Estimating Future Residential Property Risk Associated with Wildfires in Louisiana, U.S.A.
Abstract
:1. Introduction
2. Background: Wildfire-Related Property Impacts
3. Temporal Trends in Wildfire Occurrence in the U.S.A.
4. Study Area
5. Materials and Methods
5.1. Data
5.2. Assessing Historical Wildfire Burn Probability
5.3. Assessing Future Wildfire Burn Probability
5.4. Projecting Population
5.5. Assessing Structure and Content Value
5.6. Projecting Future Property Loss
6. Results
6.1. Historical Wildfire Probability
6.2. Projected Future Wildfire Probability
6.3. Projected Future Population
6.4. Historical and Projected Future Property Loss
6.5. Sensitivity Analysis
7. Discussion
8. Limitations
9. Summary/Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Historical (1992–2015) Wildfire Burn Probability (%) by Louisiana Parish
Parish | Point-Based | Parishwide | ||
Min | Max | Mean | Standard Deviation | |
Acadia | 0.01 | 1.18 | 0.16 | 0.18 |
Allen | 1.20 | 6.22 | 3.77 | 1.28 |
Ascension | 0.01 | 1.04 | 0.36 | 0.24 |
Assumption | 0.00 | 0.05 | 0.01 | 0.01 |
Avoyelles | 0.06 | 1.23 | 0.29 | 0.21 |
Beauregard | 2.01 | 5.39 | 3.87 | 0.47 |
Bienville | 0.82 | 1.52 | 1.17 | 0.14 |
Bossier | 0.71 | 2.06 | 1.14 | 0.24 |
Caddo | 0.65 | 3.20 | 1.59 | 0.56 |
Calcasieu | 0.13 | 6.48 | 1.82 | 1.07 |
Caldwell | 0.45 | 1.64 | 0.99 | 0.27 |
Cameron | 0.00 | 7.70 | 1.52 | 1.61 |
Catahoula | 0.07 | 1.24 | 0.53 | 0.31 |
Claiborne | 1.11 | 1.56 | 1.37 | 0.11 |
Concordia | 0.06 | 0.46 | 0.18 | 0.08 |
De Soto | 0.61 | 1.72 | 0.83 | 0.20 |
East Baton Rouge | 0.05 | 2.92 | 0.64 | 0.54 |
East Carroll | 0.06 | 0.36 | 0.21 | 0.07 |
East Feliciana | 0.15 | 3.67 | 1.72 | 0.86 |
Evangeline | 0.25 | 5.23 | 1.73 | 1.06 |
Franklin | 0.07 | 0.78 | 0.24 | 0.14 |
Grant | 1.18 | 2.07 | 1.74 | 0.20 |
Iberia | 0.00 | 0.02 | 0.00 | 0.00 |
Iberville | 0.00 | 0.36 | 0.03 | 0.04 |
Jackson | 0.84 | 1.22 | 1.03 | 0.08 |
Jefferson | 0.00 | 0.93 | 0.13 | 0.18 |
Jefferson Davis | 0.04 | 2.52 | 0.72 | 0.56 |
Lafayette | 0.01 | 0.09 | 0.02 | 0.01 |
Lafourche | 0.00 | 0.08 | 0.01 | 0.01 |
LaSalle | 0.32 | 2.01 | 1.45 | 0.37 |
Lincoln | 0.85 | 1.33 | 1.07 | 0.12 |
Livingston | 0.51 | 4.41 | 2.15 | 0.95 |
Madison | 0.06 | 0.33 | 0.13 | 0.06 |
Morehouse | 0.30 | 0.96 | 0.64 | 0.14 |
Natchitoches | 0.82 | 1.74 | 1.13 | 0.15 |
Orleans | 0.08 | 2.31 | 0.93 | 0.54 |
Ouachita | 0.37 | 0.89 | 0.64 | 0.13 |
Plaquemines | 0.00 | 0.24 | 0.03 | 0.05 |
Pointe Coupee | 0.03 | 0.17 | 0.08 | 0.03 |
Rapides | 0.47 | 6.13 | 2.43 | 1.46 |
Red River | 0.65 | 1.03 | 0.83 | 0.08 |
Richland | 0.22 | 0.67 | 0.34 | 0.07 |
Sabine | 0.81 | 2.16 | 1.35 | 0.30 |
St. Bernard | 0.00 | 2.00 | 0.24 | 0.21 |
St. Charles | 0.00 | 0.49 | 0.05 | 0.06 |
St. Helena | 2.17 | 4.75 | 3.97 | 0.48 |
St. James | 0.01 | 0.50 | 0.10 | 0.10 |
St. John the Baptist | 0.01 | 1.47 | 0.46 | 0.37 |
St. Landry | 0.03 | 0.76 | 0.17 | 0.13 |
St. Martin | 0.00 | 0.06 | 0.01 | 0.01 |
St. Mary | 0.00 | 0.01 | 0.00 | 0.00 |
St. Tammany | 0.92 | 5.60 | 3.15 | 0.89 |
Tangipahoa | 1.22 | 4.76 | 3.55 | 0.96 |
Tensas | 0.06 | 0.68 | 0.18 | 0.12 |
Terrebonne | 0.00 | 0.02 | 0.00 | 0.00 |
Union | 0.65 | 1.22 | 0.89 | 0.12 |
Vermilion | 0.00 | 0.53 | 0.04 | 0.06 |
Vernon | 1.34 | 6.11 | 3.08 | 1.12 |
Washington | 3.19 | 6.93 | 4.14 | 0.69 |
Webster | 0.97 | 1.54 | 1.34 | 0.10 |
West Baton Rouge | 0.02 | 0.19 | 0.07 | 0.04 |
West Carroll | 0.19 | 0.56 | 0.39 | 0.07 |
West Feliciana | 0.06 | 1.39 | 0.34 | 0.26 |
Winn | 1.10 | 1.98 | 1.48 | 0.21 |
Appendix B. Projected Wildfire Burn Probability (%) in 2050 by Louisiana Parish
Parish | Point-Based | Parishwide | ||
Min | Max | Mean | Standard Deviation | |
Acadia | 0.01 | 1.47 | 0.20 | 0.22 |
Allen | 1.50 | 7.77 | 4.71 | 1.60 |
Ascension | 0.02 | 1.30 | 0.45 | 0.30 |
Assumption | 0.00 | 0.06 | 0.01 | 0.01 |
Avoyelles | 0.08 | 1.54 | 0.36 | 0.26 |
Beauregard | 2.51 | 6.73 | 4.83 | 0.59 |
Bienville | 1.03 | 1.89 | 1.47 | 0.17 |
Bossier | 0.89 | 2.57 | 1.43 | 0.31 |
Caddo | 0.81 | 4.00 | 1.99 | 0.70 |
Calcasieu | 0.16 | 8.10 | 2.28 | 1.33 |
Caldwell | 0.56 | 2.05 | 1.23 | 0.33 |
Cameron | 0.00 | 9.62 | 1.90 | 2.01 |
Catahoula | 0.09 | 1.55 | 0.67 | 0.38 |
Claiborne | 1.39 | 1.95 | 1.71 | 0.14 |
Concordia | 0.08 | 0.58 | 0.22 | 0.10 |
De Soto | 0.77 | 2.15 | 1.03 | 0.24 |
East Baton Rouge | 0.06 | 3.65 | 0.80 | 0.67 |
East Carroll | 0.07 | 0.45 | 0.26 | 0.09 |
East Feliciana | 0.18 | 4.58 | 2.15 | 1.08 |
Evangeline | 0.31 | 6.54 | 2.16 | 1.32 |
Franklin | 0.08 | 0.98 | 0.29 | 0.17 |
Grant | 1.47 | 2.59 | 2.17 | 0.25 |
Iberia | 0.00 | 0.02 | 0.00 | 0.00 |
Iberville | 0.01 | 0.45 | 0.04 | 0.05 |
Jackson | 1.05 | 1.53 | 1.29 | 0.10 |
Jefferson | 0.00 | 1.16 | 0.16 | 0.23 |
Jefferson Davis | 0.05 | 3.15 | 0.89 | 0.69 |
Lafayette | 0.01 | 0.11 | 0.03 | 0.02 |
Lafourche | 0.00 | 0.10 | 0.01 | 0.01 |
LaSalle | 0.40 | 2.51 | 1.81 | 0.47 |
Lincoln | 1.06 | 1.67 | 1.34 | 0.16 |
Livingston | 0.64 | 5.52 | 2.69 | 1.18 |
Madison | 0.08 | 0.41 | 0.16 | 0.07 |
Morehouse | 0.38 | 1.20 | 0.80 | 0.18 |
Natchitoches | 1.02 | 2.18 | 1.42 | 0.18 |
Orleans | 0.10 | 2.89 | 1.16 | 0.67 |
Ouachita | 0.46 | 1.12 | 0.80 | 0.16 |
Plaquemines | 0.00 | 0.31 | 0.04 | 0.06 |
Pointe Coupee | 0.04 | 0.22 | 0.09 | 0.03 |
Rapides | 0.59 | 7.66 | 3.04 | 1.83 |
Red River | 0.81 | 1.29 | 1.04 | 0.10 |
Richland | 0.27 | 0.83 | 0.43 | 0.09 |
Sabine | 1.02 | 2.70 | 1.69 | 0.37 |
