Integration and Risk Transmission Dynamics Between Bitcoin, Currency Pairs, and Traditional Financial Assets in South Africa
Abstract
1. Introduction
Background of This Study
2. Literature Review
2.1. Integration Market
2.2. Cryptocurrencies as a Safe Haven and Hedging
2.3. Risk Spillover
3. Methodology of the Study
3.1. ARFIRMA-EGARCH
3.2. TVP-VAR
3.2.1. Measuring Connectedness
3.2.2. Connectedness Network Measures
3.3. Wavelet Analysis
3.3.1. Wavelet-Squared Coherence
3.3.2. Wavelet Transform Coherence (WTC)
4. Empirical Results and Discussion
4.1. Data Analysis
4.2. Descriptive Statistical Results
5. Conclusions and Policy Recommendations
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Adelowotan, M. (2024). Exploring the development of regulatory framework for crypto assets in South Africa. The Business and Management Review, 15, 75. [Google Scholar] [CrossRef]
- Akhtaruzzaman, M., Boubaker, S., Nguyen, D. K., & Rahman, M. R. (2022). Systemic risk-sharing framework of cryptocurrencies in the COVID-19 crisis. Finance Research Letters, 47, 102787. [Google Scholar] [CrossRef]
- Alvarez-Ramirez, J., & Rodriguez, E. (2021). A singular value decomposition approach for testing the efficiency of Bitcoin and Ethereum markets. Economics Letters, 206, 109997. [Google Scholar] [CrossRef]
- Andrada-Félix, J., Fernandez-Perez, A., & Sosvilla-Rivero, S. (2020). Distant or close cousins: Connectedness between cryptocurrencies and traditional currencies’ volatilities. Journal of International Financial Markets, Institutions and Money, 67, 101219. [Google Scholar] [CrossRef]
- Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2020). Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions. Journal of Risk and Financial Management, 13(4), 84. [Google Scholar] [CrossRef]
- Arouri, M. E. H., Jouini, J., & Nguyen, D. K. (2011). Volatility spillovers between oil prices and stock sector returns: Implications for portfolio management. Journal of International Money and Finance, 30, 1387–1405. [Google Scholar] [CrossRef]
- Baur, D. G., & Dimpfl, T. (2021). The volatility of Bitcoin and its role as a medium of exchange and a store of value. Empirical Economics, 61(5), 2663–2683. [Google Scholar] [CrossRef]
- Bhuiyan, R. A., Husain, A., & Zhang, C. (2023). Diversification evidence of Bitcoin and Gold from wavelet analysis. Financial Innovation, 9(1), 100. [Google Scholar] [CrossRef]
- Bloomfield, D. S., McAteer, R. J., Lites, B. W., Judge, P. G., Mathioudakis, M., & Keenan, F. P. (2004). Wavelet phase coherence analysis: Application to a quiet-sun magnetic. The Astrophysical Journal, 617, 623–632. [Google Scholar] [CrossRef]
- Bonga-Bonga, L., & Khalique, M. (2023). The dynamic relationship between digital currency and other financial markets in developed and emerging markets. Available online: https://mpra.ub.uni-muenchen.de/id/eprint/118654 (accessed on 24 February 2025).
- Bouri, E., Das, M., Gupta, R., & Roubaud, D. (2018). Spillovers between Bitcoin and other assets during bear and bull markets. Applied Economics, 50(55), 5935–5949. [Google Scholar] [CrossRef]
- Bouri, E., Shahzad, S. J. H., & Roubaud, D. (2020). Cryptocurrencies as hedges and safe havens for US equity sectors. The Quarterly Review of Economics and Finance, 75, 294–307. [Google Scholar] [CrossRef]
- Chainalysis. (2023). The 2023 geography of cryptocurrency report. Available online: https://static.poder360.com.br/2024/01/The-2023-Geography-of-Cryptocurrency-Report_Chainalysis.pdf (accessed on 24 February 2025).
