Panel Data Estimation for Correlated Random Coefficients Models
Abstract
:1. Introduction
2. Panel Parametric Approaches without Explicit Assumption about the Correlations between Coefficients and Regressors
2.1. Group Mean Estimator
2.2. Generalized Least Squares Estimator
2.3. Within Estimator
3. Panel Least Squares or Generalized Least Squares Estimator
4. Monte Carlo Studies
- Design 1: Randomly draw
- Design 2: Randomly draw from independent multivariate normal as in (43), then generate .
- Design 3: Randomly draw from a uniform distribution . Then generate
- Design 4: Randomly draw from uniform distribution and from where is chi-square distribution with five degrees of freedom. Then generate
- Designs 9 and 10: Generate , where is from Gamma(1,1) and Beta(1,3), respectively.
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Arellano, Manuel, and Stéphane Bonhomme. 2012. Identifying distributional characteristics in random coefficient panel data models. Review of Economic Studies 79: 987–1020. [Google Scholar] [CrossRef]
- Card, David. 1995. Using geographic variation in college proximity to estimate the return to schooling. In Aspects of Labour Market Behavior: Essays in Honour of John Vanderkamp. Edited by Christofides Loizos Nicolaou, E. Kenneth Grant and Robert Swidinsky. Toronto: University of Toronto Press, pp. 201–22. [Google Scholar]
- Chamberlain, Gary. 1992. Efficiency bounds for semiparametric regression. Econometrica 60: 567–96. [Google Scholar] [CrossRef]
- Chernozhukov, Victor, Iván Fernández-Val, Jinyong Hahn, and Whitney Newey. 2013. Average and quantile effects in nonseparable panel models. Econometrica 81: 535–80. [Google Scholar]
- Davidson, James. 1994. Stochastic Limit Theory: An Introduction for Econometricians. New York: Oxford University Press. [Google Scholar]
- Fang, Kai-Tai, and Yao-Ting Zhang. 1990. Generalized Multivariate Analysis. New York: Springer. [Google Scholar]
- Graham, Bryan S., and James L. Powell. 2012. Identification and estimation of average partial effects in ‘irregular’ correlated random coefficient panel data models. Econometrica 80: 2105–52. [Google Scholar]
- Gupta, Arjun K., Tamas Varga, and Taras Bodnar. 1993. Elliptically Contoured Models in Statistics. Norwell: Kluwer Academic Publishers. [Google Scholar]
- Heckman, James J., Daniel Schmierer, and Sergio Urzua. 2010. Testing the correlated random coefficient model. Journal of Econometrics 158: 177–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heckman, James J., Sergio Urzua, and Edward Vytlacil. 2006. Understanding instrumental variables in models with essential heterogeneity. Review of Economics and Statistics 88: 389–432. [Google Scholar] [CrossRef]
- Heckman, James, and Edward Vytlacil. 1998. Instrumental variables methods for the correlated random coefficient model: Estimating the average rate of return to schooling when the return is correlated with schooling. Journal of Human Resources 33: 974–87. [Google Scholar] [CrossRef]
- Hsiao, Cheng. 1996. Random coefficients models. In The Econometrics of Panel Data: A Handbook of the Theory with Applications. Edited by Lśzl Mátyás and Patrick Sevestre. Berlin: Springer, vol. 33, pp. 77–99. [Google Scholar]
- Hsiao, Cheng. 2003. Analysis of Panel Data, 2nd ed. Cambridge: Cambridge University Press. [Google Scholar]
- Hsiao, Cheng, Trent W. Appelbe, and Christopher R. Dineen. 1993. A general framework for panel data analysis—With an application to Canadian customer dialed long distance service. Journal of Econometrics 59: 63–86. [Google Scholar] [CrossRef]