St. Bernard | 0.00 | 2.50 | 0.30 | 0.26 |
St. Charles | 0.00 | 0.61 | 0.07 | 0.08 |
St. Helena | 2.71 | 5.94 | 4.96 | 0.60 |
St. James | 0.01 | 0.62 | 0.13 | 0.12 |
St. John the Baptist | 0.01 | 1.84 | 0.57 | 0.47 |
St. Landry | 0.04 | 0.95 | 0.21 | 0.16 |
St. Martin | 0.00 | 0.07 | 0.02 | 0.01 |
St. Mary | 0.00 | 0.02 | 0.00 | 0.00 |
St. Tammany | 1.15 | 7.01 | 3.94 | 1.11 |
Tangipahoa | 1.52 | 5.95 | 4.44 | 1.20 |
Tensas | 0.08 | 0.85 | 0.23 | 0.15 |
Terrebonne | 0.00 | 0.03 | 0.01 | 0.00 |
Union | 0.81 | 1.52 | 1.11 | 0.15 |
Vermilion | 0.00 | 0.66 | 0.05 | 0.08 |
Vernon | 1.68 | 7.64 | 3.85 | 1.40 |
Washington | 3.99 | 8.67 | 5.18 | 0.87 |
Webster | 1.21 | 1.93 | 1.67 | 0.13 |
West Baton Rouge | 0.03 | 0.24 | 0.08 | 0.04 |
West Carroll | 0.24 | 0.70 | 0.49 | 0.09 |
West Feliciana | 0.08 | 1.74 | 0.43 | 0.32 |
Winn | 1.38 | 2.47 | 1.85 | 0.27 |
Appendix C. Louisiana Parish Population and Population Density, Both in 2010 and Projected to 2050, and the Changes of Each
Parish | Population (2010) | Population (2050) | Population Change (2010–2050) | Density (per km2) (2010) | Density (per km2) (2050) | Density Change (2010–2050) (per km2) |
Acadia | 61,773 | 67,309 | 5536 | 36.3 | 39.5 | 3.3 |
Allen | 25,764 | 30,554 | 4790 | 13.0 | 15.4 | 2.4 |
Ascension | 107,215 | 278,635 | 171,420 | 136.7 | 355.3 | 218.6 |
Assumption | 23,421 | 22,875 | (546) | 24.8 | 24.2 | (0.6) |
Avoyelles | 42,073 | 40,710 | (1363) | 18.8 | 18.2 | (0.6) |
Beauregard | 35,654 | 45,242 | 9588 | 11.8 | 15.0 | 3.2 |
Bienville | 14,353 | 11,471 | (2882) | 6.7 | 5.4 | (1.4) |
Bossier | 116,979 | 183,706 | 66,727 | 52.1 | 81.8 | 29.7 |
Caddo | 254,969 | 238,795 | (16,174) | 105.1 | 98.4 | (6.7) |
Calcasieu | 192,768 | 233,579 | 40,811 | 68.0 | 82.4 | 14.4 |
Caldwell | 10,132 | 9248 | (884) | 7.2 | 6.6 | (0.6) |
Cameron | 6839 | 5253 | (1586) | 1.4 | 1.0 | (0.3) |
Catahoula | 10,407 | 7741 | (2666) | 5.4 | 4.0 | (1.4) |
Claiborne | 17,195 | 15,467 | (1728) | 8.7 | 7.8 | (0.9) |
Concordia | 20,822 | 17,145 | (3677) | 10.8 | 8.9 | (1.9) |
De Soto | 26,656 | 28,631 | 1975 | 11.5 | 12.4 | 0.9 |
East Baton Rouge | 440,171 | 526,522 | 86,351 | 361.4 | 432.3 | 70.9 |
East Carroll | 7759 | 4397 | (3362) | 6.8 | 3.8 | (2.9) |
East Feliciana | 20,267 | 20,074 | (193) | 17.2 | 17.0 | (0.2) |
Evangeline | 33,984 | 33,924 | (60) | 19.3 | 19.3 | (0.0) |
Franklin | 20,767 | 17,005 | (3762) | 12.6 | 10.3 | (2.3) |
Grant | 22,309 | 29,701 | 7392 | 13.0 | 17.3 | 4.3 |
Iberia | 73,240 | 78,687 | 5447 | 27.4 | 29.5 | 2.0 |
Iberville | 33,387 | 33,263 | (124) | 19.7 | 19.7 | (0.1) |
Jackson | 16,274 | 14,727 | (1547) | 10.8 | 9.8 | (1.0) |
Jefferson | 432,552 | 409,450 | (23,102) | 260.1 | 246.2 | (13.9) |
Jefferson Davis | 31,594 | 30,585 | (1009) | 18.5 | 17.9 | (0.6) |
La Salle | 14,890 | 13,171 | (1719) | 8.7 | 7.7 | (1.0) |
Lafayette | 221,578 | 361,856 | 140,278 | 317.8 | 519.0 | 201.2 |
Lafourche | 96,318 | 112,609 | 16,291 | 25.3 | 29.6 | 4.3 |
Lincoln | 46,735 | 54,630 | 7895 | 38.2 | 44.6 | 6.5 |
Livingston | 128,026 | 314,726 | 186,700 | 71.5 | 175.7 | 104.3 |
Madison | 12,093 | 8268 | (3825) | 7.2 | 4.9 | (2.3) |
Morehouse | 27,979 | 19,510 | (8469) | 13.4 | 9.3 | (4.1) |
Natchitoches | 39,566 | 37,548 | (2018) | 11.8 | 11.2 | (0.6) |
Orleans | 343,829 | 310,135 | (33,694) | 379.5 | 342.3 | (37.2) |
Ouachita | 153,720 | 167,523 | 13,803 | 93.9 | 102.4 | 8.4 |
Plaquemines | 23,042 | 21,107 | (1935) | 3.5 | 3.2 | (0.3) |
Pointe Coupee | 22,802 | 20,338 | (2464) | 14.9 | 13.3 | (1.6) |
Rapides | 131,613 | 125,227 | (6386) | 37.3 | 35.5 | (1.8) |
Red River | 9091 | 7174 | (1917) | 8.7 | 6.9 | (1.8) |
Richland | 20,725 | 18,611 | (2114) | 14.2 | 12.7 | (1.4) |
Sabine | 24,233 | 22,705 | (1528) | 9.2 | 8.7 | (0.6) |
St. Bernard | 35,897 | 59,835 | 23,938 | 6.4 | 10.7 | 4.3 |
St. Charles | 52,780 | 74,669 | 21,889 | 51.3 | 72.6 | 21.3 |
St. Helena | 11,203 | 11,570 | 367 | 10.6 | 10.9 | 0.3 |
St. James | 22,102 | 21,233 | (869) | 33.1 | 31.8 | (1.3) |
St. John the Baptist | 45,924 | 60,827 | 14,903 | 43.3 | 57.3 | 14.0 |
St. Landry | 83,384 | 80,465 | (2919) | 34.3 | 33.1 | (1.2) |
St. Martin | 52,160 | 68,297 | 16,137 | 24.7 | 32.3 | 7.6 |
St. Mary | 54,650 | 41,198 | (13,452) | 18.8 | 14.2 | (4.6) |
St. Tammany | 233,740 | 555,517 | 321,777 | 82.4 | 195.8 | 113.4 |
Tangipahoa | 121,097 | 204,995 | 83,898 | 55.4 | 93.8 | 38.4 |
Tensas | 5252 | 2529 | (2723) | 3.2 | 1.5 | (1.6) |
Terrebonne | 111,860 | 129,437 | 17,577 | 20.7 | 24.0 | 3.3 |
Union | 22,721 | 23,720 | 999 | 9.7 | 10.1 | 0.4 |
Vermilion | 57,999 | 70,768 | 12,769 | 14.5 | 17.7 | 3.2 |
Vernon | 52,334 | 47,403 | (4931) | 15.1 | 13.6 | (1.4) |
Washington | 47,168 | 48,685 | 1517 | 26.9 | 27.8 | 0.9 |
Webster | 41,207 | 35,843 | (5364) | 25.9 | 22.5 | (3.4) |
West Baton Rouge | 23,788 | 33,301 | 9513 | 45.1 | 63.1 | 18.0 |
West Carroll | 11,604 | 9567 | (2037) | 12.4 | 10.2 | (2.2) |
West Feliciana | 15,625 | 19,823 | 4198 | 14.2 | 18.0 | 3.8 |
Winn | 15,313 | 12,352 | (2961) | 6.2 | 5.0 | (1.2) |
Louisiana | 4,533,372 | 5,661,868 | 1,128,496 | 33.4 | 41.7 | 8.3 |
Appendix D. Historical (1992–2015) Annual Average and 2050-Projected Property Loss, per Capita Property Loss, and per Building Property Loss by Louisiana Parish (2010 USD)
Parish | Annual Property Loss | Annual Per Capita Property Loss | Annual Per Building Property Loss | |||