- Chang, C.-L., McAleer, M., & Tansuchat, R. (2013). Conditional correlations and volatility spillovers between crude oil and stock index returns. The North American Journal of Economics and Finance, 25, 116–138. [Google Scholar] [CrossRef]
- Chatziantoniou, I., & Gabauer, D. (2021). EMU risk-synchronisation and financial fragility through the prism of dynamic connectedness. The Quarterly Review of Economics and Finance, 79, 1–14. [Google Scholar] [CrossRef]
- Chen, B. X., & Sun, Y. L. (2024). Risk characteristics and connectedness in cryptocurrency markets: New evidence from a non-linear framework. The North American Journal of Economics and Finance, 69, 102036. [Google Scholar] [CrossRef]
- Corbet, S., Larkin, C., & Lucey, B. (2020). The contagion effects of the COVID-19 pandemic: Evidence from Gold and cryptocurrencies. Finance Research Letters, 35, 101554. [Google Scholar] [CrossRef]
- Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57–66. [Google Scholar] [CrossRef]
- Diebold, F. X., & Yılmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of Econometrics, 182(1), 119–134. [Google Scholar] [CrossRef]
- Engle, R. F., & Granger, C. W. (1987). Co-integration and error correction: Representation, estimation, and testing. Econometrica: Journal of the Econometric Society, 55, 251–276. [Google Scholar] [CrossRef]
- Gajardo, G., Kristjanpoller, W. D., & Minutolo, M. (2018). Does Bitcoin exhibit the same asymmetric multifractal cross-correlations with crude oil, Gold and DJIA as the Euro, Great British Pound and Yen? Chaos, Solitons & Fractals, 109, 195–205. [Google Scholar]
- Giannellis, N. (2022). Cryptocurrency market connectedness in COVID-19 days and the role of Twitter: Evidence from a smooth transition regression model. Research in International Business and Finance, 63, 101801. [Google Scholar] [CrossRef]
- Gil-Alana, L. A., Abacha, E. J. A., & Rojo, M. F. R. (2020). Cryptocurrencies and stock market indices. Are they related? Research in International Business and Finance, 51, 101063. [Google Scholar] [CrossRef]
- Gopane, T. J. (2022). Volatility behaviour of Bitcoin as a digital asset: Evidence of shock transmission dynamics from the South African financial markets. Journal of Telecommunications and the Digital Economy, 10(2), 195–213. [Google Scholar] [CrossRef]
- Granger, C. W. (1980). Long memory relationships and the aggregation of dynamic models. Journal of Econometrics, 14(2), 227–238. [Google Scholar] [CrossRef]
- Granger, C. W., & Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis, 1(1), 15–29. [Google Scholar] [CrossRef]
- Greeff, C. (2019). An investigation into the output tax consequences of Bitcoin transactions for a South African value-added tax vendor. South African Journal of Economic and Management Sciences, 22(1), 1–9. [Google Scholar] [CrossRef]
- Grubel, H. G. (1968). Internationally diversified portfolios: Welfare gains and capital flows. The American Economic Review, 58(5), 1299–1314. [Google Scholar]
- Harwick, C. (2016). Cryptocurrency and the problem of intermediation. The Independent Review, 20(4), 569–588. [Google Scholar]
- Hoque, M. E., Soo-Wah, L., Tiwari, A. K., & Akhter, T. (2023). Time and frequency domain connectedness and spillover among categorical and regional financial stress, Gold and Bitcoin market. Resources Policy, 85, 103786. [Google Scholar] [CrossRef]
- Hosking, J. R. M. (1981). Equivalent forms of the multivariate portmanteau statistic. Journal of the Royal Statistical Society Series B: Statistical Methodology, 43(2), 261–262. [Google Scholar] [CrossRef]
- Hsu, S. H., Sheu, C., & Yoon, J. (2021). Risk spillovers between cryptocurrencies and traditional currencies and Gold under different global economic conditions. The North American Journal of Economics and Finance, 57, 101443. [Google Scholar] [CrossRef]
- Hung, N. T. (2022). Asymmetric connectedness among S&P 500, crude oil, Gold and Bitcoin. Managerial Finance, 48(4), 587–610. [Google Scholar] [CrossRef]
