Ambient Air Quality Synergies with a 2050 Carbon Neutrality Pathway in South Korea
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Avoided GHG Emissions
3.2. Avoided Global Warming
3.3. Avoided Emissions of Air Pollutants and Associated Health Impacts
4. Discussion and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate; IPCC: Geneva, Switzerland, 2021; Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 15 September 2021).
- Climate Action Tracker. 2021. Available online: https://climateactiontracker.org/countries/south-korea/ (accessed on 8 September 2021).
- Korean Energy Economics Institute (KEEI). Monthly Energy Statistics 2021/02; Korean Energy Economics Institute: Ulsan, Korea, 2021. Available online: http://www.keei.re.kr/keei/download/MES2105.pdf#page=22 (accessed on 21 August 2021).
- Polled Citizens, Experts Prioritize Fine Dust in Environmental Policies. The Korea Times. 13 June 2020. Available online: https://www.koreatimes.co.kr/www/nation/2020/06/371_291148.html (accessed on 5 September 2021).
- Air Pollution No. 1 Environmental Concern for Koreans: Survey. The Korea Times. 12 July 2020. Available online: https://www.koreatimes.co.kr/www/nation/2020/07/371_292668.html (accessed on 5 September 2021).
- Three Ways to Carbon Neutrality Are Described. Korea JoongAng Daily. 5 August 2021. Available online: https://koreajoongangdaily.joins.com/2021/08/05/business/economy/carbon-neutrality-2050-Presidential-committee-renweable-energy/20210805184300389.html (accessed on 15 August 2021).
- Kim, S.E.; Xie, Y.; Dai, H.; Fujimori, S.; Hijioka, Y.; Honda, Y.; Hashizume, M.; Masui, T.; Hasegawa, T.; Xu, X.; et al. Air Quality Co-Benefits from Climate Mitigation for Human Health in South Korea. Environ. Int. 2020, 136, 105507. [Google Scholar] [CrossRef] [PubMed]
- Shindell, D.; Borgford-Parnell, N.; Brauer, M.; Haines, A.; Kuylenstierna, J.C.I.; Leonard, S.A.; Ramanathan, V.; Ravishankara, A.; Amann, M.; Srivastava, L. A Climate Policy Pathway for Near- and Long-Term Benefits. Science 2017, 356, 493–494. [Google Scholar] [CrossRef]
- Liou, J.-L.; Wu, P.-I. Monetary Health Co-Benefits and GHG Emissions Reduction Benefits: Contribution from Private On-the-Road Transport. Int. J. Environ. Res. Public Health 2021, 18, 5537. [Google Scholar] [CrossRef]
- Jung, E.M.; Kim, K.N.; Park, H.; Shin, H.H.; Kim, H.S.; Cho, S.J.; Kim, S.T.; Ha, E.H. Association between Prenatal Exposure to PM2.5 and the Increased Risk of Specified Infant Mortality in South Korea. Environ. Int. 2020, 144, 105997. [Google Scholar] [CrossRef]
- Kim, Y.M. Premature Deaths Attributable to Exposure to Ambient Fine Particulate Matter in the Republic of Korea: Implication for Future Environmental Health. J. Korean Med. Sci. 2018, 33, e243. [Google Scholar] [CrossRef]
- Han, C.; Kim, S.; Lim, Y.H.; Bae, H.J.; Hong, Y.C. Spatial and Temporal Trends of Number of Deaths Attributable to Ambient PM2.5 in the Korea. J. Korean Med. Sci. 2018, 33, e193. [Google Scholar] [CrossRef]
- World Health Organization (WHO). World Health Statistics 2020: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2020; p. 39. Available online: https://www.who.int/data/gho/publications (accessed on 5 August 2021).