Historical (1992–2015) | Projected (2050) | Historical (1992–2015) | Projected (2050) | Historical (1992–2015) | Projected (2050) | |
Acadia | 5834 | 7939 | 0.09 | 0.12 | 0.23 | 0.29 |
Allen | 70,484 | 104,389 | 2.74 | 3.42 | 7.24 | 9.05 |
Ascension | 79,001 | 256,591 | 0.74 | 0.92 | 1.94 | 2.42 |
Assumption | 166 | 203 | 0.01 | 0.01 | 0.02 | 0.02 |
Avoyelles | 13,541 | 16,395 | 0.32 | 0.40 | 0.75 | 0.94 |
Beauregard | 132,231 | 209,560 | 3.71 | 4.63 | 8.79 | 10.99 |
Bienville | 14,537 | 14,661 | 1.01 | 1.28 | 1.88 | 2.36 |
Bossier | 151,806 | 297,915 | 1.30 | 1.62 | 3.08 | 3.84 |
Caddo | 355,593 | 416,460 | 1.39 | 1.74 | 3.17 | 3.97 |
Calcasieu | 262,914 | 398,089 | 1.36 | 1.70 | 3.20 | 4.00 |
Caldwell | 9166 | 10,486 | 0.90 | 1.13 | 1.84 | 2.29 |
Cameron | 11,858 | 11,474 | 1.73 | 2.18 | 3.30 | 4.10 |
Catahoula | 4405 | 4104 | 0.42 | 0.53 | 0.90 | 1.13 |
Claiborne | 18,779 | 21,171 | 1.09 | 1.37 | 2.42 | 3.02 |
Concordia | 4071 | 4208 | 0.20 | 0.25 | 0.43 | 0.54 |
De Soto | 22,093 | 29,624 | 0.83 | 1.03 | 1.80 | 2.25 |
East Baton Rouge | 318,443 | 476,118 | 0.72 | 0.90 | 1.70 | 2.12 |
East Carroll | 774 | 555 | 0.10 | 0.13 | 0.27 | 0.33 |
East Feliciana | 33,236 | 41,186 | 1.64 | 2.05 | 4.15 | 5.19 |
Evangeline | 36,540 | 45,596 | 1.08 | 1.34 | 2.49 | 3.11 |
Franklin | 3602 | 3702 | 0.17 | 0.22 | 0.40 | 0.50 |
Grant | 33,168 | 55,078 | 1.49 | 1.85 | 3.73 | 4.67 |
Iberia | 273 | 367 | 0.00 | 0.00 | 0.01 | 0.01 |
Iberville | 1412 | 1759 | 0.04 | 0.05 | 0.11 | 0.14 |
Jackson | 18,581 | 21,103 | 1.14 | 1.43 | 2.42 | 3.02 |
Jefferson | 103,818 | 122,841 | 0.24 | 0.30 | 0.55 | 0.69 |
Jefferson Davis | 12,467 | 15,121 | 0.39 | 0.49 | 0.94 | 1.17 |
La Salle | 19,561 | 21,701 | 1.31 | 1.65 | 2.98 | 3.72 |
Lafayette | 7293 | 14,887 | 0.03 | 0.04 | 0.08 | 0.10 |
Lafourche | 397 | 580 | 0.00 | 0.01 | 0.01 | 0.01 |
Lincoln | 54,301 | 79,338 | 1.16 | 1.45 | 2.79 | 3.49 |
Livingston | 321,625 | 987,898 | 2.51 | 3.14 | 6.41 | 8.01 |
Madison | 831 | 717 | 0.07 | 0.09 | 0.17 | 0.22 |
Morehouse | 15,877 | 13,870 | 0.57 | 0.71 | 1.28 | 1.60 |
Natchitoches | 47,276 | 56,097 | 1.19 | 1.49 | 2.54 | 3.18 |
Orleans | 226,704 | 255,825 | 0.66 | 0.82 | 1.19 | 1.49 |
Ouachita | 114,107 | 155,416 | 0.74 | 0.93 | 1.77 | 2.21 |
Plaquemines | 3075 | 3524 | 0.13 | 0.17 | 0.32 | 0.40 |
Pointe Coupee | 2493 | 2779 | 0.11 | 0.14 | 0.22 | 0.28 |
Rapides | 267,425 | 318,269 | 2.03 | 2.54 | 4.80 | 6.00 |
Red River | 6534 | 6460 | 0.72 | 0.90 | 1.58 | 1.98 |
Richland | 4960 | 5580 | 0.24 | 0.30 | 0.58 | 0.72 |
Sabine | 42,303 | 49,748 | 1.75 | 2.19 | 2.99 | 3.75 |
St. Bernard | 12,487 | 25,996 | 0.35 | 0.43 | 0.74 | 0.93 |
St. Charles | 1623 | 2869 | 0.03 | 0.04 | 0.08 | 0.10 |
St. Helena | 49,864 | 64,279 | 4.45 | 5.56 | 9.68 | 12.10 |
St. James | 2187 | 2627 | 0.10 | 0.12 | 0.26 | 0.32 |
St. John the Baptist | 9400 | 15,556 | 0.20 | 0.26 | 0.54 | 0.67 |
St. Landry | 13,271 | 16,020 | 0.16 | 0.20 | 0.37 | 0.46 |
St. Martin | 994 | 1625 | 0.02 | 0.02 | 0.05 | 0.06 |
St. Mary | 44 | 41 | 0.00 | 0.00 | 0.00 | 0.00 |
St. Tammany | 1,560,580 | 4,633,439 | 6.68 | 8.34 | 16.36 | 20.45 |
Tangipahoa | 630,169 | 1,332,887 | 5.20 | 6.50 | 12.58 | 15.73 |
Tensas | 1809 | 1109 | 0.34 | 0.44 | 0.54 | 0.67 |
Terrebonne | 117 | 169 | 0.00 | 0.00 | 0.00 | 0.00 |
Union | 21,337 | 27,811 | 0.94 | 1.17 | 1.88 | 2.35 |
Vermilion | 650 | 988 | 0.01 | 0.01 | 0.03 | 0.03 |
Vernon | 117,933 | 133,743 | 2.25 | 2.82 | 5.50 | 6.88 |
Washington | 198,893 | 256,359 | 4.22 | 5.27 | 9.45 | 11.82 |
Webster | 51,412 | 55,964 | 1.25 | 1.56 | 2.66 | 3.32 |
West Baton Rouge | 2469 | 4319 | 0.10 | 0.13 | 0.26 | 0.33 |
West Carroll | 3879 | 4006 | 0.33 | 0.42 | 0.77 | 0.96 |
West Feliciana | 7375 | 11,668 | 0.47 | 0.59 | 1.45 | 1.82 |
Winn | 16,342 | 16,634 | 1.07 | 1.35 | 2.26 | 2.82 |
Louisiana | 5,556,389 | 11,167,496 | 1.23 | 1.97 | 2.83 | 4.63 |
References
- Mostafiz, R.B.; Bushra, N.; Rohli, R.V.; Friedland, C.J.; Rahim, M.A. Present vs. future property losses from a 100-year coastal flood: A case study of Grand Isle, Louisiana. Front. Water 2021, 3, 763358. [Google Scholar] [CrossRef]
- Mostafiz, R.B.; Friedland, C.J.; Rahman, M.A.; Rohli, R.V.; Tate, E.; Bushra, N.; Taghinezhad, A. Comparison of neighborhood-scale, residential property flood-loss assessment methodologies. Front. Environ. Sci. 2021, 9, 734294. [Google Scholar] [CrossRef]
- Mostafiz, R.B.; Friedland, C.J.; Rahim, M.A.; Rohli, R.V.; Bushra, N. A data-driven, probabilistic, multiple return period method of flood depth estimation. In Proceedings of the American Geophysical Union Conference, New Orleans, LA, USA, 15 December 2021. [Google Scholar]
- Alabbad, Y.; Yildirim, E.; Demir, I. Flood mitigation data analytics and decision support framework: Iowa Middle Cedar Watershed case study. Sci. Total Environ. 2022, 814, 152768. [Google Scholar] [CrossRef] [PubMed]
- Rahim, M.A.; Friedland, C.J.; Rohli, R.V.; Bushra, N.; Mostafiz, R.B. A data-intensive approach to allocating owner vs. In NFIP portion of average annual flood losses. In Proceedings of the American Geophysical Union Conference, New Orleans, LA, USA, 15 December 2021. [Google Scholar]
- Emanuel, K.; Ravela, S.; Vivant, E.; Risi, C. A statistical deterministic approach to hurricane risk assessment. Bull. Am. Meteorol. Soc. 2006, 87, 299–314. [Google Scholar] [CrossRef]