- Hsiao, Cheng, M. Hashem Pesaran, and A. Kamil Tahmiscioglu. 1999. Bayes estimation of short-run coefficients in dynamic panel data models. In Analysis of Panels and Limited Dependent Variables Models. Edited by Cheng Hsiao, M. Hashem Pesaran, Kajal Lahiri and Lung-Fei Lee. Berlin: Springer, pp. 185–213. [Google Scholar]
- Hsiao, Cheng, and M. Hashem Pesaran. 2008. Random coefficient models. In The Econometrics of Panel Data: Fundamentals and Recent Developments in Theory and Practice. Edited by Lśzl Mátyás and Patrick Sevestre. Berlin: Springer, vol. 46, pp. 185–213. [Google Scholar]
- Hsiao, Cheng, Yan Shen, and Hiroshi Fujiki. 2005. Aggregate versus disaggregate data analysis—A paradox in the estimation of money demand function of Japan under the low interest rate policy. Journal of Applied Econometrics 20: 579–601. [Google Scholar] [CrossRef]
- Hsiao, Cheng, and A. Kamil Tahmiscioglu. 1997. A panel analysis of liquidity constraints and firm investment. Journal of the American Statistical Association 92: 455–65. [Google Scholar] [CrossRef]
- Kuh, Edwin. 1963. Capital Stock Growth: A Micro-Econometric Approach. Amsterdam: North-Holland. [Google Scholar]
- Mundlak, Yair. 1978. On the pooling of time series and cross section data. Econometrica 46: 69–85. [Google Scholar] [CrossRef]
- Pesaran, M. Hashem. 2003. Aggregation of linear dynamic models: An application of life-cycle consumption models under habit formation. Economic Modelling 20: 227–435. [Google Scholar]
- Pesaran, M. Hashem, and Ron Smith. 1995. Estimation of long-run relationships from dynamic heterogenous panels. Journal of Econometrics 68: 79–114. [Google Scholar] [CrossRef]
- Stoker, Thomas M. 1993. Empirical approaches to the problem of aggregation over individuals. Journal of Economic Literature 31: 1827–74. [Google Scholar]
- Swamy, Paravastu AVB. 1970. Efficient inference in a random coefficient regression model. Econometrica 38: 311–23. [Google Scholar] [CrossRef]
- Theil, Henri. 1954. Linear Aggregation of Economic Relations. Amsterdam: North Holland. [Google Scholar]
- Wooldridge, Jeffrey M. 2005. Fixed-effects related estimators for correlated random-coefficient and treatment-effect panel data models. The Review of Economics and Statistics 87: 385–90. [Google Scholar] [CrossRef]
1 | Note that when is generated from Gamma(1,1) and Beta(1,3), the mean of is 1 and 0.25, respectively. Therefore, in these cases will be 2 and 1.25, respectively. |
N | LS | FE | PLS1 | PLS2 | GM | GLS | |
---|---|---|---|---|---|---|---|
Design 1 | 50 | −0.0114 | −0.0115 | −0.0095 | −0.0090 | −0.0076 | −0.0115 |
100 | 0.0048 | 0.0029 | 0.0033 | 0.0032 | 0.0057 | 0.0043 | |
200 | −0.0021 | −0.0005 | −0.0015 | −0.0015 | 0.0004 | −0.0015 | |
Design 2 | 50 | 0.3084 | −0.0087 | −0.0031 | −0.0054 | −0.0031 | 0.1613 |
100 | 0.3213 | 0.0034 | 0.0054 | 0.0039 | 0.0043 | 0.1835 | |
200 | 0.3198 | −0.0011 | 0.0016 | −0.0002 | −0.0003 | 0.1845 | |
Design 3 | 50 | 0.0452 | −0.0043 | −0.0006 | −0.0006 | −0.0020 | 0.0185 |
100 | 0.0485 | −0.0004 | 0.0038 | 0.0036 | −0.0001 | 0.0235 | |
200 | 0.0477 | −0.0016 | 0.0039 | 0.0036 | −0.0007 | 0.0222 | |
Design 4 | 50 | 0.0376 | −0.0012 | 0.0028 | 0.0022 | −0.0021 | 0.0150 |
100 | 0.0396 | −0.0017 | 0.0054 | 0.0051 | −0.0002 | 0.0173 | |
200 | 0.0397 | −0.0007 | 0.0059 | 0.0054 | −0.0007 | 0.0182 | |
Design 5 | 50 | 0.2600 | 0.0040 | −0.0482 | −0.0459 | −0.0004 | −0.0205 |
100 | 0.2610 | −0.0020 | −0.0518 | −0.0516 | −0.0022 | 0.0103 | |
200 | 0.2669 | 0.0054 | −0.0524 | −0.0523 | 0.0002 | 0.0417 | |
Design 6 | 50 | 0.2143 | −0.0023 | −0.0240 | −0.0243 | −0.0005 | −0.0315 |
100 | 0.2149 | −0.0008 | −0.0252 | −0.0265 | −0.0022 | 0.0059 | |
