The Climate Change Challenge: A Review of the Barriers and Solutions to Deliver a Paris Solution
Abstract
:1. Introduction
2. Results
2.1. Historical Developments
2.2. A complex System Methodology for the Human–Climate System
2.3. System Analysis of Climate Change Responses in the Human–Climate System
2.3.1. The Role Played by the Fossil Fuel Industry since the 1970s
2.3.2. Climate Change, Crises, and the Fossil Fuel Dependencies
2.3.3. Structural Differences I: GHG Emissions Grow at Different Regional Rates
2.3.4. Structural Differences II: The Energy Transition Occurs at Different Rates
2.3.5. Negative Emissions to Reach the New Net-Zero Targets
2.3.6. How Compatible Is Mainstream Economics with Rapid Global Decarbonization?
2.3.7. Limits to Climate Change Adaptation and Loss and Damage
2.3.8. Climate Change Ethics, Climate Justice, and Anti-Fossil Fuel Moral Norms
2.3.9. SAI Geoengineering
3. Tipping Points in the Human–Climate System
4. Discussion
5. Conclusions
- Include consumption emissions in the National Paris Agreement targets and additionally in the UNFCCC inventories. This may strengthen and increase the national mitigation approach in OECD countries and support global mitigation, instead of OECD exporting emissions to the non-OECD regions.
- Creation of incentives and information opportunities to start reversing the current increase in beef consumption globally (e.g., by including it in UNFCCC negotiations). Cows are less efficient than other farm animals in meat production, requiring relatively more water resources and grazing areas, besides being a methane source.
- Initiate a political process to stop natural gas fracking because it produces additional methane emissions (this can be implemented in the UNFCCC to support reaching the Paris Agreement).
- Initiate a global political and economic process to use CCS in coal power plants and other carbon-intensive energy and industrial infrastructures. It generally makes electricity and consumer goods more expensive, but it is a form of mitigation, and therefore it reduces the economic losses from present and future climate change impacts. The capture and liquefying process increases electricity generation costs in a CCS coal power plant by about 30%. It implies a voter challenge but could be financed by a carbon tax.
- Stop subsidizing fossil fuels, encourage green technology advances and implementation, and reduce incentives for fossil fuel extraction.
- UNFCCC negotiations leading to the phasing out of Annex-I energy companies’ fossil exploration in non-Annex-I countries.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M.K., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; In Press; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- NASA. NASA Earth Observatory: Global Temperatures. Earth Observatory. 2020. Available online: https://earthobservatory.nasa.gov/world-of-change/decadaltemp.php (accessed on 25 November 2021).
- Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global Surface Temperature Change. Rev. Geophys. 2020, 48, RG4004. [Google Scholar] [CrossRef] [Green Version]
- GCP. Supplemental Data of Global Carbon Budget, Version 1.0; Global Carbon Project: Canberra, Australia, 2021. [Google Scholar]
- Gütschow, J.; Günther, A.; Pflüger, M. The PRIMAP-hist national historical emissions time series (1750–2019) v2.3.1. Zenodo 2021, 8, 571–603. [Google Scholar] [CrossRef]
- Peters, G.P.; Andrew, R.M.; Canadell, J.G.; Friedlingstein, P.; Jackson, R.B.; Korsbakken, J.I.; Quéré, C.L.; Peregon, A. Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nat. Clim. Chang. 2020, 10, 3–6. [Google Scholar] [CrossRef]
- le Quéré, C.; Jackson, R.B.; Jones, M.W.; Matthe, W.J.; Smith, A.J.P.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Chang. 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Becker, S.; Bouzdine-Chameeva, T.; Jaegler, A. The carbon neutrality principle: A case study in the French spirits sector. J. Clean. Prod. 2020, 274, 122739. [Google Scholar] [CrossRef] [PubMed]
- le Quéré, C.; Peters, G.P.; Friedlingstein, P.; Andrew, R.M.; Canadell, J.G.; Davis, S.J.; Jackson, R.B.; Jones, M.W. Fossil CO2 emissions in the post-COVID-19 era. Nat. Clim. Chang. 2021, 11, 197–199. [Google Scholar] [CrossRef]
- IEA. Global Energy Review 2021; IEA: Paris, France, 2021. [Google Scholar]
- UNEP. Emissions Gap Report 2021; UNEP: Nairobi, Kenya, 2021. [Google Scholar]
- IEA. Gas Market Report, Q2-2021; IEA: Paris, France, 2021. [Google Scholar]
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Pedersen, J.S.T.; Duarte Santos, F.; van Vuuren, D.; Gupta, J.; Coelho, R.E.; Aparício, B.A.; Swart, R. An assessment of the performance of scenarios against historical global emissions for IPCC reports. Glob. Environ. Chang. 2021, 66, 102199. [Google Scholar] [CrossRef]
- IEA. Total Primary Energy Supply (TPES) by Source, World 1990–2019. World Energy Balances 2020. 2021. Available online: https://www.iea.org/statistics (accessed on 2 February 2022).
- Ambrose, J.; Henley, J. European Investment Bank to Phase Out Fossil Fuel Financing. 2019. Available online: https://www.theguardian.com/environment/2019/nov/15/european-investment-bank-to-phaseout-fossil-fuels-financing (accessed on 2 February 2022).
- IRENA. Renewable Power Generation Costs in 2019; IRENA: Abu Dhabi, United Arab Emirates, 2020. [Google Scholar]
- Observ’ER The State of Renewable Energies in Europe. Edition 2018. 18th EurObserv’ER Report. 2019. Available online: https://www.eurobserv-er.org/category/2018/ (accessed on 5 January 2022).
- UNEP. The Emissions Gap Report 2016; UNEP: Nairobi, Kenya, 2016. [Google Scholar]
- UNFCCC. Nationally Determined Contributions under the Paris Agreement: Synthesis Report by the Secretariat. 2021FCCC/PA/CMA/2021/8; UN: New York, NY, USA, 2021. [Google Scholar]
- UNFCCC. Synthesis Report on the Aggregate Effect of the Intended Nationally Determined Contributions; UN: New York, NY, USA, 2015. [Google Scholar]
- UNFCCC/UNEP. UNFCCC, UNEP, Ambition: The Emissions Gap Report 2021. In Proceedings of the COP-26, Glasgow, Scotland, 1–12 November 2021. [Google Scholar]
- CAT. Countries. Climate Action Tracker. 2021. Available online: https://climateactiontracker.org/countries (accessed on 22 April 2020).
