Next Article in Journal
Foreign Workers and the Wage Distribution: What Does the Influence Function Reveal?
Next Article in Special Issue
Covariance Prediction in Large Portfolio Allocation
Previous Article in Journal
The Stochastic Stationary Root Model
Open AccessArticle

Using the Entire Yield Curve in Forecasting Output and Inflation

1
Aarhus University and CREATES, Fuglesangs Allé 4, 8210 Aarhus V, Denmark
2
ICBC Credit Suisse Asset Management, Beijing 100033, China
3
Department of Economics, University of California, Riverside, CA 92521, USA
4
Monetary and Financial Market Analysis Section, Division of Monetary Affairs, Federal Reserve Board, Washington, DC 20551, USA
*
Author to whom correspondence should be addressed.
Econometrics 2018, 6(3), 40; https://doi.org/10.3390/econometrics6030040
Received: 17 June 2018 / Revised: 17 August 2018 / Accepted: 21 August 2018 / Published: 29 August 2018
In forecasting a variable (forecast target) using many predictors, a factor model with principal components (PC) is often used. When the predictors are the yield curve (a set of many yields), the Nelson–Siegel (NS) factor model is used in place of the PC factors. These PC or NS factors are combining information (CI) in the predictors (yields). However, these CI factors are not “supervised” for a specific forecast target in that they are constructed by using only the predictors but not using a particular forecast target. In order to “supervise” factors for a forecast target, we follow Chan et al. (1999) and Stock and Watson (2004) to compute PC or NS factors of many forecasts (not of the predictors), with each of the many forecasts being computed using one predictor at a time. These PC or NS factors of forecasts are combining forecasts (CF). The CF factors are supervised for a specific forecast target. We demonstrate the advantage of the supervised CF factor models over the unsupervised CI factor models via simple numerical examples and Monte Carlo simulation. In out-of-sample forecasting of monthly US output growth and inflation, it is found that the CF factor models outperform the CI factor models especially at longer forecast horizons. View Full-Text
Keywords: level, slope, and curvature of the yield curve; Nelson-Siegel factors; supervised factor models; combining forecasts; principal components level, slope, and curvature of the yield curve; Nelson-Siegel factors; supervised factor models; combining forecasts; principal components
Show Figures

Figure 1

MDPI and ACS Style

Hillebrand, E.; Huang, H.; Lee, T.-H.; Li, C. Using the Entire Yield Curve in Forecasting Output and Inflation. Econometrics 2018, 6, 40.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop