Team on Sector-Specific Climate Indices (ET-SCI) 2015. Available online: https://epic.awi.de/id/eprint/49274/1/ClimPACTv2_manual.pdf (accessed on 12 November 2021).
- Worku, G.; Teferi, E.; Bantider, A.; Dile, Y.T. Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia. Theor. Appl. Climatol. 2019, 135, 839–854. [Google Scholar] [CrossRef]
- Abdila, W.; Nugroho, B. Trend analysis of extreme precipitation indices in the southern part of Java. IOP Conf. Ser. Environ. Earth Sci. 2021, 653, 012032. [Google Scholar] [CrossRef]
- Ridder, N.N.; Pitman, A.J.; Ukkola, A.M. Do CMIP6 climate models simulate global or regional compound events skillfully? Geophys. Res. Lett. 2021, 48, e2020GL091152. [Google Scholar] [CrossRef]
- Kothari, C.R. Research Methodology: Methods and Techniques; New Age International: New Delhi, India, 2004; Available online: https://ccsuniversity.ac.in/bridge-library/pdf/Research-Methodology-CR-Kothari.pdf (accessed on 18 February 2022).
- Haile, G.G.; Tang, Q.; Leng, G.; Jia, G.; Wang, J.; Cai, D.; Sun, S.; Baniya, B.; Zhang, Q. Long-term spatiotemporal variation of drought patterns over the Greater Horn of Africa. Sci. Total Environ. 2020, 704, 135299. [Google Scholar] [CrossRef]
- Mann, B.H. Non-Parametric Test against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M. Rank Correlation Methods, 4th ed.; Charles Griffin: San Francisco, CA, USA, 1975; Volume 8, p. 875. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Ayugi, B.; Eresanya, E.O.; Onyango, A.O.; Ogou, F.K.; Okoro, E.C.; Okoye, C.O.; Anoruo, C.M.; Dike, V.N.; Ashiru, O.R.; Daramola, M.T.; et al. Review of meteorological drought in Africa: Historical trends, impacts, mitigation measures, and prospects. Pure Appl. Geophys. 2022, 179, 1365–1386. [Google Scholar] [CrossRef] [PubMed]
- Nasir, J.; Assefa, E.; Zeleke, T.; Gidey, E. Modeling seasonal and annual climate variability trends and their characteristics in northwestern Escarpment of Ethiopian Rift Valley. Model. Earth Syst. Environ. 2021, 8, 2551–2565. [Google Scholar] [CrossRef]
- Shawul, A.A.; Chakma, S. Trend of extreme precipitation indices and analysis of long-term climate variability in the Upper Awash basin, Ethiopia. Theor. Appl. Climatol. 2020, 140, 635–652. [Google Scholar] [CrossRef]
- Coulibaly, T.; Islam, M.; Managi, S. The impacts of climate change and natural disasters on agriculture in African countries. Econ. Disaster Clim. Chang. 2020, 4, 347–364. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Omondi, P.A.; Awange, J.L.; Forootan, E.; Ogallo, L.A.; Barakiza, R.; Girmaw, G.B.; Fesseha, I.; Kululetera, V.; Kilembe, C.; Mbati, M.M. Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010. Int. J. Climatol. 2014, 34, 1262–1277. [Google Scholar] [CrossRef]
- Esayas, B.; Simane, B.; Teferi, E.; Ongoma, V.; Tefera, N. Trends in extreme climate events over three agroecological zones of southern Ethiopia. Adv. Meteorol. 2018, 2018, 7354157. [Google Scholar] [CrossRef]
- Ferrelli, F.; Brendel, A.S.; Perillo, G.M.E.; Piccolo, M.C. Warming signals emerging from the analysis of daily changes in extreme temperature events over Pampas (Argentina). Environ. Earth Sci. 2021, 80, 422. [Google Scholar] [CrossRef]