- Masoomi, H.; van de Lindt, J.W. Restoration and functionality assessment of a community subjected to tornado hazard. Struct. Infrastruct. Eng. 2017, 14, 275–291. [Google Scholar] [CrossRef]
- Rocchetta, R.; Li, Y.F.; Zio, E. Risk assessment and risk-cost optimization of distributed power generation systems considering extreme weather conditions. Reliab. Eng. Syst. Saf. 2015, 136, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, M.; Salerno, J. Cognitive maps reveal diverse perceptions of how prescribed fire affects forests and communities. Front. For. Glob. Chang. 2020, 3, 75. [Google Scholar] [CrossRef]
- Hood, S.M.; Keyes, C.R.; Bowen, K.J.; Lutes, D.C.; Seielstad, C. Fuel treatment longevity in ponderosa pine-dominated forest 24 years after cutting and prescribed burning. Front. For. Glob. Chang. 2020, 3, 78. [Google Scholar] [CrossRef]
- Binkley, D.; Sisk, T.; Chambers, C.; Springer, J.; Block, W. The role of old-growth forests in frequent-fire landscapes. Ecol. Soc. 2007, 12, 18. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Hammer, R.B.; Stewart, S.I.; Fried, J.S.; Holcomb, S.S.; McKeefry, J.F. The wildland-urban interface in the United States. Ecol. Appl. 2005, 15, 799–805. [Google Scholar] [CrossRef] [Green Version]
- Theobald, D.M.; Romme, W.H. Expansion of the US wildland–urban interface. Landsc. Urban Plan. 2007, 83, 340–354. [Google Scholar] [CrossRef]
- Lasslop, G.; Kloster, S. Human impact on wildfires varies between regions and with vegetation productivity. Environ. Res. Lett. 2017, 12, 115011. [Google Scholar] [CrossRef]
- Piñol, J.; Terradas, J.; Lloret, F. Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Clim. Chang. 1998, 38, 345–357. [Google Scholar] [CrossRef]
- Malamud, B.D.; Millington, J.D.; Perry, G.L. Characterizing wildfire regimes in the United States. Proc. Natl. Acad. Sci. USA 2005, 102, 4694–4699. [Google Scholar] [CrossRef] [Green Version]
- Mokhov, I.I.; Chernokulsky, A.V.; Shkolnik, I.M. Regional model assessments of fire risks under global climate changes. Dokl. Earth Sci. 2006, 411A, 1485–1488. [Google Scholar] [CrossRef]
- Cannon, S.H.; DeGraff, J. The increasing wildfire and post-fire debris-flow threat in western USA, and implications for consequences of climate change. In Landslides–Disaster Risk Reduction; Sassa, K., Canuti, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 177–190. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Krawchuk, M.A.; de Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- Marlon, J.R.; Bartlein, P.J.; Walsh, M.K.; Harrison, S.P.; Brown, K.J.; Edwards, M.E.; Higuera, P.E.; Power, M.J.; Anderson, R.S.; Briles, C.; et al. Wildfire responses to abrupt climate change in North America. Proc. Natl. Acad. Sci. USA 2009, 106, 2519–2524. [Google Scholar] [CrossRef] [Green Version]
- Moritz, M.A. Wildfires ignite debate on global warming. Nature 2012, 487, 273. [Google Scholar] [CrossRef] [Green Version]
- Enright, N.J.; Fontaine, J.B. Climate change and the management of fire-prone vegetation in southwest and southeast Australia. Geogr. Res. 2014, 52, 34–44. [Google Scholar] [CrossRef]
- Morgan, P.; Hardy, C.C.; Swetnam, T.W.; Rollins, M.G.; Long, D.G. Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns. Int. J. Wildland Fire 2001, 10, 329–342. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, A.; Pérez, B.; Fernández-González, F.; Moreno, J.M. Recent fire regime characteristics and potential natural vegetation relationships in Spain. J. Veg. Sci. 2002, 13, 663–676. [Google Scholar] [CrossRef]
- Cleland, D.T.; Crow, T.R.; Saunders, S.C.; Dickmann, D.I.; Maclean, A.L.; Jordan, J.K.; Watson, R.L.; Sloan, A.M.; Brosofske, K.D. Characterizing historical and modern fire regimes in Michigan (USA): A landscape ecosystem approach. Landsc. Ecol. 2004, 19, 311–325. [Google Scholar] [CrossRef]
- De la Riva, J.; Pérez-Cabello, F.; Lana-Renault, N.; Koutsias, N. Mapping wildfire occurrence at regional scale. Remote Sens. Environ. 2004, 92, 363–369. [Google Scholar] [CrossRef]
- Schoennagel, T.; Veblen, T.T.; Romme, W.H. The interaction of fire, fuels, and climate across Rocky Mountain forests. BioScience 2004, 54, 661–676. [Google Scholar] [CrossRef]
- Moreira, F.; Vaz, P.; Catry, F.; Silva, J.S. Regional variations in wildfire susceptibility of land-cover types in Portugal: Implications for landscape management to minimize fire hazard. Int. J. Wildland Fire 2009, 18, 563–574. [Google Scholar] [CrossRef]
- de Zea Bermudez, P.; Mendes, J.; Pereira, J.M.C.; Turkman, K.F.; Vasconcelos, M.J.P. Spatial and temporal extremes of wildfire sizes in Portugal (1984–2004). Int. J. Wildland Fire 2010, 18, 983–991. [Google Scholar] [CrossRef]
- Aldersley, A.; Murray, S.J.; Cornell, S.E. Global and regional analysis of climate and human drivers of wildfire. Sci. Total Environ. 2011, 409, 3472–3481. [Google Scholar] [CrossRef]
- Garcia-Gonzalo, J.; Pukkala, T.; Borges, J.G. Integrating fire risk in stand management scheduling. An application to maritime pine stands in Portugal. Ann. Oper. Res. 2014, 219, 379–395. [Google Scholar] [CrossRef]
- Ferreira, L.; Constantino, M.F.; Borges, J.G.; Garcia-Gonzalo, J. Addressing wildfire risk in a landscape-level scheduling model: An application in Portugal. For. Sci. 2015, 61, 266–277. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.; Constantino, M.; Borges, J.G. A stochastic approach to optimize maritime pine (Pinus pinaster Ait.) stand management scheduling under fire risk. An application in Portugal. Ann. Oper. Res. 2014, 219, 359–377. [Google Scholar] [CrossRef]