- Park, S.; Kim, S.; Yu, H.; Lim, C.; Park, E.; Kim, J.; Lee, W. Developing an Adaptive Pathway to Mitigate Air Pollution Risk for Vulnerable Groups in South Korea. Sustainability 2020, 12, 1790. [Google Scholar] [CrossRef] [Green Version]
- Han, B.-S.; Park, K.; Kwak, K.-H.; Park, S.-B.; Jin, H.-G.; Moon, S.; Kim, J.-W.; Baik, J.-J. Air Quality Change in Seoul, South Korea under COVID-19 Social Distancing: Focusing on PM2.5. Int. J. Environ. Res. Public Health 2020, 17, 6208. [Google Scholar] [CrossRef]
- Phillips, D.; Jung, T.Y. An Alternative Co-Benefit Framework Prioritizing Health Impacts: Potential Air Pollution and Climate Change Mitigation Pathways through Energy Sector Fuel Substitution in South Korea. Climate 2021, 9, 101. [Google Scholar] [CrossRef]
- Yoo, H.; Min, I. Health Effects and Medical Expenditure Caused by Fine Particles. Korean Health Econ. Rev. 2018, 24, 59–81. [Google Scholar]
- United Nations Department of Economic and Social Affairs. World Population Prospect. 2019: Population by Age Groups—Both Sexes 2019; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Delpla, I.; Jung, A.V.; Baures, E.; Clement, M.; Thomas, O. Impacts of Climate Change on Surface Water Quality in Relation to Drinking Water Production. Environ. Int. 2009, 35, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Park, G.A.; Kim, S.J. Assessment of future climate change impact on water quality of Chungju Lake, South Korea, using WASP coupled with SWAT. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 1225–1238. [Google Scholar] [CrossRef]
- Ghafouri-Azar, M.; Bae, D.H. The Impacts of Water Cycle Components on Streamflow in a Changing Climate of Korea: Historical and Future Trends. Sustainability 2020, 12, 4260. [Google Scholar] [CrossRef]
- Ashu, A.B.; Lee, S.-I. Assessing Climate Change Effects on Water Balance in a Monsoon Watershed. Water 2020, 12, 2564. [Google Scholar] [CrossRef]
- Lee, J.M.; Kwon, E.H.; Woo, N.C. Natural and Human-Induced Drivers of Groundwater Sustainability: A Case Study of the Mangyeong River Basin in Korea. Sustainability 2019, 11, 1486. [Google Scholar] [CrossRef] [Green Version]
- Nam, W.H.; Kim, T.; Hong, E.M.; Choi, J.Y. Regional Climate Change Impacts on Irrigation Vulnerable Season Shifts in Agricultural Water Availability for South Korea. Water 2017, 9, 735. [Google Scholar] [CrossRef] [Green Version]
- Korean Climate Change Assessment Report 2014: Climate Change Impact and Adaptation; Ministry of Environment(ME) National Institute of Environmental Research(NIES): Ibaraki, Japan, 2014.
- Markandya, A.; Sampedro, J.; Smith, S.J.; Van Dingenen, R.; Pizarro-Irizar, C.; Arto, I.; González-Eguino, M. Health Co-Benefits from Air Pollution and Mitigation Costs of the Paris Agreement: A Modelling Study. Lancet Planet. Health 2018, 2, e126–e133. [Google Scholar] [CrossRef] [Green Version]
- Vandyck, T.; Keramidas, K.; Kitous, A.; Spadaro, J.V.; Van Dingenen, R.; Holland, M.; Saveyn, B. Air Quality Co-Benefits for Human Health and Agriculture Counterbalance Costs to Meet Paris Agreement Pledges. Nat. Commun. 2018, 9, 4939. [Google Scholar] [CrossRef]
- OECD. Ancillary Benefits and Costs of Greenhouse Gas Mitigation; OECD: Paris, France, 2000. [Google Scholar] [CrossRef]
- The Presidential Committee on Carbon Neutrality 2021. South Korea. Draft of 2050 Carbon Neutrality Scenarios. Available online: https://www.opm.go.kr/flexer/view.do?ftype=hwp&attachNo=109224 (accessed on 21 September 2021).
- 2050 Carbon Neutral Strategy of the Republic of Korea: Towards a Sustainable and Green Society; Government of the Republic of Korea: Seoul, Korea, 2020.
- Climate Action Tracker, Country Assessments. Available online: https://climateactiontracker.org/climate-target-update-tracker/south-korea/ (accessed on 5 September 2021).
- National Center for Fine Dust Information, Emissions by Sector. Available online: https://airemiss.nier.go.kr (accessed on 10 September 2021).
- WHO. AirQ+: Software Tool for Health Risk Assessment of Air Pollution. World Health Organization: Copenhagen, Denmark, 2020. Available online: http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/activities/airq-software-tool-for-health-risk-assessment-of-air-pollution (accessed on 19 August 2021).