- Ibrahim, B. A., Elamer, A. A., Alasker, T. H., Mohamed, M. A., & Abdou, H. A. (2024). Volatility contagion between cryptocurrencies, Gold and stock markets pre-and-during COVID-19: Evidence using DCC-GARCH and cascade-correlation network. Financial Innovation, 10(1), 104. [Google Scholar] [CrossRef]
- Jeleskovic, V., Latini, C., Younas, Z. I., & Al-Faryan, M. A. (2023). Optimization of portfolios with cryptocurrencies: Markowitz and GARCH-Copula model approach. arXiv, arXiv:2401.00507. [Google Scholar] [CrossRef]
- Ji, Q., Bouri, E., Lau, C. K. M., & Roubaud, D. (2019). Dynamic connectedness and integration in cryptocurrency markets. International Review of Financial Analysis, 63, 257–272. [Google Scholar] [CrossRef]
- Kang, S. H., McIver, R. P., & Hernandez, J. A. (2019). Co-movements between Bitcoin and Gold: A wavelet coherence analysis. Physica A: Statistical Mechanics and Its Applications, 536, 120888. [Google Scholar] [CrossRef]
- Katsiampa, P., Corbet, S., & Lucey, B. (2019). High frequency volatility co-movements in cryptocurrency markets. Journal of International Financial Markets, Institutions and Money, 62, 35–52. [Google Scholar] [CrossRef]
- Koop, G., Pesaran, M. H., & Potter, S. M. (1996). Impulse response analysis in nonlinear multivariate models. Journal of Econometrics, 74(1), 119–147. [Google Scholar] [CrossRef]
- Koutmos, D., King, T., & Zopounidis, C. (2021). Hedging uncertainty with cryptocurrencies: Is Bitcoin your best bet? Journal of Financial Research, 44(4), 815–837. [Google Scholar] [CrossRef]
- Kumah, S. P., & Odei-Mensah, J. (2021). Are Cryptocurrencies and African stock markets integrated? The Quarterly Review of Economics and Finance, 81, 330–341. [Google Scholar] [CrossRef]
- Kumah, S. P., Odei-Mensah, J., & Baaba Amanamah, R. (2022). Co-movement of cryptocurrencies and African stock returns: A multiresolution analysis. Cogent Business & Management, 9(1), 2124595. [Google Scholar] [CrossRef]
- Li, Z., Wang, Y., & Huang, Z. (2020). Risk connectedness heterogeneity in the cryptocurrency markets. Frontiers in Physics, 8, 243. [Google Scholar] [CrossRef]
- Lose, A., & Kalitanyi, V. (2025). Regulating and monitoring challenges in compliance of cryptocurrencies in South Africa. The Journal of Developing Areas, 59(2), 291–299. [Google Scholar] [CrossRef]
- Maghyereh, A., & Abdoh, H. (2022). COVID-19 and the volatility interlinkage between Bitcoin and financial assets. Empirical Economics, 63(6), 2875–2901. [Google Scholar] [CrossRef]
- Mariana, C. D., Ekaputra, I. A., & Husodo, Z. A. (2021). Are Bitcoin and Ethereum safe havens for stocks during the COVID-19 pandemic? Finance Research Letters, 38, 101798. [Google Scholar] [CrossRef]
- Mensi, W., Rehman, M. U., Al-Yahyaee, K. H., Al-Jarrah, I. M. W., & Kang, S. H. (2019). Time frequency analysis of the commonalities between Bitcoin and major Cryptocurrencies: Portfolio risk management implications. The North American Journal of Economics and Finance, 48, 283–294. [Google Scholar] [CrossRef]
- Milne, A., & Lawack, V. (2024). Digital assets in payments and transaction banking (No. 11073). Economic Research and Statistics Department, South African Reserve Bank. [Google Scholar]
- Milunovich, G. (2018). Cryptocurrencies, mainstream asset classes and risk factors: A study of connectedness. Australian Economic Review, 51(4), 551–563. [Google Scholar] [CrossRef]
- Msomi, S., & Nyandeni, A. (2025). Spillover effects and hedging abilities of cryptocurrencies: A case of the South African market. International Journal of Blockchains and Cryptocurrencies, 6(1), 42–68. [Google Scholar] [CrossRef]
- Naeem, M. A., Farid, S., Balli, F., & Hussain Shahzad, S. J. (2021). Hedging the downside risk of commodities through cryptocurrencies. Applied Economics Letters, 28(2), 153–160. [Google Scholar] [CrossRef]
- Nakamoto, S. (2008). A peer-to-peer electronic cash system. Bitcoin, 4(2), 15. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 24 February 2025).