- Marques, S.; Marto, M.; Bushenkov, V.; McDill, M.; Borges, J. Addressing wildfire risk in forest management planning with multiple criteria decision making methods. Sustainability 2017, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Strydom, S.; Savage, M.J. Potential impacts of climate change on wildfire dynamics in the midlands of KwaZulu-Natal, South Africa. Clim. Chang. 2017, 143, 385–397. [Google Scholar] [CrossRef]
- Colantoni, A.; Egidi, G.; Quaranta, G.; D’Alessandro, R.; Vinci, S.; Turco, R.; Salvati, L. Sustainable land management, wildfire risk and the role of grazing in Mediterranean urban-rural interfaces: A regional approach from Greece. Land 2020, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Davis, K.T.; Dobrowski, S.Z.; Higuera, P.E.; Holden, Z.A.; Veblen, T.T.; Rother, M.T.; Parks, S.A.; Sala, A.; Maneta, M.P. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl. Acad. Sci. USA 2019, 116, 6193–6198. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, A.P.; Claro, J.; Fernandes, P.M.; de Neufville, R.; Oliveira, T.M.; Borges, J.G.; Rodrigues, J.C. Cohesive fire management within an uncertain environment: A review of risk handling and decision support systems. For. Ecol. Manag. 2015, 347, 1–17. [Google Scholar] [CrossRef]
- Fann, N.; Alman, B.; Broome, R.A.; Morgan, G.G.; Johnston, F.H.; Pouliot, G.; Rappold, A.G. The health impacts and economic value of wildland fire episodes in the US: 2008–2012. Sci. Total Environ. 2018, 610–611, 802–809. [Google Scholar] [CrossRef]
- Kaulfus, A.S.; Nair, U.; Jaffe, D.; Christopher, S.A.; Goodrick, S. Biomass burning smoke climatology of the United States: Implications for particulate matter air quality. Environ. Sci. Technol. 2017, 51, 11731–11741. [Google Scholar] [CrossRef]
- Sorensen, C.; House, J.A.; O’Dell, K.; Brey, S.J.; Ford, B.; Pierce, J.R.; Fischer, E.V.; Lemery, J.; Crooks, J.L. Associations between wildfire-related PM2.5 and intensive care unit admissions in the United States, 2006–2015. GeoHealth 2021, 5, e2021GH000385. [Google Scholar] [CrossRef]
- Ager, A.A.; Buonopane, M.; Reger, A.; Finney, M.A. Wildfire exposure analysis on the national forests in the Pacific Northwest, USA. Risk Anal. 2013, 33, 1000–1020. [Google Scholar] [CrossRef]
- Dennison, P.E.; Brewer, S.C.; Arnold, J.D.; Moritz, M.A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [Google Scholar] [CrossRef]
- Holden, Z.A.; Swanson, A.; Luce, C.H.; Jolly, W.M.; Maneta, M.; Oyler, J.W.; Warren, D.A.; Parsons, R.; Affleck, D. Decreasing fire season precipitation increased recent western US forest wildfire activity. Proc. Natl. Acad. Sci. USA 2018, 115, E8349–E8357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ager, A.A.; Day, M.A.; Alcasena, F.J.; Evers, C.R.; Short, K.C.; Grenfell, I. Predicting paradise: Modeling future wildfire disasters in the western US. Sci. Total Environ. 2021, 784, 147057. [Google Scholar] [CrossRef]
- Ayres, A.; Degolia, A.; Fienup, M.; Kim, Y.; Sainz, J.; Urbisci, L.; Viana, D.; Wesolowski, G.; Plantinga, A.J.; Tague, C. Social science/natural science perspectives on wildfire and climate change. Geogr. Compass 2016, 10, 67–86. [Google Scholar] [CrossRef]
- Marques, S.; Borges, J.G.; Garcia-Gonzalo, J.; Moreira, F.; Carreiras, J.M.B.; Oliveira, M.M.; Cantarinha, A.; Botequim, B.; Pereira, J.M.C. Characterization of wildfires in Portugal. Eur. J. For. Res. 2011, 130, 775–784. [Google Scholar] [CrossRef]
- Butry, D.T.; Mercer, E.D.; Prestemon, J.P.; Pye, J.M.; Holmes, T.P. What is the price of catastrophic wildfire? J. For. 2001, 99, 9–17. [Google Scholar]
- Hansen, W.D.; Mueller, J.M.; Naughton, H.T. Wildfire in hedonic property value studies. West. Econ. Forum 2014, 13, 23–35. [Google Scholar] [CrossRef]
- McCoy, S.J.; Walsh, R.P. Wildfire risk, salience & housing demand. J. Environ. Econ. Manag. 2018, 91, 203–228. [Google Scholar] [CrossRef]
- Magnée, J. The Effect of Wildfire Risk on Residential Property Values in the Netherlands. Master’s Thesis, Maastricht University, Maastricht, The Netherlands, 5 August 2020. [Google Scholar]
- Ergibi, M.; Hesseln, H. Awareness and adoption of FireSmart Canada: Barriers and incentives. For. Policy Econ. 2020, 119, 102271. [Google Scholar] [CrossRef]
- Li, L.M.; Song, W.G.; Ma, J.; Satoh, K. Artificial neural network approach for modeling the impact of population density and weather parameters on forest fire risk. Int. J. Wildland Fire 2009, 18, 640–647. [Google Scholar] [CrossRef]
- Thompson, M.P.; Scott, J.; Kaiden, J.D.; Gilbertson-Day, J.W. A polygon-based modeling approach to assess exposure of resources and assets to wildfire. Nat. Hazards 2013, 67, 627–644. [Google Scholar] [CrossRef] [Green Version]
- Ager, A.A.; Preisler, H.K.; Arca, B.; Spano, D.; Salis, M. Wildfire risk estimation in the Mediterranean area. Environmetrics 2014, 25, 384–396. [Google Scholar] [CrossRef]
- Dillon, G.; Menakis, J.; Fay, F. Wildland fire potential: A tool for assessing wildfire risk and fuels management needs. In Proceedings of the Large Wildland Fires Conference, Missoula, MT, USA, 19–23 May 2014; Keane, R.E., Jolly, M., Parsons, R., Riley, K., Eds.; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2015; Volume 73, pp. 60–76. [Google Scholar]