- Lehtomäki, H.; Geels, C.; Brandt, J.; Rao, S.; Yaramenka, K.; Åström, S.; Andersen, M.S.; Frohn, L.M.; Im, U.; Hänninen, O. Deaths Attributable to Air Pollution in Nordic Countries: Disparities in the Estimates. Atmosphere 2020, 11, 467. [Google Scholar] [CrossRef]
- Sacks, J.D.; Fann, N.; Gumy, S.; Kim, I.; Ruggeri, G.; Mudu, P. Quantifying the Public Health Benefits of Reducing Air Pollution: Critically Assessing the Features and Capabilities of WHO’s AirQ+ and U.S. EPA’s Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE). Atmosphere 2020, 11, 516. [Google Scholar] [CrossRef]
- Wang, H.; Naghavi, M.; Allen, C.; Barber, R.M.; Bhutta, Z.A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coates, M.M.; et al. Global, Regional, and National Life Expectancy, All-Cause Mortality, and Cause-Specific Mortality for 249 Causes of Death, 1980–2015: A Systematic Analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1459–1544. [Google Scholar] [CrossRef] [Green Version]
- Matkovic, V.; Mulić, M.; Azabagić, S.; Jevtić, M. Premature Adult Mortality and Years of Life Lost Attributed to Long-Term Exposure to Ambient Particulate Matter Pollution and Potential for Mitigating Adverse Health Effects in Tuzla and Lukavac, Bosnia and Herzegovina. Atmosphere 2020, 11, 1107. [Google Scholar] [CrossRef]
- Bae, M.; Kim, B.U.; Kim, H.C.; Kim, S. A Multiscale Tiered Approach to Quantify Contributions: A Case Study of PM2.5 in South Korea during 2010–2017. Atmosphere 2020, 11, 141. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Park, R.J.; Lee, H.M.; Lee, S.; Jo, D.S.; Jeong, J.I.; Henze, D.K.; Woo, J.H.; Ban, S.J.; Lee, M.-D.; et al. Impacts of Local vs. Trans-Boundary Emissions from Different Sectors on PM2.5 Exposure in South Korea during the KORUS-AQ Campaign. Atmos. Environ. 2019, 203, 196–205. [Google Scholar] [CrossRef]
- Park, E.H.; Heo, J.; Kim, H.; Yi, S.M. Long Term Trends of Chemical Constituents and Source Contributions of PM2.5 in Seoul. Chemosphere 2020, 251, 126371. [Google Scholar] [CrossRef] [PubMed]
- Korean Statistical Information Service (KOSIS). Complete Life Tables; Korean Statistical Information Service (KOSIS): Daejeon, Korea, 2020. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1B42 (accessed on 12 September 2021).
- Héroux, M.E.; Anderson, H.R.; Atkinson, R.; Brunekreef, B.; Cohen, A.; Forastiere, F.; Hurley, F.; Katsouyanni, K.; Krewski, D.; Krzyzanowski, M.; et al. Quantifying the Health Impacts of Ambient Air Pollutants: Recommendations of a WHO/Europe Project. Int. J. Public Health 2015, 60, 619–627. [Google Scholar] [CrossRef] [Green Version]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-Term Air Pollution Exposure and Cardio-Respiratory Mortality: A Review. Environ. Health A Glob. Access Sci. Source 2013, 12, 43. [Google Scholar] [CrossRef] [Green Version]
- Youn, Y.H. The climate variabilities of air temperature around the Korean Peninsula. Adv. Atmos. Sci. 2005, 22, 575–584. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Emissions Gap Report 2020; United Nations Environment Programme: Nairobi, Kenya, 2020. [Google Scholar]
- OECD. Water and Climate Change Adaptation: Policies to Navigate Uncharted Waters; OECD: Paris, France, 2013. [Google Scholar] [CrossRef]
- European Environmental Agency (EEA). Air Quality in Europe—2018 Report No. 12/2018; European Environmental Agency (EEA): Copenhagen, Denmark, 2018. [Google Scholar] [CrossRef]
- Becerra-Pérez, L.A.; Ramos-Álvarez, R.A.; DelaCruz, J.J.; García-Páez, B.; Páez-Osuna, F.; Cedeño-Laurent, J.G.; Boldo, E. An Economic Analysis of the Environmental Impact of PM2.5 Exposure on Health Status in Three Northwestern Mexican Cities. Sustainability 2021, 13, 10782. [Google Scholar] [CrossRef]
- Piscitelli, P.; Valenzano, B.; Rizzo, E.; Maggiotto, G.; Rivezzi, M.; Esposito Corcione, F.; Miani, A. Air Pollution and Estimated Health Costs Related to Road Transportations of Goods in Italy: A First Healthcare Burden Assessment. Int. J. Environ. Res. Public Health 2019, 16, 2876. [Google Scholar] [CrossRef] [Green Version]
- Republic of Korea, Ministry of Economy and Finance. National Strategy for a Great Transformation: Korean New Deal; Republic of Korea, Ministry of Economy and Finance: Seoul, Korea, 2020.