- Schneider, L.; Kollmuss, A.; Lazarus, M. Addressing the risk of double counting emission reductions under the UNFCCC. Clim. Chang. 2015, 131, 473–486. [Google Scholar] [CrossRef]
- Rogelj, J.; Geden, O.; Cowie, A.; Reisinger, A. Net-zero emissions targets are vague: Three ways to fix. Nature 2021, 591, 365–368. [Google Scholar] [CrossRef]
- Costa, H.; de Rigo, D.; Libertà, G.; Durrant, T.; San-Miguel-Ayanz, J. European Wildfire Danger and Vulnerability in a Changing Climate: Towards Integrating Risk Dimensions; Publications Office of the European Union: Luxemburg, 2020. [Google Scholar]
- Hite, K.; Lawson, M.; Gore, T.; Hoglund, R.; Zagema, B.; Herman, M.; Comte, A.L.; Pérez Terán, A.S.; Codispoti, B.; Burgos, S.; et al. Tightening the Net: Net Zero Climate Targets—Implications for Land and Food Equity; Oxfam: Oxford, UK, 2021. [Google Scholar] [CrossRef]
- Rittel, H.W.J.; Webber, M.M. Dilemmas in a general theory of planning. Policy Sci. 1973, 4, 155–169. [Google Scholar] [CrossRef]
- Incropera, F.P. Climate Change: A Wicked Problem; Cambridge University Press: New York, NY, USA, 2015. [Google Scholar]
- Sun, J.; Yang, K. The Wicked Problem of Climate Change: A New Approach Based on Social Mess and Fragmentation. Sustainability 2016, 8, 1312. [Google Scholar] [CrossRef] [Green Version]
- Stern, N. The Economics of Climate Change: The Stern Review; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Nordhaus, W.D. A Review of the Stern Review on the Economics of Climate Change. J. Econ. Lit. 2007, 45, 686–702. [Google Scholar] [CrossRef]
- Nordhaus, W.D. Revisiting the social cost of carbon. Proc. Natl. Acad. Sci. USA 2017, 114, 1518–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiley, M.T. Growth at Risk from Climate Change. Financ. Econ. Discuss. Ser. 2021, 2021, 1–19. [Google Scholar] [CrossRef]
- Fourier, J. Memoire sur les températures du globe terrestre et des espaces planétaires. Mém. L’acad. R. Sci. L’inst. Fr. 1827, 7, 569–604. [Google Scholar]
- Fourier, J. Résumé theorique des proprietés de la chaleur rayonnante. Ann. Chim. Phys. 1824, 27, 236–281. [Google Scholar]
- Tyndall, J., XXVII. On radiation through the earth’s atmosphere. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1863, 25, 200–206. [Google Scholar] [CrossRef]
- Arrhenius, S., XXXI. On the influence of carbonic acid in the air upon the temperature of the ground. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1896, 41, 237–276. [Google Scholar] [CrossRef] [Green Version]
- Arrhenius, S. Worlds in the Making: The Evolution of the Universe (Translation); Harper & Bros: New York, NY, USA, 1908. [Google Scholar]
- Plass, G.N. The Carbon Dioxide Theory of Climatic Change. Tellus 1956, 8, 140–154. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change: The IPCC Response Strategies, Working Group III; IPCC: Geneva, Switzerland, 1990. [Google Scholar]
- Santos, F.D. Humans on Earth: From Origins to Possible Futures; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Jones, C.I. The Facts of Economic Growth. Handb. Macroecon. 2016, 2, 3–69. [Google Scholar] [CrossRef]
- BP. BP Statistical Review of World Energy 2020, 69th ed.; BP: London, UK, 2020. [Google Scholar]
- Smil, V. Energy Transitions: Global and National Perspectives, 2nd ed.; Praeger: Westport, CT, USA, 2016. [Google Scholar]
- ESOTC. Surface Temperature|Copernicus. 2019. Available online: https://climate.copernicus.eu/ESOTC/2019/surface-temperature (accessed on 21 November 2021).
- NASA. Atmospheric Carbon Dioxide (CO2) and Methane (CH4) levels, 1800–present. 2021. Available online: www.sealevel.info/CO2_and_ch4.html (accessed on 2 February 2022).
- Revelle, R.; Suess, H.E. Carbon Dioxide Exchange between Atmosphere and Ocean and the Question of an Increase of Atmospheric CO2 during the Past Decades. Tellus 1957, 9, 18–27. [Google Scholar] [CrossRef] [Green Version]
- PSAC. 1965 PSAC: Restoring the Quality of Our Environment; PSAC: Washington, DC, USA, 1965. [Google Scholar]
- IPCC. Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Geoengineering; IPCC: Geneva, Switzerland, 2012. [Google Scholar]
- Santos, F.D. Time, Progress, Growth and Technology: How Humans and the Earth are Responding; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Haff, P.K. Technology as a geological phenomenon: Implications for human well-being. Geol. Soc. 2014, 395, 301–309. [Google Scholar] [CrossRef]
- Peixoto, J.P.; Oort, A.H. Physics of Climate; American Institute of Physics: College Park, MI, USA, 1992. [Google Scholar]
- Folke, C.; Hahn, T.; Olsson, P.; Norberg, J. Adaptive governance of social-ecological systems. Annu. Rev. Environ. Resour. 2005, 30, 441–473. [Google Scholar] [CrossRef] [Green Version]
- Otto, I.M.; Donges, J.F.; Cremades, R.; Bhowmik, A.; Hewitt, R.J.; Lucht, W.; Rockstrom, J.; Allerberger, F.; McCaffrey, M.; Doe, S.S.P.; et al. Social tipping dynamics for stabilizing Earth’s climate by 2050. Proc. Natl. Acad. Sci. USA 2020, 117, 2354–2365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, B.; Gunderson, L.; Kinzig, A.; Folke, C.; Carpenter, S.; Schultz, L. A Handful of Heuristics and Some Propositions for Understanding Resilience in Social-Ecological Systems. Ecol. Soc. 2006, 11, 13. [Google Scholar] [CrossRef]
- Ahlborg, H.; Ruiz-Mercado, I.; Molander, S.; Masera, O. Bringing Technology into Social-Ecological Systems Research—Motivations for a Socio-Technical-Ecological Systems Approach. Sustainability 2019, 11, 2009. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, S.M. A Perfect Moral Storm: The Ethical Tragedy of Climate Change; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Caney, S. Two Kinds of Climate Justice: Avoiding Harm and Sharing Burdens. J. Political Philos. 2014, 22, 125–149. [Google Scholar] [CrossRef]
- Lavik, T. Climate change denial, freedom of speech and global justice. Nord. J. Appl. Ethics 2015, 10, 75–90. [Google Scholar] [CrossRef] [Green Version]
- Gardiner Stephen, M. A Perfect Moral Storm: Climate Change, Intergenerational Ethics and the Problem of Moral Corruption on JSTOR. Environ. Values 2006, 15, 397–413. [Google Scholar] [CrossRef] [Green Version]
- WMO. Greenhouse Gas Bulletin; WMO: Geneva, Switzerland, 2020. [Google Scholar]
- Banerjee, N.; Cushman, J.H., Jr.; Hasemyer, D.; Song, L. Exxon: The Road Not Taken; Inside Climate News: Brooklyn, NY, USA, 2015. [Google Scholar]
- Supran, G.; Oreskes, N. Assessing ExxonMobil’s climate change communications (1977–2014). Environ. Res. Lett. 2017, 12, 084019. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.D. Climate Change in the XXIst and Following Centuries: A Risk or a Threat? In Societies under Threat a Pluri-Disciplinary Approach; Jodelet, D., Vala, J., Drozda-Senkowska, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 143–155. [Google Scholar]
- Glaser, M.B. CO2 ‘Greenhouse’ Effect. 1982. [Google Scholar]
- Oreskes, N.; Conway, E.M. Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming; Bloomsbury Press: London, UK, 2010. [Google Scholar]
- Collomb, J.-D. The Ideology of Climate Change Denial in the United States. Eur. J. Am. Stud. 2014, 9, 10305. [Google Scholar] [CrossRef] [Green Version]
- Metayer, M.; Breyer, C.; Fell, H. The projections for the future and quality in the past of the World Energy Outlook for solar PV and other renewable energy technologies. In Proceedings of the 31st EU PVSEC, Hamburg, Germany, 14–18 September 2015. [Google Scholar]
- IRENA. Renewable Power Generation Costs in 2018. International Renewable Energy Agency. 2019. Available online: https://www.irena.org/publications/2019/May/Renewable-power-generation-costs-in-2018 (accessed on 25 November 2021).