- Jaafari, A.; Termeh, S.V.R.; Bui, D.T. Genetic and firefly metaheuristic algorithms for an optimized neuro-fuzzy prediction modeling of wildfire probability. J. Environ. Manag. 2019, 243, 358–369. [Google Scholar] [CrossRef]
- Alcasena, F.J.; Salis, M.; Vega-García, C. A fire modeling approach to assess wildfire exposure of valued resources in central Navarra, Spain. Eur. J. For. Res. 2016, 135, 87–107. [Google Scholar] [CrossRef] [Green Version]
- Bui, D.T.; Bui, Q.T.; Nguyen, Q.P.; Pradhan, B.; Nampak, H.; Trinh, P.T. A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agric. For. Meteorol. 2017, 233, 32–44. [Google Scholar] [CrossRef]
- Papakosta, P.; Xanthopoulos, G.; Straub, D. Probabilistic prediction of wildfire economic losses to housing in Cyprus using Bayesian network analysis. Int. J. Wildland Fire 2017, 26, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.; Jaafari, A.; Zenner, E.K. Predicting spatial patterns of wildfire susceptibility in the Huichang County, China: An integrated model to analysis of landscape indicators. Ecol. Indic. 2019, 101, 878–891. [Google Scholar] [CrossRef]
- Preisler, H.K.; Brillinger, D.R.; Burgan, R.E.; Benoit, J.W. Probability based models for estimation of wildfire risk. Int. J. Wildland Fire 2004, 13, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Catry, F.X.; Rego, F.C.; Bação, F.L.; Moreira, F. Modeling and mapping wildfire ignition risk in Portugal. Int. J. Wildland Fire 2010, 18, 921–931. [Google Scholar] [CrossRef] [Green Version]
- Silva, G.L.; Soares, P.; Marques, S.; Dias, M.I.; Oliveira, M.M.; Borges, J.G. A Bayesian modelling of wildfires in Portugal. In Dynamics, Games and Science; Bourguignon, J.P., Jeltsch, R., Pinto, A., Viana, M., Eds.; CIM Series in Mathematical Sciences 1; Springer: Cham, Switzerland, 2015; pp. 723–733. [Google Scholar] [CrossRef] [Green Version]
- Tutmez, B.; Ozdogan, M.G.; Boran, A. Mapping forest fires by nonparametric clustering analysis. J. For. Res. 2018, 29, 177–185. [Google Scholar] [CrossRef]
- Jaafari, A.; Zenner, E.K.; Pham, B.T. Wildfire spatial pattern analysis in the Zagros Mountains, Iran: A comparative study of decision tree based classifiers. Ecol. Inform. 2018, 43, 200–211. [Google Scholar] [CrossRef]
- Jaafari, A.; Zenner, E.K.; Panahi, M.; Shahabi, H. Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability. Agric. For. Meteorol. 2019, 266, 198–207. [Google Scholar] [CrossRef]
- Botequim, B.; Fernandes, P.M.; Borges, J.G.; González-Ferreiro, E.; Guerra-Hernández, J. Improving silvicultural practices for Mediterranean forests through fire behaviour modelling using LiDAR-derived canopy fuel characteristics. Int. J. Wildland Fire 2019, 28, 823–839. [Google Scholar] [CrossRef]
- Botequim, B.; Fernandes, P.M.; Garcia-Gonzalo, J.; Silva, A.; Borges, J.G. Coupling fire behaviour modelling and stand characteristics to assess and mitigate fire hazard in a maritime pine landscape in Portugal. Eur. J. For. Res. 2017, 136, 527–542. [Google Scholar] [CrossRef]
- Botequim, B.; Garcia-Gonzalo, J.; Marques, S.; Ricardo, A.; Borges, J.G.; Tome, M.; Oliveira, M.M. Developing wildfire risk probability models for Eucalyptus globulus stands in Portugal. IFor.-Biogeosci. For. 2013, 6, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Short, K.C.; Finney, M.A.; Scott, J.H.; Gilbertson-Day, J.W.; Grenfell, I.C. Spatial Dataset of Probabilistic Wildfire Risk Components for the Conterminous United States, 1st ed.; Forest Service Research Data Archive: Fort Collins, CO, USA, 2016. [Google Scholar] [CrossRef]
- Running, S.W. Is global warming causing more, larger wildfires? Science 2016, 313, 927–928. [Google Scholar] [CrossRef] [Green Version]
- Westerling, A.L. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150178. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Higuera, P.E.; Abatzoglou, J.T.; Littell, J.S.; Morgan, P. The changing strength and nature of fire-climate relationships in the northern Rocky Mountains, U.S.A., 1902–2008. PLoS ONE 2015, 10, e0127563. [Google Scholar] [CrossRef] [Green Version]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [Green Version]
- Grala, K.; Cooke, W.H. Spatial and temporal characteristics of wildfires in Mississippi, USA. Int. J. Wildland Fire 2010, 19, 14–28. [Google Scholar] [CrossRef]
- Schubert, S.D.; Chang, Y.; DeAngelis, A.M.; Wang, H.; Koster, R.D. On the development and demise of the Fall 2019 Southeast US flash drought: Links to an extreme positive IOD. J. Clim. 2021, 34, 1701–1723. [Google Scholar] [CrossRef]
- Bushra, N.; Rohli, R.V.; Lam, N.S.; Zou, L.; Mostafiz, R.B.; Mihunov, V. The relationship between the normalized difference vegetation index and drought indices in the south central United States. Nat. Hazards 2019, 96, 791–808. [Google Scholar] [CrossRef]
- Haywood, J.D. Influence of herbicides and felling, fertilization, and prescribed fire on longleaf pine growth and understory vegetation through ten growing seasons and the outcome of an ensuing wildfire. New For. 2011, 41, 55–73. [Google Scholar] [CrossRef]
- Haywood, J.D.; Pearson, H.A.; Grelen, H.E.; Popham, T.W. Effects of date and frequency of burning on southern bayberry (Myrica cerifera) in central Louisiana. Tex. J. Sci. 2000, 52, 33–42. [Google Scholar]