- Berhane, A.; Hadgu, G.; Worku, W.; Abrha, B. Trends in extreme temperature and rainfall indices in the semi-arid areas of Western Tigray, Ethiopia. Environ. Syst. Res. 2020, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Shuai, S.; Fadong, L.; Yonglong, L.; Khan, K.; Jianfang, X.; Peifang, L. Spatio-temporal characteristics of the extreme climate events and their potential effects on crop yield in Ethiopia. J. Resour. Ecol. 2018, 9, 290–301. [Google Scholar] [CrossRef]
- Luhunga, P.M.; Songoro, A.E. Analysis of climate change and extreme climatic events in the Lake Victoria Region of Tanzania. Front. Clim. 2020, 27, 559584. [Google Scholar] [CrossRef]
- Vogel, E.; Donat, M.G.; Alexander, L.V.; Meinshausen, M.; Ray, D.K.; Karoly, D.; Meinshausen, N.; Frieler, K. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 2019, 14, 054010. [Google Scholar] [CrossRef]
- Chen, H.; Yang, J.; Ding, Y.; Tan, C.; He, Q.; Wang, Y.; Qin, J.; Tang, F.; Ge, Q. Variation in Extreme Temperature and its Instability in China. Atmosphere 2021, 13, 19. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Z.; Zhou, X.; Lai, C.; Chen, X. Trends in temperature extremes over nine integrated agricultural regions in China, 1961–2011. Theor. Appl. Climatol. 2017, 129, 1279–1294. [Google Scholar] [CrossRef]
- Mohammed, Y.; Yimer, F.; Tadesse, M.; Tesfaye, K. Variability and trends of rainfall extreme events in north east highlands of Ethiopia. Int. J. Hydrol. 2018, 2, 594–605. [Google Scholar] [CrossRef]
- Muluneh, A.; Bewket, W.; Keesstra, S.; Stroosnijder, L. Searching for evidence of changes in extreme rainfall indices in the Central Rift Valley of Ethiopia. Theor. Appl. Climatol. 2017, 128, 795–809. [Google Scholar] [CrossRef]
- Bulti, D.T.; Abebe, B.G.; Biru, Z. Analysis of the changes in historical and future extreme precipitation under climate change in Adama city, Ethiopia. Model. Earth Syst. Environ. 2021, 7, 2575–2587. [Google Scholar] [CrossRef]
- Akinsanola, A.; Kooperman, G.; Reed, K.; Pendergrass, A.; Hannah, W. Projected changes in seasonal precipitation extremes over the United States in CMIP6 simulations. Environ. Res. Lett. 2020, 15, 104078. [Google Scholar] [CrossRef]
- Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef] [Green Version]
- Halimatou, A.T.; Kalifa, T.; Kyei-Baffour, N. Assessment of changing trends of daily precipitation and temperature extremes in Bamako and Ségou in Mali from 1961–2014. Weather Clim. Extrem. 2017, 18, 8–16. [Google Scholar] [CrossRef]
- Lu, J.; Carbone, G.J.; Huang, X.; Lackstrom, K.; Gao, P. Mapping the sensitivity of agriculture to drought and estimating the effect of irrigation in the United States, 1950–2016. Agric. For. Meteorol. 2020, 292, 108124. [Google Scholar] [CrossRef]
- Mihiretu, A.; Okoyo, E.N.; Lemma, T. Small holder farmers’ perception and response mechanisms to climate change: Lesson from Tekeze lowland goat and sorghum livelihood zone, Ethiopia. Cogent Food Agric. 2020, 6, 1763647. [Google Scholar] [CrossRef]
- Roy, D.; Datta, A.; Kuwornu, J.K.; Zulfiqar, F. Comparing farmers’ perceptions of climate change with meteorological trends and examining farm adaptation measures in hazard-prone districts of northwest Bangladesh. Environ. Dev. Sustain. 2021, 23, 8699–8721. [Google Scholar] [CrossRef]