- FOTE. UK Government Investment in Overseas Oil Ends, but Mozambique Gas Project Continues. Friends of the Earth. 2020. Available online: https://friendsoftheearth.uk/climate/uk-government-investment-overseas-oil-ends-mozambique-gas-project-continues (accessed on 23 February 2021).
- Crooks, E. Mozambique to Become a Gas Supplier to World. Financial Times. 2018. Available online: https://www.ft.com/content/d34685b2-7995-11e8-bc55-50daf11b720d (accessed on 4 March 2022).
- Rawoot, I. Gas-rich Mozambique May Be Headed for a Disaster. 2020. Available online: https://www.aljazeera.com/indepth/opinion/gas-rich-mozambique-headed-disaster-200223112556449.html?fbclid=IwAR24wdzuzb8WPPIXQPDDP7Rj4-LBi6Q6-aNWwRGzQsbowu6yUJGz0utxtII (accessed on 12 March 2022).
- Boele, R.; Fabig, H.; Wheeler, D. Shell, Nigeria and the Ogoni. A study in unsustainable development: I. The story of Shell, Nigeria and the Ogoni people—Environment, economy, relationships: Conflict and prospects for resolution1. Sustain. Dev. 2001, 9, 74–86. [Google Scholar] [CrossRef]
- Wheeler, D.; Rechtman, R.; Fabig, H.; Boele, R. Shell, Nigeria and the Ogoni. A study in unsustainable development: III. Analysis and implications of royal dutch/shell group strategy. Sustain. Dev. 2001, 9, 177–196. [Google Scholar] [CrossRef]
- Harvey, F. Is Putin’s Ukraine Invasion About Fossil Fuels? Available online: https://www.theguardian.com/world/2022/feb/24/qa-could-putin-use-russian-gas-supplies-to-hurt-europe (accessed on 12 March 2022).
- IEA. Global Energy Review 2021: Economic impacts of COVID-19. International Energy Agency. 2021. Available online: https://www.iea.org/reports/global-energy-review-2021/economic-impacts-of-covid-19 (accessed on 14 March 2022).
- WB. DataBank: World Development Indicators. The World Bank Group Database. 2021. Available online: http://databank.worldbank.org/data/reports.aspx?source=world-development-indicators&Type=TABLE&preview=on#. (accessed on 11 May 2018).
- Pedersen, J.S.T.; van Vuuren, D.P.; Aparício, B.A.; Swart, R.; Gupta, J.; Santos, F.D. Variability in historical emissions trends suggests a need for a wide range of global scenarios and regional analyses. Commun. Earth Environ. 2020, 1, 41. [Google Scholar] [CrossRef]
- IEA. Coal 2020. Analysis and Forecasts to 2025; IEA: Paris, France, 2020. [Google Scholar]
- IEA. World Energy Outlook 2021. International Energy Agency. 2021. Available online: https://iea.blob.core.windows.net/assets/4ed140c1-c3f3-4fd9-acae-789a4e14a23c/WorldEnergyOutlook2021.pdf (accessed on 14 January 2022).
- IEA. Gas 2020. Analysing the Impact of the COVID-19 Pandemic on Global Natural Gas Markets; IEA: Paris, France, 2020. [Google Scholar]
- Krukowska, E.; Nardelli, A. EU Aims to Cut Dependence on Russian Gas by Almost 80% This Year. Environ. Energy 2022, 42. [Google Scholar]
- UNFCCC/COP. Paris Agreement; UNFCCC: Paris, France, 2015. [Google Scholar]
- Werrell, C.E.; Femia, F. Picenters of Climate and Security: The New Geostrategic Landscape of the Anthropocene; Center for Climate and Security: Washington, DC, USA, 2017. [Google Scholar]
- Guy, K. A Security Threat Assessment of Global Climate Change: How Likely Warming Scenarios Indicate a Catastrophic Security Future; Center for Climate and Security: Washington, DC, USA, 2020. [Google Scholar]
- Hsiang, S.M.; Burke, M. Climate, conflict, and social stability: What does the evidence say? Clim. Chang. 2014, 123, 39–55. [Google Scholar] [CrossRef] [Green Version]
- Mach, K.J.; Kraan, C.M.; Adger, W.N.; Buhaug, H.; Burke, M.; Fearon, J.D.; Field, C.B.; Hendrix, C.S.; Maystadt, J.-F.; Loughlin, J.O.; et al. Climate as a risk factor for armed conflict. Nature 2019, 571, 193–197. [Google Scholar] [CrossRef]
- Kennett, D.J.; Breitenbach, S.F.M.; Aquino, V.V.; Asmerom, Y.; Awe, J.; Baldini, J.U.L.; Bartlein, P.; Culleton, B.J.; Ebert, C.; Jazwa, C.; et al. Development and Disintegration of Maya Political Systems in Response to Climate Change. Science 2012, 338, 788–791. [Google Scholar] [CrossRef] [Green Version]
- Cullen, H.M.; de Menocal, P.B.; Hemming, S.; Hemming, G.; Brown, F.H.; Guilderson, T.; Sirocko, F. Climate change and the collapse of the Akkadian empire: Evidence from the deep sea. Geology 2000, 28, 379. [Google Scholar] [CrossRef] [Green Version]
- Drysdale, R.; Zanchetta, G.; Hellstrom, J.; Maas, R.; Fallick, A.; Pickett, M.; Cartwright, I.; Piccini, L.; Holocene, L. drought responsible for the collapse of Old World civilizations is recorded in an Italian cave flowstone. Geology 2006, 34, 101. [Google Scholar] [CrossRef] [Green Version]
- Büntgen, U.; Tegel, W.; Nicolussi, K.; McCormick, M.; Frank, D.; Trouet, V.; Kaplan, J.O.; Herzig, F.; Heussner, K.U.; Wanner, H.; et al. 2500 Years of European Climate Variability and Human Susceptibility. Science 2011, 331, 578–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schleussner, C.-F.; Rogelj, J.; Schaeffer, M.; Lissner, T.; Licker, R.; Fischer, E.M.; Knutti, R.; Levermann, A.; Frieler, A.; Hare, W.; et al. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Chang. 2016, 6, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Vakulchuk, R.; Overland, I.; Scholten, D. Renewable energy and geopolitics: A review. Renew. Sustain. Energy Rev. 2020, 122, 109547. [Google Scholar] [CrossRef]
- Blondeel, M.; Bradshaw, M.J.; Bridge, G.; Kuzemko, C. The geopolitics of energy system transformation: A review. Geogr. Compass 2021, 15, e12580. [Google Scholar] [CrossRef]
- Overland, I. The geopolitics of renewable energy: Debunking four emerging myths. Energy Res. Soc. Sci. 2019, 49, 36–40. [Google Scholar] [CrossRef]
- Peszko, G.; van der Mensbrugghe, D.; Golub, A. Diversification and Cooperation in a Decarbonizing World: Climate Strategies for Fossil Fuel-Dependent Countries; World Bank Publications: Herndon, VA, USA, 2020. [Google Scholar]
- Morgan, S. Sweden Set to Be World’s First Country to Target Consumption-Based Emission Cuts. Climate Home News. 2022. Available online: https://www.climatechangenews.com/2022/04/08/sweden-set-to-be-worlds-first-country-to-target-consumption-based-emission-cuts/ (accessed on 22 April 2022).