- Ndlovu, T., & Chikobvu, D. (2023). A Wavelet-decomposed WD-ARMA-GARCH-EVT model approach to comparing the riskiness of the Bitcoin and South African rand exchange rates. Data, 8(7), 122. [Google Scholar] [CrossRef]
- Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica: Journal of the Econometric Society, 59, 347–370. [Google Scholar]
- Okonkwo, C., Osu, B. O., Chighoub, F., & Oruh, B. I. (2021). The co-movement of Bitcoin and some African currencies—A wavelet analysis. Journal of Research in Emerging Markets, 3(3), 81–93. [Google Scholar] [CrossRef]
- Pesaran, H. H., & Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models. Economics Letters, 58(1), 17–29. [Google Scholar] [CrossRef]
- Pukthuanthong, K., & Roll, R. (2009). Global market integration: An alternative measure and its application. Journal of Financial Economics, 94(2), 214–232. [Google Scholar] [CrossRef]
- Reddy, E., & Lawack, V. (2019). An overview of the regulatory developments in South Africa regarding the use of cryptocurrencies. SA Mercantile Law Journal, 31(1), 1–28. [Google Scholar]
- Rehman, S. U., Ahmad, T., Desheng, W. D., & Karamoozian, A. (2024). Analyzing selected cryptocurrencies’ spillover effects on global financial indices: Comparing risk measures using conventional and eGARCH-EVT-Copula approaches. arXiv, arXiv:2407.15766. [Google Scholar]
- Sebastião, H., & Godinho, P. (2020). Bitcoin futures: An effective tool for hedging cryptocurrencies. Finance Research Letters, 33, 101230. [Google Scholar] [CrossRef]
- Shahzad, S. J. H., Balli, F., Naeem, M. A., Hasan, M., & Arif, M. (2022). Do conventional currencies hedge cryptocurrencies? The Quarterly Review of Economics and Finance, 85, 223–228. [Google Scholar] [CrossRef]
- Shahzad, S. J. H., Bouri, E., Roubaud, D., Kristoufek, L., & Lucey, B. (2019). Is Bitcoin a better safe-haven investment than Gold and commodities? International Review of Financial Analysis, 63, 322–330. [Google Scholar] [CrossRef]
- Shahzad, U., Mohammed, K. S., Tiwari, S., Nakonieczny, J., & Nesterowicz, R. (2023). Connectedness between geopolitical risk, financial instability indices and precious metals markets: Novel findings from Russia Russia-Ukraine conflict perspective. Resources Policy, 80, 103190. [Google Scholar] [CrossRef]
- Tiwari, A. K., Dar, A. B., Bhanja, N., & Shah, A. (2013). Stock market integration in Asian countries: Evidence from wavelet multiple correlations. Journal of Economic Integration, 28, 441–456. [Google Scholar] [CrossRef]
- Torrence, C., & Webster, P. J. (1999). Interdecadal changes in the ENSO–Monsoon system. Journal of Climate, 12, 2679–2690. [Google Scholar] [CrossRef]
- Urquhart, A., & Zhang, H. (2019). Is Bitcoin a hedge or safe haven for currencies? An intraday analysis. International Review of Financial Analysis, 63, 49–57. [Google Scholar] [CrossRef]