- Zhang, C.; Jin, J.; Kuang, F.; Ning, J.; Wan, X.; Guan, T. Farmers’ perceptions of climate change and adaptation behavior in Wushen Banner, China. Environ. Sci. Pollut. Res. 2020, 27, 26484–26494. [Google Scholar] [CrossRef] [PubMed]
- Manalo, J.A., IV; van de Fliert, E.; Fielding, K. Rice farmers adapting to drought in the Philippines. Int. J. Agric. Sustain. 2020, 18, 594–605. [Google Scholar] [CrossRef]
- Neisi, M.; Bijani, M.; Abbasi, E.; Mahmoudi, H.; Azadi, H. Analyzing farmers’ drought risk management behavior: Evidence from Iran. J. Hydrol. 2020, 590, 125243. [Google Scholar] [CrossRef]
- Mekuyie, M.; Mulu, D. Perception of impacts of climate variability on pastoralists and their adaptation/coping strategies in fentale district of Oromia region, Ethiopia. Environ. Syst. Res. 2021, 10, 4. [Google Scholar] [CrossRef]
- Cuni-Sanchez, A.; Omeny, P.; Pfeifer, M.; Olaka, L.; Mamo, M.B.; Marchant, R.; Burgess, N.D. Climate change and pastoralists: Perceptions and adaptation in montane Kenya. Clim. Dev. 2019, 11, 513–524. [Google Scholar] [CrossRef] [Green Version]
- Poudyal, N.C.; Joshi, O.; Hodges, D.G.; Bhandari, H.; Bhattarai, P. Climate change, risk perception, and protection motivation among high-altitude residents of the Mt. Everest region in Nepal. Ambio 2021, 50, 505–518. [Google Scholar] [CrossRef]
- Talanow, K.; Topp, E.N.; Loos, J.; Martín-López, B. Farmers’ perceptions of climate change and adaptation strategies in South Africa’s Western Cape. J. Rural Stud. 2021, 81, 203–219. [Google Scholar] [CrossRef]
Variables | TRF_tau (Sen’s Slope) | Tmin_tau (Sen’s Slope) | Tmax_tau (Sen’s Slope) |
---|---|---|---|
Cold–very cold humid [AEZ_1] | −0.371 (−10.26) * | 0.308 (0.019) * | 0.480 (0.049) * |
Tepid–cool humid [AEZ_2] | −0.242 (−6.75) * | 0.373 (0.023) * | 0.447 (0.062) * |
Hot–warm moist [AEZ_3] | −0.237 (−3.94) * | 0.312 (0.028) * | 0.661 (0.056) * |
Hot–warm arid [AEZ_4] | −0.264 (−3.83) * | 0.515 (0.055) * | 0.501 (0.054) * |
Tepid–cool sub-moist [AEZ_5] | −0.169 (−5.96) ns | 0.465 (0.034) * | 0.619 (0.061) * |
Hot–warm semiarid [AEZ_6] | 0.112 (2.16) ns | −0.119 (−0.014) ns | 0.640 (0.091) * |
Code | Cold–Very Cold Humid [AEZ_1] | Tepid–Cool Humid [AEZ_2] | Hot–Warm Moist [AEZ_3] | Hot–Warm Arid [AEZ_4] | Tepid–Cool Sub-Moist [AEZ_5] | Hot–Warm Semiarid [AEZ_6] |
---|---|---|---|---|---|---|
(MK) Sens Slope | (MK) Sens Slope | (MK) Sens Slope | (MK) Sens Slope | (MK) Sens Slope | (MK) Sens Slope | |
Temperature Indices | ||||||
TXx | (0.419) 0.056 *** | (0.400) 0.040 *** | (−0.073) −0.008 ns | (0.615) 0.082 *** | (0.699) 0.089 *** | (0.480) 0.073 *** |
TNx | (0.606) 0.075 *** | (0.470) 0.060 *** | (0.455) 0.056 *** | (0.385) 0.049 *** | (−0.636) −0.080 *** | (−0.228) −0.033 ns |
TXn | (0.308) 0.047 ** | (0.330) 0.030 *** | (0.196) 0.024 ns | (0.435) 0.066 *** | (0.631) 0.081 *** | (0.586) 0.081 *** |
TNn | (0.005) 0.000 ns | (−0.130) −0.010 ns | (−0.240) −0.030 * | (−0.025) −0.004 ns | (−0.583) −0.080 *** | (−0.430) −0.061 *** |
TN10p | (−0.456) −0.035 *** | (−0.470) −0.070 *** | (−0.291) −0.041 ** | (−0.082) −0.008 ns | (0.724) 0.050 *** | (0.544) 0.057 *** |
TX10p | (−0.549) −0.070 *** | (0.500) 0.050 *** | (−0.438) −0.069 *** | (−0.622) −0.033 *** | (−0.709) −0.057 *** | (−0.599) −0.077 *** |