- UNFCCC/COP. Kyoto Protocol to the United Nations Framework Convention on Climate Change. In Proceedings of the Conference of the Parties, Third Session, Kyoto, Japan, 1–10 December 1997. [Google Scholar]
- EC. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Stepping up Europe’s 2030 Climate Ambition. Investing in a Climate-Neutral Future for the Benefit of Our People; EUR-Lex—52020DC0562; EU: Brussles, Belgium, 2020. [Google Scholar]
- Government of India. India’s Intended Nationally Determined Contribution: Working Towards Climate Justice; Government of India: New Delhi, India, 2015. [Google Scholar]
- Government of China/UNFCCC. China First NDC (Updated Submission): China’s Achievements, New Goals and New Measures for Nationally Determined Contributions; UN: New York, NY, USA, 2021. [Google Scholar]
- Xi, J.P. Xi Jinping’s speech at the Climate Ambition Summit (Full Text)-Xinhuanet (Google Translate)). Speech of Xi Jinping, President of the People’s Republic of China. 2021. Available online: http://www.xinhuanet.com/politics/leaders/2020-12/12/c_1126853600.htm (accessed on 30 June 2021).
- Pandve, H.T. India’s National Action Plan on Climate Change. Indian J. Occup. Environ. Med. 2009, 13, 17. [Google Scholar] [CrossRef]
- Yatsui, T. China’s Energy Policy and Related Issues Towards 2020; Mitsui Global Strategic Studies Institute: Tokyo, Japan, 2017. [Google Scholar]
- US Government. The United States of America Nationally Determined Contribution Reducing Greenhouse Gases in the United States: A 2030 Emissions Target The United States’ Nationally Determined Contribution Reducing Greenhouse Gases in the United States: A 2030 Emissions; US Government: Washington, DC, USA, 2021. [Google Scholar]
- Dubash, N.K.; Khosla, R.; Kelkar, U.; Lele, S. India and Climate Change: Evolving Ideas and Increasing Policy Engagement. Annu. Rev. Environ. Resour. 2018, 43, 395–424. [Google Scholar] [CrossRef]
- CAT. China. Climate Action Tracker. 2021. Available online: https://climateactiontracker.org/countries/china/net-zero-targets/ (accessed on 23 November 2021).
- CAT. India. Climate Action Tracker. 2021. Available online: https://climateactiontracker.org/countries/india/targets/ (accessed on 4 November 2021).
- IEA. India Energy Outlook 2021. World Energy Outlook Special Report; IEA: Paris, France, 2021. [Google Scholar]
- Zhou, N.; Lu, H.; Khanna, N.; Liu, X.; Fridley, D.; Price, L.K.; Feng, W.; Lin, J.; Szum, C.; Din, C. China Energy Outlook: Understanding China’s Energy and Emissions Trends; China Energy Group: Beijing, China, 2020. [Google Scholar]
- Flannery, B.P. CO2 Greenhouse update 1985. Available online: http://www.climatefiles.com/exxonmobil/CO2-research-program/1985-exxon-greenhouse-research-budget/ (accessed on 2 January 2022).
- Reheis-Boyd, C. WSPA Priority Issues; Western States Petroleum Association: Sacramento, CA, USA, 2014. [Google Scholar]
- McKie, R. Merchants of Doubt by Naomi Oreskes and Erik M Conway. The Guardian, 7 August 2010. [Google Scholar]
- McCright, A.M.; Charters, M.; Dentzman, K.; Dietz, T. Examining the Effectiveness of Climate Change Frames in the Face of a Climate Change Denial Counter-Frame. Top. Cogn. Sci. 2016, 8, 76–97. [Google Scholar] [CrossRef]
- Castles, I.; Henderson, D. The IPCC Emission Scenarios: An Economic-Statistical Critique. Energy Environ. 2003, 14, 159–185. [Google Scholar] [CrossRef]
- Cook, J. The role of misinformation in undermining IPCC science and how to neutralize it. In Proceedings of the IPCC Expert Meeting on Communication, Oslo, Norway, 9–10 February 2016. [Google Scholar]
- Oreskes, N. Beyond the ivory tower. The scientific consensus on climate change. Science 2004, 306, 1686. [Google Scholar] [CrossRef] [Green Version]
- Henley, J. European Elections: Triumphant Greens Demand More Radical Climate Action. Available online: https://www.theguardian.com/environment/2019/may/28/greens-eu-election-mandate-leverage-climate-policy (accessed on 2 January 2022).
- Farand, C. Denmark’s New Government Raises Climate Change to Highest Priority. Climate Home News. 2019. Available online: https://www.climatechangenews.com/2019/06/26/denmarks-new-government-raises-climate-change-highest-priority/ (accessed on 12 January 2022).
- EC. The European Green Deal; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Botta, E.; Kozluk, T. Measuring Environmental Policy Stringency in OECD Countries—A Composite Index Approach. OECD Environmental Directorate Working Paper. 2014. Available online: https://econpapers.repec.org/paper/oececoaaa/1177-en.htm (accessed on 2 February 2022).
- OECD. Environmental Policy Stringency Index. 2019. Available online: https://stats.oecd.org/Index.aspx?DataSetCode=EPS (accessed on 10 February 2022).
- Borger, J. US and oil lobby oust climate change scientist. Available online: https://www.theguardian.com/world/2002/apr/20/internationaleducationnews.climatechange (accessed on 2 February 2022).
- Clinton, N.J. ExxonMobil and Renewable Energy Group Report Progress in Cellulosic Biodiesel Research|ExxonMobil. ExxonMobile Newsroom. 2017. Available online: https://corporate.exxonmobil.com/en/News/Newsroom/News-releases/2017/1101_ExxonMobil-and-renewable-energy-group-report-progress-in-cellulosic-biodiesel-research (accessed on 15 May 2019).
- ExxonMobil. Mitigating Emissions in Our Operations. 2018. Available online: https://corporate.exxonmobil.com/Community-engagement/Sustainability-Report/Managing-risks-of-climate-change/Mitigating-emissions-in-our-operations (accessed on 28 February 2022).
- The White House. Fact Sheet: President Biden’s Leaders Summit on Climate. The White House Statements and Releases. 2021. Available online: https://www.whitehouse.gov/briefing-room/statements-releases/2021/04/23/fact-sheet-president-bidens-leaders-summit-on-climate/ (accessed on 30 June 2021).