- Wang, P., & Wang, P. (2011). Asymmetry in return reversals or asymmetry in volatilities?—New evidence from new markets. Quantitative Finance, 11(2), 271–285. [Google Scholar] [CrossRef]
- Wang, P., Zhang, W., Li, X., & Shen, D. (2019). Is cryptocurrency a hedge or a safe haven for international indices? A comprehensive and dynamic perspective. Finance Research Letters, 31, 1–18. [Google Scholar] [CrossRef]
- Wątorek, M., Kwapień, J., & Drożdż, S. (2023). Cryptocurrencies are becoming part of the world global financial market. Entropy, 25(2), 377. [Google Scholar] [CrossRef]
- Wiesen, T. F., Beaumont, M., Norrbin, S. C., & Srivastava, A. (2018). Are generalized spillover indices overstating connectedness? Economics Letters, 173, 131–134. [Google Scholar] [CrossRef]
- Wu, S. (2021). Co-movement and return spillover: Evidence from Bitcoin and traditional assets. SN Business & Economics, 1(10), 122. [Google Scholar] [CrossRef]
- Wu, S., Tong, M., Yang, Z., & Derbali, A. (2019). Does Gold or Bitcoin hedge economic policy uncertainty? Finance Research Letters, 31, 171–178. [Google Scholar] [CrossRef]
- Xu, Q., Zhang, Y., & Zhang, Z. (2021). Tail-risk spillovers in cryptocurrency markets. Finance Research Letters, 38, 101453. [Google Scholar] [CrossRef]
- Yi, S., Xu, Z., & Wang, G. J. (2018). Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency? International Review of Financial Analysis, 60, 98–114. [Google Scholar] [CrossRef]
- Zeng, H., & Ahmed, A. D. (2023). Market integration and volatility spillover across major East Asian stock and Bitcoin markets: An empirical assessment. International Journal of Managerial Finance, 19(4), 772–802. [Google Scholar] [CrossRef]
ALSIr | Bondr | Goldr | BTC/ZARr | GBP/ZARr | USD/ZARr | EUR/ZARr | |
---|---|---|---|---|---|---|---|
Mean | 0.000323 | −1.22 × 10−5 | 0.000230 | 0.002483 | 0.000177 | 0.000254 | 0.000177 |
Median | 0.000479 | 0.000000 | 0.000307 | 0.001866 | −0.000207 | −0.000105 | −0.000154 |
Std. Dev. | 0.010269 | 0.009241 | 0.009969 | 0.049487 | 0.008919 | 0.009580 | 0.008792 |
Skewness | −0.119433 | 0.732539 | −0.307999 | −0.273970 | 0.214797 | 0.263403 | 0.372391 |
Kurtosis | 4.571204 | 12.16870 | 6.593023 | 11.66077 | 4.247051 | 3.988566 | 4.783945 |
Jarque–Bera | 380.1235 | 12,974.84 | 2,000.035 | 11,334.03 | 261.8231 | 188.8456 | 562.4425 |
Probability | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Variables | μ | ϕ | ω | α | β | γ | φ | ARCH [3] |
---|---|---|---|---|---|---|---|---|
ALSI | −0.0002 (0.0001) | 0.0687 *** (0.0154) | −0.4370 *** (0.0198) | 0.0322 ** (0.0126) | 0.9542 *** (0.0020) | 0.16014 *** (0.0201) | 4.9954 *** (0.4071) | 0.1081 [0.7423] |
Bond | 0.0003 *** (0.0001) | −0.0384 ** (0.0150) | −0.0892 *** (0.0066) | 0.0181 ** (0.0089) | 0.9703 *** (0.0007) | 0.0849 ** (0.0365) | 4.0719 *** (0.5057) | 0.3670 [0.5446] |