TN90p | (0.722) 0.080 *** | (−0.490) −0.020 *** | (0.472) 0.049 *** | (0.405) 0.053 *** | (−0.699) −0.048 *** | (−0.380) −0.040 ** |
TX90P | (0.472) 0.056 *** | (0.390) 0.040 *** | (0.184) 0.028 ns | (0.768) 0.075 *** | (0.713) 0.054 *** | (0.528) 0.065 *** |
WSDI | (0.430) 0.024 *** | (0.050) 0.200 *** | (0.041) 0.000 ns | (0.583) 0.041 *** | (0.545) 0.026 *** | (0.346) 0.020 ** |
DTR | (0.111) 0.013 ns | (0.320) 0.120 ** | (−0.071) −0.015 ns | (0.620) 0.082 *** | (0.879) 0.098 *** | (0.772) 0.094 *** |
CSDI | (−0.159) 0.000 * | (−0.260) −0.040 * | (−0.283) −0.031 * | (0.116) 0.000 ns | (0.430) 0.027 *** | (0.340) 0.000 ** |
SU | (0.481) 0.073 *** | (0.050) 0.220 *** | (0.364) 0.055 * | (0.513) 0.034 *** | (0.720) 0.090 *** | (0.620) 0.069 *** |
Rainfall Indices | ||||||
RX1day | (−0.194) −0.036 ns | (−0.090) −0.010 ns | (−0.127) −0.013 ns | (0.025) 0.005 ns | (−0.121) −0.018 ns | (−0.077) −0.010 ns |
RX5day | (−0.239) −0.026 * | (−0.120) −0.010 ns | (−0.123) −0.022 ns | (0.139) 0.027 ns | (−0.082) −0.011 ns | (0.011) 0.001 ns |
R10mm | (−0.210) −0.025 ns | (−0.048) −0.006 ns | (−0.385) −0.049 ** | (0.189) 0.034 ns | (−0.282) −0.032 * | (0.094) 0.011 ns |
R20mm | (−0.257) 0.000 * | (−0.300) −0.120 *** | (−0.184) −0.023 ns | (0.121) 0.015 ns | (−0.087) 0.000 ns | (−0.002) 0.000 ns |
CDD | (0.175) 0.021 ns | (0.320) 0.040 ** | (0.378) 0.042 ** | (0.135) 0.019 ns | (0.258) 0.035 * | (0.077) 0.012 ns |
CWD | (0.258) 0.032 * | (−0.060) 0.000 ns | (0.135) 0.016 ns | (0.068) 0.000 ns | (0.207) 0.022 ns | (0.053) 0.006 ns |
R95p | (−0.155) −0.010 ns | (−0.170) −0.020 ns | (−0.332) −0.037 ** | (0.098) 0.014 ns | (−0.232) −0.020 * | (0.011) 0.000 ns |
R99p | (−0.235) 0.000 ** | (−0.180) 0.000 ns | (−0.080) 0.000 ns | (0.027) 0.000 ns | (−0.134) 0.000 ns | (0.045) 0.000 ns |
SDII | (−0.159) −0.014 ns | (−0.220) −0.030 ns | (−0.178) −0.021 ns | (0.134) 0.024 ns | (−0.171) −0.023 ns | (−0.053) −0.006 ns |
PRCPTOT | (−0.201) −0.025 ns | (−0.360) −0.040 *** | (−0.237) −0.029 * | (0.141) 0.021 ns | (−0.225) −0.036 ns | (0.023) 0.004 ns |
Drought Index | ||||||
SPEI 12 | (−0.330) −0.052 ** | (−0.410) −0.050 *** | (−0.275) −0.040 * | (−0.390) −0.058 ** | (−0.695) −0.088 *** | (−0.497) −0.068 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damtew, A.; Teferi, E.; Ongoma, V.; Mumo, R.; Esayas, B. Spatiotemporal Changes in Mean and Extreme Climate: Farmers’ Perception and Its Agricultural Implications in Awash River Basin, Ethiopia. Climate 2022, 10, 89. https://doi.org/10.3390/cli10060089
Damtew A, Teferi E, Ongoma V, Mumo R, Esayas B. Spatiotemporal Changes in Mean and Extreme Climate: Farmers’ Perception and Its Agricultural Implications in Awash River Basin, Ethiopia. Climate. 2022; 10(6):89. https://doi.org/10.3390/cli10060089
Chicago/Turabian StyleDamtew, Addisu, Ermias Teferi, Victor Ongoma, Richard Mumo, and Befikadu Esayas. 2022. "Spatiotemporal Changes in Mean and Extreme Climate: Farmers’ Perception and Its Agricultural Implications in Awash River Basin, Ethiopia" Climate 10, no. 6: 89. https://doi.org/10.3390/cli10060089
APA StyleDamtew, A., Teferi, E., Ongoma, V., Mumo, R., & Esayas, B. (2022). Spatiotemporal Changes in Mean and Extreme Climate: Farmers’ Perception and Its Agricultural Implications in Awash River Basin, Ethiopia. Climate, 10(6), 89. https://doi.org/10.3390/cli10060089