- Miglani, S. Exclusive: India Baulks at Carbon Neutral Target as Pressure Grows. Reuters. 2021. Available online: https://www.reuters.com/article/us-climate-change-india-exclusive-idUSKBN2BM1AA (accessed on 5 November 2021).
- NDTV. India’s Pledge To Go Carbon Neutral By 2070 Is Real Climate Action: Experts. NDTV. 2021. Available online: https://www.ndtv.com/india-news/indias-pledge-to-go-carbon-neutral-by-2070-is-real-climate-action-experts-2597009 (accessed on 5 November 2021).
- Government of China. China’s Mid-Century Long-Term Low Greenhouse Gas Emission Development Strategy; UNFCCC: Bonn, Germany, 2021. [Google Scholar]
- Grassi, G.; Fiorese, G.; Pilli, R.; Jonsson, K.; Blujdea, V.; Korosuo, A.; Jasinevicius, G.; Avraamides, M. Brief on the Role of the Forest-Based Bioeconomy in Mitigating Climate Change through Carbon Storage and Material Substitution; European Commission: Brussels, Belgium, 2021; p. 16. [Google Scholar]
- FISE, LULUCF. FISE—Forest Information System for Europe. 2020. Available online: https://forest.eea.europa.eu/topics/forest-and-climate/lulucf. (accessed on 25 February 2022).
- UNGA. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations General Assembly: New York, NY, USA, 2015. [Google Scholar]
- Fuhrman, J.; McJeon, H.; Doney, S.C.; Shobe, W.; Clarens, A.F. From Zero to Hero?: Why Integrated Assessment Modeling of Negative Emissions Technologies Is Hard and How We Can Do Better. Front. Clim. 2019, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Paquette, M. Some Indigenous groups wary of REDD+ following Paris Climate Agreement. Mongabay. 2016. Available online: https://news.mongabay.com/2016/02/some-indigenous-groups-wary-of-redd-following-paris-climate-agreement/ (accessed on 13 November 2021).
- Corbera, E.; Hunsberger, C.; Vaddhanaphuti, C. Climate change policies, land grabbing and conflict: Perspectives from Southeast Asia. Can. J. Dev. Stud. 2017, 38, 297–304. [Google Scholar] [CrossRef]
- Norris, C.; Hobson, P.; Ibisch, P.L. Microclimate and vegetation function as indicators of forest thermodynamic efficiency. J. Appl. Ecol. 2011, 49, 562–570. [Google Scholar] [CrossRef]
- Moomaw, W.R.; Masino, S.A.; Faison, E.K. Intact Forests in the United States: Proforestation Mitigates Climate Change and Serves the Greatest Good. Front. For. Glob. Chang. 2019, 2, 27. [Google Scholar] [CrossRef] [Green Version]
- Mackey, B.; Kormos, C.F.; Keith, H.; Moomaw, R.W.; Houghton, R.A.; Mittermeier, R.A.; Hole, D.; Hugh, S. Understanding the importance of primary tropical forest protection as a mitigation strategy. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 763–787. [Google Scholar] [CrossRef] [Green Version]
- Stabinsky, D.; Dooley, K. Forests Can’t Handle All the Net-Zero Emissions Plans—Companies and Countries Expect Nature to Offset Too Much Carbon. Available online: https://theconversation.com/forests-cant-handle-all-the-net-zero-emissions-plans-companies-and-countries-expect-nature-to-offset-too-much-carbon-170336 (accessed on 25 February 2022).
- CAT. USA. Climate Action Tracker. 2021. Available online: https://climateactiontracker.org/countries/usa/ (accessed on 28 October 2021).
- D’Angelo, C. Experts Bemoan Biden’s Mixed Messages on Old-Growth Forests. HuffPost. 2021. Available online: https://www.huffpost.com/entry/biden-deforestation-old-growth-forests-cop26_n_61841ea9e4b06de3eb726e8a (accessed on 25 November 2021).
- GFW. United States Deforestation Rates & Statistics. Global Forest Watch. 2021. Available online: https://www.globalforestwatch.org/dashboards/country/USA/ (accessed on 25 November 2021).
- Green, F.; Brandstedt, E. Engaged Climate Ethics*. J. Political Philos. 2021, 29, 539–563. [Google Scholar] [CrossRef]
- Nordhaus, W.D. An Optimal Transition Path for Controlling Greenhouse Gases. Science 1992, 258, 1315–1319. [Google Scholar] [CrossRef]
- Nordhaus, W. The Climate Casino: Risk, Uncertainty, and Economics for a Warming World; Yale University Press: New Haven, CT, USA; London, UK, 2013. [Google Scholar]
- Nordhaus, W.D. Rolling the ‘DICE’: An optimal transition path for controlling greenhouse gases. Resour. Energy Econ. 1993, 15, 27–50. [Google Scholar] [CrossRef] [Green Version]
- COP/UNFCCC. Decision-/CP.26 Glasgow Climate Pact; UN: New York, NY, USA, 2021. [Google Scholar]
- UNFCCC. Nationally Determined Contributions under the Paris Agreement Synthesis Report by the Secretariat; UNFCCC: Glasgow, Ireland, 2021. [Google Scholar]
- Solow, R.M. A Contribution to the Theory of Economic Growth. Q. J. Econ. 1956, 70, 65. [Google Scholar] [CrossRef]
- Swan, T.W. Economic Growth and Capital Accumulation. Econ. Rec. 1956, 32, 334–361. [Google Scholar] [CrossRef]
- Stiglitz, J.E. Georgescu-Roegen versus Solow/Stiglitz. Ecol. Econ. 1997, 22, 269–270. [Google Scholar] [CrossRef] [Green Version]
- Ainslie, G. Breakdown of Will; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Nordhaus, T. The Two-Degree Delusion: The Dangers of an Unrealistic Climate Change Target. Foreign Aff. 2018. Available online: https://www.foreignaffairs.com/articles/world/2018-02-08/two-degree-delusion (accessed on 22 November 2021).
- Olawuyi, D.S. Advancing Climate Justice in International Law: An Evaluation of the United Nations Human Rights-Based Approach. Fla. A M Univ. Law Rev. 2015, 11, 103. [Google Scholar]
- Kubiszewski, I.; Costanza, R.; Franco, C.; Lawn, P.; Talberth, J.; Jackson, T.; Aylmer, C. Beyond GDP: Measuring and achieving global genuine progress. Ecol. Econ. 2013, 93, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Nordhaus, W. Projections and Uncertainties about Climate Change in an Era of Minimal Climate Policies. Am. Econ. J. Econ. Policy 2018, 10, 333–360. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, J. Is Glasgow COP26 a New Copenhagen, Overlooking the Countries in Most Need? Blogue SHIFT—Grupo de investigação Ambiente, Território e Sociedade do ICS-ULisboa. 2021. Available online: https://ambienteterritoriosociedade-ics.org/ (accessed on 22 November 2021).