200 | 0.2191 | 0.0015 | −0.0233 | −0.0249 | 0.0002 | 0.0310 | |
Design 7 | 50 | 0.0094 | −0.0007 | 0.0011 | 0.0010 | 0.0005 | 0.0025 |
100 | 0.0102 | 0.0002 | 0.0013 | 0.0012 | 0.0006 | 0.0050 | |
200 | 0.0097 | 0.0001 | 0.0011 | 0.0010 | 0.0001 | 0.0057 | |
Design 8 | 50 | 0.0075 | −0.0021 | 0.0014 | 0.0013 | 0.0005 | 0.0016 |
100 | 0.0082 | −0.0003 | 0.0016 | 0.0015 | 0.0006 | 0.0038 | |
200 | 0.0080 | 0.0001 | 0.0013 | 0.0012 | 0.0002 | 0.0046 | |
Design 9 | 50 | 1.6667 | 1.6889 | 0.1461 | 0.1086 | 0.0004 | 0.0252 |
100 | 1.7484 | 1.7963 | 0.1763 | 0.1490 | −0.0025 | 0.0262 | |
200 | 1.8039 | 1.8913 | 0.2183 | 0.1856 | 0.0006 | 0.0237 | |
Design 10 | 50 | 0.1782 | 0.2316 | 0.0263 | 0.0218 | 0.0011 | 0.0899 |
100 | 0.1830 | 0.2446 | 0.0296 | 0.0254 | −0.0002 | 0.0918 | |
200 | 0.1846 | 0.2472 | 0.0329 | 0.0296 | −0.0002 | 0.0923 |
N | LS | FE | PLS1 | PLS2 | GM | GLS | |
---|---|---|---|---|---|---|---|
Design 1 | 50 | 0.0622 | 0.0636 | 0.0423 | 0.0420 | 0.0564 | 0.0542 |
100 | 0.0322 | 0.0304 | 0.0208 | 0.0208 | 0.0281 | 0.0283 | |
200 | 0.0168 | 0.0162 | 0.0108 | 0.0107 | 0.0148 | 0.0148 | |
Design 2 | 50 | 0.1231 | 0.0586 | 0.0235 | 0.0233 | 0.0215 | 0.0550 |
100 | 0.1178 | 0.0287 | 0.0119 | 0.0118 | 0.0113 | 0.0482 | |
200 | 0.1097 | 0.0154 | 0.0061 | 0.0061 | 0.0055 | 0.0416 | |
Design 3 | 50 | 0.0073 | 0.0109 | 0.0045 | 0.0044 | 0.0040 | 0.0071 |
100 | 0.0051 | 0.0054 | 0.0024 | 0.0024 | 0.0021 | 0.0041 | |
200 | 0.0036 | 0.0028 | 0.0011 | 0.0011 | 0.0010 | 0.0023 | |
Design 4 | 50 | 0.0063 | 0.0106 | 0.0043 | 0.0042 | 0.0039 | 0.0066 |
100 | 0.0042 | 0.0056 | 0.0023 | 0.0022 | 0.0020 | 0.0038 | |
200 | 0.0029 | 0.0029 | 0.0011 | 0.0011 | 0.0009 | 0.0021 | |
Design 5 | 50 | 0.1344 | 0.0579 | 0.0236 | 0.0228 | 0.0208 | 0.0360 |
100 | 0.1004 | 0.0282 | 0.0150 | 0.0144 | 0.0105 | 0.0210 | |
200 | 0.0877 | 0.0143 | 0.0087 | 0.0085 | 0.0050 | 0.0131 | |
Design 6 | 50 | 0.1036 | 0.0549 | 0.0220 | 0.0213 | 0.0207 | 0.0340 |
100 | 0.0739 | 0.0283 | 0.0123 | 0.0120 | 0.0105 | 0.0198 | |
200 | 0.0621 | 0.0147 | 0.0062 | 0.0061 | 0.0050 | 0.0121 | |
Design 7 | 50 | 0.0014 | 0.0029 | 0.0011 | 0.0011 | 0.0010 | 0.0014 |
100 | 0.0008 | 0.0016 | 0.0005 | 0.0005 | 0.0005 | 0.0008 | |
200 | 0.0004 | 0.0007 | 0.0003 | 0.0003 | 0.0002 | 0.0004 | |
Design 8 | 50 | 0.0012 | 0.0032 | 0.0010 | 0.0010 | 0.0009 | 0.0013 |
100 | 0.0006 | 0.0015 | 0.0005 | 0.0005 | 0.0004 | 0.0006 | |
200 | 0.0003 | 0.0008 | 0.0002 | 0.0002 | 0.0002 | 0.0003 | |
Design 9 | 50 | 3.4034 | 3.6486 | 0.1102 | 0.0695 | 0.0214 | 0.0223 |
100 | 3.4720 | 3.7850 | 0.0943 | 0.0693 | 0.0108 | 0.0113 | |
200 | 3.4851 | 3.9348 | 0.0983 | 0.0713 | 0.0051 | 0.0059 | |
Design 10 | 50 | 0.0350 | 0.0699 | 0.0034 | 0.0031 | 0.0026 | 0.0100 |
100 | 0.0353 | 0.0678 | 0.0024 | 0.0021 | 0.0014 | 0.0093 | |
200 | 0.0349 | 0.0654 | 0.0018 | 0.0016 | 0.0007 | 0.0090 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsiao, C.; Li, Q.; Liang, Z.; Xie, W. Panel Data Estimation for Correlated Random Coefficients Models. Econometrics 2019, 7, 7. https://doi.org/10.3390/econometrics7010007
Hsiao C, Li Q, Liang Z, Xie W. Panel Data Estimation for Correlated Random Coefficients Models. Econometrics. 2019; 7(1):7. https://doi.org/10.3390/econometrics7010007
Chicago/Turabian StyleHsiao, Cheng, Qi Li, Zhongwen Liang, and Wei Xie. 2019. "Panel Data Estimation for Correlated Random Coefficients Models" Econometrics 7, no. 1: 7. https://doi.org/10.3390/econometrics7010007
APA StyleHsiao, C., Li, Q., Liang, Z., & Xie, W. (2019). Panel Data Estimation for Correlated Random Coefficients Models. Econometrics, 7(1), 7. https://doi.org/10.3390/econometrics7010007