- Lee, J.-H.; Woo, J. Green New Deal Policy of South Korea: Policy Innovation for a Sustainability Transition. Sustainability 2020, 12, 10191. [Google Scholar] [CrossRef]
- Kim, K.J.; Lee, H.; Koo, Y. Research on Local Acceptance Cost of Renewable Energy in South Korea: A Case Study of Photovoltaic and Wind Power Projects. Energy Policy 2020, 144, 111684. [Google Scholar] [CrossRef]
- Lee, D.; Kim, K. A Collaborative Trans-Regional R&D Strategy for the South Korea Green New Deal to Achieve Future Mobility. Sustainability 2021, 13, 8637. [Google Scholar] [CrossRef]
- Kim, E.; Heo, E. Key Drivers behind the Adoption of Electric Vehicle in Korea: An Analysis of the Revealed Preferences. Sustainability 2019, 11, 6854. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Park, S.S.; Kim, K.W.; Kim, Y.J. Source Identification of PM2.5 Particles Measured in Gwangju, Korea. Atmos. Res. 2008, 88, 199–211. [Google Scholar] [CrossRef]
- Lee, S.; Ho, C.H.; Lee, Y.G.; Choi, H.J.; Song, C.K. Influence of Transboundary Air Pollutants from China on the High-PM10 Episode in Seoul, Korea for the Period October 16–20, 2008. Atmos. Environ. 2013, 77, 430–439. [Google Scholar] [CrossRef]
Pollutant | Energy | Industry | Transport | Waste | Agriculture |
---|---|---|---|---|---|
Carbon monoxide (CO) | 122,020 | 46,013 | 413,607 | 2051 | - |
Nitrogen oxides (NOx) | 200,995 | 223,408 | 743,347 | 12,994 | - |
Sulphur oxides (SOx) | 98,288 | 179,057 | 35,987 | 2120 | - |
Total suspended particles (TSP) | 5681 | 107,911 | 25,671 | 377 | - |
Particulate Matter < 10 µm (PM10) | 4097 | 62,631 | 25,667 | 274 | - |
Particulate Matter < 2.5 µm (PM2.5) | 4097 | 33,687 | 23,717 | 234 | - |
Volatile Organic Compounds (VOC) | 10,583 | 191,523 | 105,327 | 58,405 | - |
Ammonia (NH3) | 2759 | 43,665 | 4557 | 22 | 244,335 |
Assumed Warming per 1000 GtCO2e Emissions 1 | 2022–2030 | 2022–2050 |
---|---|---|
0.27 °C | 0.00029 °C | 0.00150 °C |
0.45 °C | 0.00048 °C | 0.00249 °C |
0.63 °C | 0.00068 °C | 0.00349 °C |
Air Pollutant | Energy | Industry | Transport |
---|---|---|---|
CO | 122,020 | 36,634 | 401,802 |
NOx | 200,995 | 177,869 | 722,130 |
SOx | 98,288 | 142,558 | 34,960 |
TSP | 5681 | 85,915 | 24,938 |
PM10 | 4097 | 49,864 | 24,934 |
PM2.5 | 4097 | 26,820 | 23,040 |
VOC | 10,583 | 152,483 | 102,321 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phillips, D. Ambient Air Quality Synergies with a 2050 Carbon Neutrality Pathway in South Korea. Climate 2022, 10, 1. https://doi.org/10.3390/cli10010001
Phillips D. Ambient Air Quality Synergies with a 2050 Carbon Neutrality Pathway in South Korea. Climate. 2022; 10(1):1. https://doi.org/10.3390/cli10010001
Chicago/Turabian StylePhillips, Dafydd. 2022. "Ambient Air Quality Synergies with a 2050 Carbon Neutrality Pathway in South Korea" Climate 10, no. 1: 1. https://doi.org/10.3390/cli10010001
APA StylePhillips, D. (2022). Ambient Air Quality Synergies with a 2050 Carbon Neutrality Pathway in South Korea. Climate, 10(1), 1. https://doi.org/10.3390/cli10010001