- UNFCCC. United Nations Framework Convention on Climate Change; Parties of the Convention: New York, NY, USA, 1992. [Google Scholar]
- Luciani, G. The impacts of the energy transition on growth and income distribution. In Lecture Notes in Energy; Springer: Berlin/Heidelberg, Germany, 2020; pp. 305–318. [Google Scholar]
- Jamieson, D. Ethics, Public Policy, and Global Warming. Sci. Technol. Hum. Values 1992, 17, 139–153. [Google Scholar] [CrossRef] [Green Version]
- WMO. 2021 State of Climate Services (WMO-No. 1278); World Meteorological Organization: Geneva, Switzerland, 2021. [Google Scholar]
- WMO. State of the Global Climate 2020 (WMO-No. 1264); World Meteorological Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Berrang-Ford, L.; Siders, A.R.; Lesnikowski, A.; Fischer, A.P.; Callaghan, M.W.; Haddaway, N.R.; Mach, K.J.; Araos, M.; Rahman Shah, M.A.; Wannewitz, M.; et al. A systematic global stocktake of evidence on human adaptation to climate change. Nat. Clim. Chang. 2021, 11, 989–1000. [Google Scholar] [CrossRef]
- Dow, K.; Berkhout, F.; Preston, B.L.; Klein, R.J.T.; Midgley, G.; Shaw, M.R. Limits to adaptation. Nat. Clim. Chang. 2013, 3, 305–307. [Google Scholar] [CrossRef]
- Klein, R.J.T.; Midgley, G.F.; Preston, B.L.; Alam, M.; Berkhout, F.; Dow, K.; Shaw, M.R. Adaptation Opportunities, Constraints, and Limits. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 899–943. [Google Scholar]
- Adger, W.N.; Agrawala, S.; Mirza, M.M.Q.; Conde, C.; O’Brien, K.; Pulhin, J.; Pulwarty, R.; Smit, B.; Takahashi, K.; Enright, B.; et al. Assessment of adaptation practices, options, constraints and capacity. In Cllimate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 717–743. [Google Scholar]
- Klinke, A.; Renn, O. A new approach to risk evaluation and management: Risk-based, precaution-based, and discourse-based strategies. Risk Anal. 2002, 22, 1071–1094. [Google Scholar] [CrossRef]
- McNamara, K.E.; Jackson, G. Loss and damage: A review of the literature and directions for future research. Wiley Interdiscip. Rev. Clim. Chang. 2019, 10, e564. [Google Scholar] [CrossRef]
- UNFCCC. Report of the Conference of the Parties on Its Nineteenth Session, Held in Warsaw from 11 to 23 November 2013. Conference of the Parties, United Nations Framework Convention on Climate Change 43; UN: Geneva, Switzerland, 2014. [Google Scholar]
- UNFCCC/COP. FCCC/CP/2013/10/Add.1; COP: Warsaw, Poland, 2013. [Google Scholar]
- Evans, S.; Gabbatiss, J.; McSweeney, R.; Chandrasekhar, A.; Tandon, A.; Viglione, G.; Hausfather, Z.; You, X.; Goodman, J.; Hayes, S. COP26: Key Outcomes Agreed at the UN Climate Talks in Glasgow. Carbon Brief. 2021. Available online: https://www.carbonbrief.org/cop26-key-outcomes-agreed-at-the-un-climate-talks-in-glasgow (accessed on 2 December 2021).
- Serdeczny, O. Non-economic Loss and Damage and the Warsaw International Mechanism. In Loss and Damage from Climate Change; Mechler, R., Bouwer, L.M., Schinko, T., et al., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Arnold, D.G. Ethics of Climate Change; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Caney, S. Climate Change and Non-Ideal Theory: Six Ways of Responding to Non-Compliance. In Climate Justice in a Non-Ideal World; Heyward, C., Roser, D., Eds.; Oxford University Press: Oxford, UK, 2016; pp. 21–42. [Google Scholar]
- Brandstedt, E. The savings problem in the original position: Assessing and revising a model. Can. J. Philos. 2017, 47, 269–289. [Google Scholar] [CrossRef] [Green Version]
- Heyward, C.; Roser, D. Climate Justice in a Non-Ideal World; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Laurence, B. The Question of the Agent of Change*. J. Political Philos. 2020, 28, 355–377. [Google Scholar] [CrossRef]
- Somerville, P. A Critique of Climate Change Mitigation Policy. Policy Politics 2020, 48, 355–378. [Google Scholar] [CrossRef]
- Green, F. Anti-fossil fuel norms. Clim. Chang. 2018, 150, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Schlosberg, D. Ecological Justice for the Anthropocene. In Political Animals and Animal Politics; Palgrave Macmillan: London, UK, 2014; pp. 75–89. [Google Scholar]
- Herbst-Bayliss, S. IMF’s Lagarde Eyes Subsidies, Simple Things to Tackle Climate Change. Available online: https://www.reuters.com/article/us-imf-lagarde-idUSKCN0W62OI (accessed on 22 November 2021).
- King, E. World Bank Chief Backs Fossil Fuel Divestment Drive. Climate Home News. 2014. Available online: https://www.climatechangenews.com/2014/01/27/world-bank-chief-backs-fossil-fuel-divestment-drive/ (accessed on 17 September 2018).