- Drewa, P.B.; Platt, W.J.; Moser, E.B. Fire effects on resprouting of shrubs in headwaters of southeastern longleaf pine savannas. Ecology 2002, 83, 755–767. [Google Scholar] [CrossRef]
- Jones, J.D.; Chamberlain, M.J. Efficacy of herbicides and fire to improve vegetative conditions for northern bobwhites in mature pine forests. Wildl. Soc. Bull. 2004, 32, 1077–1084. [Google Scholar] [CrossRef]
- Jones, S.F.; Stagg, C.L.; Yando, E.S.; James, W.R.; Buffington, K.J.; Hester, M.W. Stress gradients interact with disturbance to reveal alternative states in salt marsh: Multivariate resilience at the landscape scale. J. Ecol. 2020, 109, 3211–3223. [Google Scholar] [CrossRef]
- Stambaugh, M.C.; Guyette, R.P.; Marschall, J.M. Longleaf pine (Pinus palustris Mill.) fire scars reveal new details of a frequent fire regime. J. Veg. Sci. 2011, 22, 1094–1104. [Google Scholar] [CrossRef]
- Yeldell, N.A.; Cohen, B.S.; Prebyl, T.J.; Collier, B.A.; Chamberlain, M.J. Prescribed fire influences habitat selection of female eastern wild turkeys. J. Wildl. Manag. 2017, 81, 1287–1297. [Google Scholar] [CrossRef]
- Simmons, S.A.; Bossart, J.L. Apparent resilience to fire of native bee (Hymenoptera: Apoidea) communities from upland longleaf pine forests in Louisiana and Mississippi. Southeast. Nat. 2020, 19, 567–581. [Google Scholar] [CrossRef]
- Louisiana Department of Agriculture & Forestry. Available online: https://www.ldaf.state.la.us/forestry/protection/ (accessed on 8 March 2022).
- Penman, T.D.; Clarke, H.; Cirulis, B.; Boer, M.M.; Price, O.F.; Bradstock, R.A. Cost-effective prescribed burning solutions vary between landscapes in eastern Australia. Front. For. Glob. Chang. 2020, 3, 79. [Google Scholar] [CrossRef]
- Short, K.C. Spatial Wildfire Occurrence Data for the United States, 1992–2015 [FPA_FOD_20170508], 4th ed.; Forest Service Research Data Archive: Fort Collins, CO, USA, 2017. [Google Scholar] [CrossRef]
- Short, K.C.; Finney, M.A.; Vogler, K.C.; Scott, J.H.; Gilbertson-Day, J.W.; Grenfell, I.C. Spatial Datasets of Probabilistic Wildfire Risk Components for the United States (270 m), 2nd ed.; Forest Service Research Data Archive: Fort Collins, CO, USA, 2020. [Google Scholar] [CrossRef]
- United States Global Change Research Program. Climate Science Special Report: Fourth National Climate Assessment; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2017; Volume I, pp. 1–470. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A.; Moss, R.; Taylor, K.E.; Eyring, V.; Stouffer, R.J.; Bony, S.; Stevens, B. Climate model intercomparisons: Preparing for the next phase. EOS Trans. Am. Geophys. Union 2014, 95, 77–78. [Google Scholar] [CrossRef] [Green Version]
- United States Census Bureau. Available online: https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.2010.html (accessed on 8 March 2022).
- United States Census Bureau. Available online: https://www2.census.gov/programs-surveys/popest/datasets/ (accessed on 8 March 2022).
- Lane, B. (Louisiana Department of Agriculture & Forestry, Baton Rouge, LA, USA). Personal communication, 2018. [Google Scholar]
- Finney, M.A.; McHugh, C.W.; Grenfell, I.C.; Riley, K.L.; Short, K.C. A simulation of probabilistic wildfire risk components for the continental United States. Stoch. Environ. Res. Risk Assess. 2011, 25, 973–1000. [Google Scholar] [CrossRef] [Green Version]
- Short, K.C. Spatial Wildfire Occurrence Data for the United States, 1992–2011 [FPA_FOD_20130422], 1st ed.; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2013. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Chapman and Hall: New York, NY, USA, 1986; pp. 1–22. [Google Scholar]
- Liu, Y.; Stanturf, J.A.; Goodrick, S.L. Trends in global wildfire potential in a changing climate. For. Ecol. Manag. 2009, 259, 685–697. [Google Scholar] [CrossRef]
- Pharo, J.A.; Croom, E.L. Correlation between Keetch-Byram drought index and wildfire statistics. Bull. Am. Meteorol. Soc. 1971, 52, 205. [Google Scholar]
- Gannon, C.S.; Steinberg, N.C. A global assessment of wildfire potential under climate change utilizing Keetch-Byram drought index and land cover classifications. Environ. Res. Commun. 2021, 3, 035002. [Google Scholar] [CrossRef]
- Wehner, M.F.; Arnold, J.R.; Knutson, T.; Kunkel, K.E.; LeGrande, A.N. Droughts, floods, and wildfires. In Climate Science Special Report: Fourth National Climate Assessment; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2017; Volume I, pp. 231–256. [Google Scholar] [CrossRef] [Green Version]
- Coleman, T.W.; Meeker, J.R.; Clarke, S.R.; Rieske, L.K. The suppression of Dendroctonus frontalis and subsequent wildfire have an impact on forest stand dynamics. Appl. Veg. Sci. 2008, 11, 231–242. [Google Scholar] [CrossRef]
- Prestemon, J.P.; Shankar, U.; Xiu, A.; Talgo, K.; Yang, D.; Dixon, E.; McKenzie, D.; Abt, K.L. Projecting wildfire area burned in the south-eastern United States, 2011–60. Int. J. Wildland Fire 2016, 25, 715–729. [Google Scholar] [CrossRef]
- Vautard, R.; Yiou, P. Control of recent European surface climate change by atmospheric flow. Geophys. Res. Lett. 2009, 36, L22702. [Google Scholar] [CrossRef]
- O’Gorman, P.A.; Schneider, T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 14773–14777. [Google Scholar] [CrossRef] [Green Version]
- WebWIMP Water Balance Calculator. Available online: http://climate.geog.udel.edu/~climate/ (accessed on 9 March 2022).