Gold | 0.0020 *** (0.0005) | 0.0090 (0.0163) | −1.4517 *** (0.1263) | 0.0348 *** (0.0040) | 0.7436 *** (0.0209) | 0.6231 *** (0.0708) | 2.5390 *** (0.1399) | 0.0003 [0.9851] |
BTC/ZAR | 0.0003 ** (0.0001) | −0.0054 (0.0168) | −0.1237 *** (0.0012) | 0.0429 *** (0.0080) | 0.9868 *** (0.0004) | 0.0758 *** (0.0023) | 13.7971 *** (2.5556) | 0.4051 [0.5245] |
USD/ZAR | 0.0021 *** (0.0002) | −0.0012 (0.0169) | −0.2315 *** (0.0005) | 0.0278 *** (0.0096) | 0.9756 *** (0.0002) | 0.1025 *** (0.0054) | 8.8175 *** (1.1316) | 3.1200 [0.0773] |
GBP/ZAR | 0.0004 *** (0.0001) | 0.0119 (0.0173) | −0.3521 *** (0.0066) | 0.0391 *** (0.0109) | 0.9632 *** (0.0007) | 0.1274 *** (0.0127) | 8.4339 *** (1.0224) | 0.1555 [0.693] |
EUR/ZAR | 0.0003 *** (0.0001) | 0.9165 *** (0.0015) | −0.9265 *** (0.0055) | 0.0525 *** (0.0053) | 0.9590 *** (0.0023) | 0.0460 *** (0.0090) | 14.9380 *** (3.3820) | 0.4625 [0.4964] |
ALSI | Bond | Gold | BTC/ZAR | USD/ZAR | GBP/ZAR | EUR./ZAR | FROM | |
---|---|---|---|---|---|---|---|---|
ALSI | 94.49 | 0.95 | 0.96 | 1.15 | 0.88 | 0.71 | 0.85 | 5.51 |
Bond | 0.78 | 93.96 | 1.21 | 0.83 | 0.95 | 1.13 | 1.13 | 6.04 |
Gold | 0.99 | 1.36 | 94.33 | 0.97 | 0.82 | 0.77 | 0.76 | 5.67 |
BTC/ZAR | 1.08 | 0.82 | 0.93 | 93.75 | 1.07 | 1.15 | 1.21 | 6.25 |
USD/ZAR | 0.36 | 0.50 | 0.44 | 0.52 | 42.12 | 27.28 | 28.78 | 57.88 |
GBP/ZAR | 0.31 | 0.52 | 0.37 | 0.44 | 26.97 | 41.72 | 29.68 | 58.28 |
EUR/ZAR | 0.34 | 0.54 | 0.42 | 0.43 | 28.00 | 29.21 | 41.05 | 58.95 |
TO | 3.86 | 4.69 | 4.33 | 4.35 | 58.69 | 60.26 | 62.41 | 198.59 |
TCI | ||||||||
NET | −1.66 | −1.35 | −1.34 | −1.90 | 0.81 | 1.98 | 3.46 | 28.37 |
NPT | 1.00 | 2.00 | 0.00 | 3.00 | 4.00 | 5.00 | 6.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mudiangombe, B.M.; Muteba Mwamba, J.W. Integration and Risk Transmission Dynamics Between Bitcoin, Currency Pairs, and Traditional Financial Assets in South Africa. Econometrics 2025, 13, 36. https://doi.org/10.3390/econometrics13030036
Mudiangombe BM, Muteba Mwamba JW. Integration and Risk Transmission Dynamics Between Bitcoin, Currency Pairs, and Traditional Financial Assets in South Africa. Econometrics. 2025; 13(3):36. https://doi.org/10.3390/econometrics13030036
Chicago/Turabian StyleMudiangombe, Benjamin Mudiangombe, and John Weirstrass Muteba Mwamba. 2025. "Integration and Risk Transmission Dynamics Between Bitcoin, Currency Pairs, and Traditional Financial Assets in South Africa" Econometrics 13, no. 3: 36. https://doi.org/10.3390/econometrics13030036
APA StyleMudiangombe, B. M., & Muteba Mwamba, J. W. (2025). Integration and Risk Transmission Dynamics Between Bitcoin, Currency Pairs, and Traditional Financial Assets in South Africa. Econometrics, 13(3), 36. https://doi.org/10.3390/econometrics13030036