- Gurría, A. Overcoming Climate Change and Unleashing a Dynamic, Zero-Carbon Economy; Organisation for Economic Cooperation and Development: Pairs, France, 2015; pp. 2–3. [Google Scholar]
- Marris, E. Why young climate activists have captured the world’s attention. Nature 2019, 573, 471–472. [Google Scholar] [CrossRef]
- Escobar, A. Degrowth, postdevelopment, and transitions: A preliminary conversation. Sustain. Sci. 2015, 10, 451–462. [Google Scholar] [CrossRef]
- O’Brien, K.; Selboe, E.; Hayward, B.M. Exploring Youth Activism on Climate Change: Dutiful, Disruptive, and Dangerous Dissent. Ecol. Soc. 2018, 23, 42. [Google Scholar] [CrossRef] [Green Version]
- Thiery, W.; Lange, S.; Rogelj, J.; Schleussner, C.F.; Gudmundsson, L.; Seneviratne, S.I.; Andrijevic, M.; Frieler, K.; Emanuel, K.; Geiger, T.; et al. Intergenerational inequities in exposure to climate extremes. Science 2021, 374, 158–160. [Google Scholar] [CrossRef]
- NRC. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration; National Academies Press: Washington, DC, USA, 2015. [Google Scholar]
- Mitchell, D.L.; Finnegan, W. Modification of cirrus clouds to reduce global warming. Environ. Res. Lett. 2009, 4, 045102. [Google Scholar] [CrossRef]
- Gasparini, B.; McGraw, Z.; Storelvmo, T.; Lohmann, U. To what extent can cirrus cloud seeding counteract global warming? Environ. Res. Lett. 2020, 15, 054002. [Google Scholar] [CrossRef]
- Reynolds, J.L. Is solar geoengineering ungovernable? A critical assessment of governance challenges identified by the Intergovernmental Panel on Climate Change. WIREs Clim. Chang. 2021, 12, e690. [Google Scholar] [CrossRef]
- Honegger, M.; Reiner, D. The political economy of negative emissions technologies: Consequences for international policy design. Clim. Policy 2018, 18, 306–321. [Google Scholar] [CrossRef] [Green Version]
- EASAC. Science Advice for the Benefit of Europe Negative emission technologies: What role in meeting Paris Agreement targets? EASAC: Halle, Germany, 2018. [Google Scholar]
- Heyen, D.; Lehtomaa, J. Solar geoengineering governance: A dynamic framework of farsighted coalition formation. Oxf. Open Clim. Chang. 2021, 1, kgab010. [Google Scholar] [CrossRef]
- NASEM. Reflecting Sunlight: Reflecting Sunlight: Recommendations for Solar Geoengineering Research and Research Governance; National Academies Press: Washington, DC, USA, 2021. [Google Scholar]
- Keith, D. Engineering the Planet. In Climate Change Science and Policy; Schneider, S., Mastrandrea, M., Eds.; Island Press: Washington, DC, USA, 2010; pp. 493–501. [Google Scholar]
- Keith, D.W. Toward a Responsible Solar Geoengineering Research Program. Sci. Technol. 2017, 33, 71–77. [Google Scholar]
- Rasch, P.J.; Tilmes, S.; Turco, R.P.; Robock, A.; Oman, L.; Chen, C.C.; Stenchikov, G.L.; Garcia, R.R. An overview of geoengineering of climate using stratospheric sulphate aerosols. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2008, 366, 4007–4037. [Google Scholar] [CrossRef]
- Robock, A.; Marquardt, A.; Kravitz, B.; Stenchikov, G. Benefits, risks, and costs of stratospheric geoengineering. Geophys. Res. Lett. 2009, 36, L19703. [Google Scholar] [CrossRef] [Green Version]
- Parker, D.E.; Wilson, H.; Jones, P.D.; Jones, J.; Christy, R.; Folland, C.K. The impact of Mount Pinatubo on world-wide temperatures. Int. J. Climatol. 1996, 16, 487–497. [Google Scholar] [CrossRef]
- Smith, W. The cost of stratospheric aerosol injection through 2100. Environ. Res. Lett. 2020, 15, 114004. [Google Scholar] [CrossRef]
- Mora, C.; Wei, C.-L.; Rollo, A.; Amaro, T.; Baco, A.R.; Billett, D.; Bopp, L.; Chen, Q.; Collier, M.; Danovaro, R. Biotic and Human Vulnerability to Projected Changes in Ocean Biogeochemistry over the 21st Century. PLoS Biol. 2013, 11, e1001682. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.R.; Myers, S.S. Impact of anthropogenic CO2 emissions on global human nutrition. Nat. Clim. Chang. 2018, 8, 834–839. [Google Scholar] [CrossRef]
- McCusker, K.E.; Battisti, D.S.; Bitz, C.M. Inability of stratospheric sulfate aerosol injections to preserve the West Antarctic Ice Sheet. Geophys. Res. Lett. 2015, 42, 4989–4997. [Google Scholar] [CrossRef]
- Robock, A.; Bunzl, M.; Kravitz, B.; Stenchikov, G.L. A Test for Geoengineering? Science 2010, 327, 530–531. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.; Haywood, J.; Boucher, O.; Kravitz, B. Geoengineering by stratospheric SO2 injection: Results from the Met Office HadGEM2 climate model and comparison with the Goddard Institute for Space Studies ModelE. Atmos. Chem. Phys. 2010, 10, 5999–6006. [Google Scholar] [CrossRef] [Green Version]
- Ross, A.; Damon Matthews, H. Climate engineering and the risk of rapid climate change. Environ. Res. Lett. 2009, 4, 045103. [Google Scholar] [CrossRef]
- Bala, G.; Duffy, P.B.; Taylor, K.E. Impact of geoengineering schemes on the global hydrological cycle. Proc. Natl. Acad. Sci. USA 2008, 105, 7664–7669. [Google Scholar] [CrossRef] [Green Version]
- Tilmes, S.; Fasullo, J.; Lamarque, J.F.; Marsh, D.R.; Mills, M.; Alterskjær, K.; Muri, H.; Kristjánsson, J.E.; Boucher, O.; Schulz, M.; et al. The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. 2013, 118, 11036–11058. [Google Scholar] [CrossRef] [Green Version]
- Keller, D.P.; Feng, E.Y.; Oschlies, A. Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario. Nat. Commun. 2014, 5, 3304. [Google Scholar] [CrossRef] [Green Version]
- ETC. Solar Radiation Management Geoengineering and Climate Change: Implications for Africa; ETC: Val David, QC, Canada, 2018. [Google Scholar]
- Ricke, K.L.; Morgan, M.G.; Allen, M.R. Regional climate response to solar-radiation management. Nat. Geosci. 2010, 3, 537–541. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Harding, A.R.; Ricke, K.; Heyen, D. Climate econometric models indicate solar geoengineering would reduce inter-country income inequality. Nat. Commun. 2020, 11, 227. [Google Scholar] [CrossRef]
- Schellnhuber, H.J. Geoengineering: The good, the MAD, and the sensible. Proc. Natl. Acad. Sci. USA 2011, 108, 20277–20278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, C. Earthmasters: The Dawn of the Age of Climate Engineering; Yale University Press: New Haven, CT, USA, 2013. [Google Scholar]
- Hulme, M. Can Science Fix Climate Change?: A Case Against Climate Engineering; Polity Press: Cambridge, UK, 2014. [Google Scholar]
- Schneider, L. Fixing the Climate? How Geoengineering Threatens to Undermine the SDGs and Climate Justice. Development 2019, 62, 29–36. [Google Scholar] [CrossRef]
- Kreuter, J. Technofix, Plan B or Ultima Ratio? A Review of the Social Science Literature on Climate Engineering Technologies; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Rickels, W.; Quaas, M.F.; Ricke, K.; Quaas, J.; Moreno-Cruz, J.; Smulders, S. Who turns the global thermostat and by how much? Energy Econ. 2020, 91, 104852. [Google Scholar] [CrossRef]
- Horton, J.B. Geoengineering and the Myth of Unilateralism. In Climate Change Geoengineering; Burns, W.C.G., Strauss, A.L., Eds.; Cambridge University Press: Cambridge, UK, 2017; pp. 168–181. [Google Scholar]