- Willmott, C.J.; Rowe, C.M.; Mintz, Y. Climatology of the terrestrial seasonal water cycle. J. Climatol. 1985, 5, 589–606. [Google Scholar] [CrossRef]
- Frankson, R.; Kunkel, K.E.; Champion, S.M.; Nielsen-Gammon, J. Louisiana State Climate Summary 2022. NOAA Technical Report NESDIS 150-LA, NOAA/NESDIS; NOAA National Centers for Environmental Information: Silver Spring, MD, USA, 2022; p. 6. Available online: https://statesummaries.ncics.org/chapter/la/ (accessed on 9 March 2022).
- Mostafiz, R.B.; Friedland, C.J.; Rohli, R.V.; Gall, M.; Bushra, N.; Gilliland, J.M. Census-block-level property risk estimation due to extreme cold temperature, hail, lightning, and tornadoes in Louisiana, United States. Front. Earth Sci. 2020, 8, 601624. [Google Scholar] [CrossRef]
- Mostafiz, R.B.; Friedland, C.J.; Rohli, R.V.; Bushra, N. Assessing Property Loss in Louisiana, U.S.A., to Natural Hazards Incorporating Future Projected Conditions. In Proceedings of the American Geophysical Union Conference, Virtual, 1–17 December 2020; Available online: https://ui.adsabs.harvard.edu/abs/2020AGUFMNH0150002M/abstract (accessed on 11 December 2021).
- Mostafiz, R.B.; Friedland, C.J.; Rohli, R.V.; Bushra, N.; Held, C.L. Property risk assessment for expansive soils in Louisiana. Front. Built Environ. 2021, 7, 754761. [Google Scholar] [CrossRef]
- Mostafiz, R.B.; Friedland, C.J.; Rohli, R.V.; Bushra, N. Property risk to the sinkhole hazard in Louisiana, U.S.A. Front. Environ. Sci. 2021, 9, 780870. [Google Scholar] [CrossRef]
- NSI Technical Documentation. Available online: https://www.hec.usace.army.mil/confluence/nsidocs/nsi-technical-documentation-50495938.html (accessed on 9 March 2022).
- FEMA. Multi-Hazard Loss Estimation Methodology, Flood Model, Hazus-MH, User Manual; FEMA: Washington, DC, USA, 2020. Available online: https://www.fema.gov/sites/default/files/2020-09/fema_hazus_flood-model_user-manual_2.1.pdf (accessed on 9 March 2022).
- Governor’s Office of Homeland Security and Emergency Preparedness. Louisiana State Hazard Mitigation Plan: 2019 Update. p. 432. Available online: http://gohsep.la.gov/MITIGATE/HM-PLANNING/State-Hazard-Mitigation-Plan (accessed on 9 March 2022).
- Masrur, A.; Yu, M.; Luo, W.; Dewan, A. Space-Time Patterns, Change, and Propagation of COVID-19 Risk Relative to the Intervention Scenarios in Bangladesh. Int. J. Environ. Res. Public Health 2020, 17, 5911. [Google Scholar] [CrossRef]
- Thompson, M.P.; Belval, E.J.; Dilliott, J.; Bayham, J. Supporting wildfire response during a pandemic in the United States: The COVID-19 incident risk assessment tool. Front. For. Glob. Chang. 2021, 4, 655493. [Google Scholar] [CrossRef]
- Krueger, E.S.; Ochsner, T.E.; Quiring, S.M.; Engle, D.M.; Carlson, J.D.; Twidwell, D.; Fuhlendorf, S.D. Measured soil moisture is a better predictor of large growing-season wildfires than the Keetch-Byram Drought Index. Soil Sci. Soc. Am. J. 2017, 81, 490–502. [Google Scholar] [CrossRef]
- Kawamura, Y.; Dewan, A.M.; Veenendaal, B.; Hayashi, M.; Shibuya, T.; Kitahara, I.; Nobuhara, H.; Ishii, K. Using GIS to develop a mobile communications network for disaster-damaged areas. Int. J. Digit. Earth 2014, 7, 279–293. [Google Scholar] [CrossRef]
- Ager, A.A.; Kline, J.D.; Fischer, A.P. Coupling the biophysical and social dimensions of wildfire risk to improve wildfire mitigation planning. Risk Anal. 2015, 35, 1393–1406. [Google Scholar] [CrossRef]
Parameter | Low Scenario | Modeled (Equation (6)) | High Scenario | Difference from Equation (8) (%) |
---|---|---|---|---|
Future Condition ) | USD 10,050,746 (+12.5%) | USD 11,167,496 (+25%) | USD 12,284,245 (+37.5%) | ±10.0 |
Content to Structure Value Ratio ) | USD 8,774,461 | USD 11,167,496 | USD 13,560,530 | ±21.4 |
Conditional Probability of Damage | USD 5,583,748 = 0.015) | USD 11,167,496 = 0.03) | USD 16,751,244 = 0.045) | ±50.0 |
Percent of Property Damage (d) | USD 5,583,748 (d = 0.025) | USD 11,167,496 (d = 0.05) | USD 16,751,244 (d = 0.075) | ±50.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafiz, R.B.; Friedland, C.J.; Rohli, R.V.; Bushra, N. Estimating Future Residential Property Risk Associated with Wildfires in Louisiana, U.S.A. Climate 2022, 10, 49. https://doi.org/10.3390/cli10040049
Mostafiz RB, Friedland CJ, Rohli RV, Bushra N. Estimating Future Residential Property Risk Associated with Wildfires in Louisiana, U.S.A. Climate. 2022; 10(4):49. https://doi.org/10.3390/cli10040049
Chicago/Turabian StyleMostafiz, Rubayet Bin, Carol J. Friedland, Robert V. Rohli, and Nazla Bushra. 2022. "Estimating Future Residential Property Risk Associated with Wildfires in Louisiana, U.S.A." Climate 10, no. 4: 49. https://doi.org/10.3390/cli10040049
APA StyleMostafiz, R. B., Friedland, C. J., Rohli, R. V., & Bushra, N. (2022). Estimating Future Residential Property Risk Associated with Wildfires in Louisiana, U.S.A. Climate, 10(4), 49. https://doi.org/10.3390/cli10040049