- Blackstock, J.J.; Low, S. Geoengineering Our Climate? Ethics, Politics and Governance; Routledge: London, UK, 2019. [Google Scholar]
- Hourdequin, M. Geoengineering Justice: The Role of Recognition. Sci. Technol. Hum. Values 2019, 44, 448–477. [Google Scholar] [CrossRef]
- Reynolds, J.L. The Governance of Solar Geoengineering: Managing Climate Change in the Anthropocene; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Rayner, S.; Heyward, C.; Kruger, T.; Pidgeon, N.; Redgwell, C.; Savulescu, J. The Oxford Principles. Clim. Chang. 2013, 121, 499–512. [Google Scholar] [CrossRef]
- Scheffer, M. Critical Transitions in Nature and Society; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Russill, C.; Nyssa, Z. The tipping point trend in climate change communication. Glob. Environ. Chang. 2009, 19, 336–344. [Google Scholar] [CrossRef]
- Lenton, T.M.; Held, H.; Kriegler, E.; Hall, J.W.; Lucht, W.; Rahmstorf, S.; Schellnhuber, H.J. Tipping elements in the Earth’s climate system. Proc. Natl. Acad. Sci. USA 2008, 105, 1786–1793. [Google Scholar] [CrossRef] [Green Version]
- Lenton, T.M.; Kohler, T.A.; Marquet, P.A.; Boyle, R.A.; Crucifix, M.; Wilkinson, D.M.; Scheffer, M. Survival of the Systems. Trends Ecol. Evol. 2021, 36, 333–344. [Google Scholar] [CrossRef]
- IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Dietz, S.; Rising, J.; Stoerk, T.; Wagner, G. Economic impacts of tipping points in the climate system. Proc. Natl. Acad. Sci. USA 2021, 118, e2103081118. [Google Scholar] [CrossRef]
- Kriegler, E.; Hall, J.W.; Held, H.; Dawson, R.; Schellnhuber, H.J. Imprecise probability assessment of tipping points in the climate system. Proc. Natl. Acad. Sci. USA 2009, 106, 5041–5046. [Google Scholar] [CrossRef] [Green Version]
- Barrett, S.; Dannenberg, A. Sensitivity of collective action to uncertainty about climate tipping points. Nat. Clim. Chang. 2014, 4, 36–39. [Google Scholar] [CrossRef] [Green Version]
- Lontzek, T.S.; Cai, Y.; Judd, K.L.; Lenton, T.M. Stochastic integrated assessment of climate tipping points indicates the need for strict climate policy. Nat. Clim. Chang. 2015, 5, 441–444. [Google Scholar] [CrossRef] [Green Version]
- Tebaldi, C.; Friedlingstein, P. Delayed detection of climate mitigation benefits due to climate inertia and variability. Proc. Natl. Acad. Sci. USA 2013, 110, 17229–17234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samset, B.H.; Fuglestvedt, J.S.; Lund, M.T. Delayed emergence of a global temperature response after emission mitigation. Nat. Commun. 2020, 11, 3261. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2001: Mitigation; IPCC: Geneva, Switzerland, 2001. [Google Scholar]
- Matsuno, T.; Maruyama, K.; Tsutsui, J. Stabilization of atmospheric carbon dioxide via zero emissions-An alternative way to a stable global environment. Part 2: A practical zero-emissions scenario. Proc. Jpn. Acad. Ser. B 2012, 88, 385–395. [Google Scholar] [CrossRef] [Green Version]
- IPCC. AR4 Climate Change 2007: Mitigation of Climate Change; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- van Ginkel, K.C.H.; Botzen, W.J.W.; Haasnoot, M.; Bachner, G.; Steininger, K.W.; Hinkel, J.; Watkiss, P.; Boere, E.; Jeuken, A.; Murieta, E.S.; et al. Climate change induced socio-economic tipping points: Review and stakeholder consultation for policy relevant research. Environ. Res. Lett. 2020, 15, 023001. [Google Scholar] [CrossRef] [Green Version]
- Haasnoot, M.; Middelkoop, H.; Offermans, A.; van Beek, E.; van Deursen Willem, P.A. Exploring pathways for sustainable water management in river deltas in a changing environment. Clim. Chang. 2012, 115, 795–819. [Google Scholar] [CrossRef] [Green Version]
- Heinze, A.; Bongers, F.; Ramírez, M.N.; Barrios, L.G.; Kuyper, T.W. The montane multifunctional landscape: How stakeholders in a biosphere reserve derive benefits and address trade-offs in ecosystem service supply. Ecos. Serv. 2020, 44, 101134. [Google Scholar] [CrossRef]
- Heinze, C.; Blenckner, T.; Martins, H.; Rusiecka, D.; Döscher, R.; Gehlen, M.; Gruber, N.; EHolland, E.; Hov, Ø.; Joos, F.; et al. The quiet crossing of ocean tipping points. Proc. Natl. Acad. Sci. USA 2021, 118, e2008478118. [Google Scholar] [CrossRef]
- van der Vlist, M.J.; Ligthart, S.S.H.; Zandvoort, M. The replacement of hydraulic structures in light of tipping points. J. Water Clim. Chang. 2015, 6, 683–694. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Cranston, M. Green energy transition will further fuel inflation: Bank of America. Financ. Rev. 2021. [Google Scholar]
- Bogdanov, D.; Ram, M.; Aghahosseini, A.; Gulagi, A.; Oyewo, A.S.; Child, M.; Caldera, U.; Sadovskaia, K.; Farfan, J.; Rogelj, J.; et al. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy 2021, 227, 120467. [Google Scholar] [CrossRef]
- Economist. Glencore’s message to the planet. The Economist, 1 January 2022. [Google Scholar]
- Anderson, K.; Peters, G. The trouble with negative emissions. Science 2016, 354, 182–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riahi, K.; Bertram, C.; Huppmann, D.; Rogel, J.; Bosetti, V.; Cabardos, A.-M.; Deppermann, A.; Drouet, L.; Frank, S.; Fricko, O.; et al. Cost and attainability of meeting stringent climate targets without overshoot. Nat. Clim. Chang. 2021, 11, 1063–1069. [Google Scholar] [CrossRef]
- Gi, K.; Sano, F.; Akimoto, K.; Hiwatari, R.; Tobita, K. Potential contribution of fusion power generation to low-carbon development under the Paris Agreement and associated uncertainties. Energy Strategy Rev. 2020, 27, 100432. [Google Scholar] [CrossRef]
- Bloomberg. Delivering on America’s Pledge|Americas Pledge On Climate. Bloomberg IP Holdings LLC. 2021. Available online: https://www.americaspledgeonclimate.com/report-delivering-on-americas-pledge/ (accessed on 29 November 2021).
- UNFCCC. Greenhouse Gas Inventory Data. 2021. Available online: https://di.unfccc.int/detailed_data_by_party (accessed on 21 October 2021).
- GCP. Data Supplement to the Global Carbon Budget 2020, version 1.0; GCP: Los Angeles, CA, USA, 2020. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, F.D.; Ferreira, P.L.; Pedersen, J.S.T. The Climate Change Challenge: A Review of the Barriers and Solutions to Deliver a Paris Solution. Climate 2022, 10, 75. https://doi.org/10.3390/cli10050075
Santos FD, Ferreira PL, Pedersen JST. The Climate Change Challenge: A Review of the Barriers and Solutions to Deliver a Paris Solution. Climate. 2022; 10(5):75. https://doi.org/10.3390/cli10050075
Chicago/Turabian StyleSantos, Filipe Duarte, Paulo Lopes Ferreira, and Jiesper Strandsbjerg Tristan Pedersen. 2022. "The Climate Change Challenge: A Review of the Barriers and Solutions to Deliver a Paris Solution" Climate 10, no. 5: 75. https://doi.org/10.3390/cli10050075
APA StyleSantos, F. D., Ferreira, P. L., & Pedersen, J. S. T. (2022). The Climate Change Challenge: A Review of the Barriers and Solutions to Deliver a Paris Solution. Climate, 10(5), 75. https://doi.org/10.3390/cli10050075