Personal Picocell Scheme Using Adaptive Control CRE in Heterogeneous Mobile Networks †
Abstract
:1. Introduction
- We propose a new concept of a personal picocell scheme in HetNet and propose an adaptive control CRE technique to realize the personal picocell scheme through the use of two different CSOs.
- We first clarify the optimal parameters of the proposed adaptive control CRE for single- and multi-band HetNets. We then show the average and 5-percentile user throughput of the optimized adaptive control CRE and compare them with those of conventional CRE.
2. Personal Picocell Scheme Using Adaptive Control CRE
2.1. HetNets and CRE
2.2. Proposal of Personal Picocell Scheme
2.3. Adaptive Control CRE
3. User Throughput in Single-Band HetNet
3.1. Simulation Setup
3.2. Parameter Optimization in Single-Band HetNet
3.3. Comparison with Conventional Method
4. User Throughput in Multi-Band HetNet
4.1. Parameter Optimization in Multi-Band HetNet
4.2. Comparison with Conventional Method
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.E.; Soong, A.C.K.; Zhang, J.C. What Will 5G Be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Soldani, D.; Manzalini, A. Horizon 2020 and Beyond: On the 5G Operating System for a True Digital Society. IEEE Veh. Technol. Mag. 2015, 10, 32–42. [Google Scholar] [CrossRef]
- Nakamura, T.; Benjebbour, A.; Kishiyama, Y.; Suyama, S.; Imai, T. 5G Radio Access: Requirements, Concept and Experimental Trials. IEICE Trans. Commun. 2015, E98-B, 1397–1406. [Google Scholar] [CrossRef] [Green Version]
- Bogale, T.E.; Le, L.B. Massive MIMO and mmWave for 5G Wireless HetNet: Potential Benefits and Challenges. IEEE Veh. Technol. Mag. 2016, 11, 64–75. [Google Scholar] [CrossRef]
- Okumura, Y.; Suyama, S.; Mashino, J.; Muraoka, K. Recent Activities of 5G Experimental Trials on Massive MIMO Technologies and 5G System Trials Toward New Services Creation. IEICE Trans. Commun. 2019, E102-B, 1352–1362. [Google Scholar] [CrossRef] [Green Version]
- Ishii, H.; Kishiyama, Y.; Takahashi, H. A novel architecture for LTE-B:C-plane/U-plane split and Phantom Cell concept. In Proceedings of the 2012 IEEE Globecom Workshops; Institute of Electrical and Electronics Engineers (IEEE), Anaheim, CA, USA, 3–7 December 2012; pp. 624–630. [Google Scholar] [CrossRef]
- Ghosh, A.; Ratasuk, R.; Mondal, B.; Mangalvedhe, N.; Thomas, T. LTE-advanced: Next-generation wireless broadband technology [Invited Paper. IEEE Wirel. Commun. 2010, 17, 10–22. [Google Scholar] [CrossRef]
- Dahlman, E.; Dimou, K.; Parkvall, S.; Tullberg, H. Future wireless access small cells and heterogeneous deployments. In Proceedings of the ICT 2013 Institute of Electrical and Electronics Engineers (IEEE), Casablanca, Morocco, 6–8 May 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Deb, S.; Monogioudis, P.; Miernik, J.; Seymour, J.P. Algorithms for Enhanced Inter-Cell Interference Coordination (eICIC) in LTE HetNets. IEEE/ACM Trans. Netw. 2013, 22, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Chi, H.R.; Radwan, A. Multi-Objective Optimization of Green Small Cell Allocation for IoT Applications in Smart City. IEEE Access 2020, 8, 101903–101914. [Google Scholar] [CrossRef]
- Dghais, W.; Souilem, M.; Chi, H.R.; Radwan, A.; Taha, A.-E.M. Dynamic Clustering for Power Effective Small Cell Deployment in HetNet 5G Networks. In Proceedings of the ICC 2020–2020 IEEE International Conference on Communications (ICC); Institute of Electrical and Electronics Engineers (IEEE), Dublin, Ireland, 7–11 June 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Potential Performance of Range Expansion in Macro-Pico Deployment (R1–104355); TSG RAN WG1; 3GPP: Madrid, Spain, 2010.
- Tian, P.; Tian, H.; Zhu, J.; Chen, L.; She, X. An adaptive bias configuration strategy for range extension in LTE-advanced heterogeneous networks. In Proceedings of the IET International Conference on Communication Technology and Application (ICCTA 2011); Institution of Engineering and Technology (IET), Beijing, China, 14–16 October 2011; pp. 336–340. [Google Scholar] [CrossRef]
- Guvenc, I. Capacity and Fairness Analysis of Heterogeneous Networks with Range Expansion and Interference Coordination. IEEE Commun. Lett. 2011, 15, 1084–1087. [Google Scholar] [CrossRef]
- Kikuchi, K.; Otsuka, H. Proposal of adaptive control CRE in heterogeneous networks. In Proceedings of the 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications—(PIMRC); Institute of Electrical and Electronics Engineers (IEEE), Sydney, NSW, Australia, 9–12 September 2012; pp. 910–914. [Google Scholar] [CrossRef]
- Kikuchi, K.; Otsuka, H. Parameter optimization for adaptive control CRE in HetNet. In Proceedings of the 2013 IEEE 24th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC); Institute of Electrical and Electronics Engineers (IEEE), London, UK, 8–11 September 2013; pp. 3334–3338. [Google Scholar] [CrossRef]
- Nakazawa, S.; Matsuoka, S.; Otsuka, H. Adaptive control CRE and its throughput performance in HetNet. IEICE Commun. Express 2015, 4, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Nakazawa, S.; Naganuma, N.; Otsuka, H. Enhanced adaptive control CRE in heterogeneous networks. In Proceedings of the 2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC); Institute of Electrical and Electronics Engineers (IEEE), Las Vegas, NV, USA, 8–11 January 2017; pp. 645–646. [Google Scholar] [CrossRef]
- Naganuma, N.; Nakazawa, S.; Suyama, S.; Okumura, Y.; Otsuka, H. Adaptive control CRE technique for eICIC in HetNet. In Proceedings of the 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN); Institute of Electrical and Electronics Engineers (IEEE), Vienna, Austria, 5–8 July 2016; pp. 4–6. [Google Scholar] [CrossRef]
- Fujisawa, K.; Kemmochi, F.; Otsuka, H. Personal-Cell Scheme Using Adaptive Control CRE for Multicarrier HetNets. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall); Institute of Electrical and Electronics Engineers (IEEE), Honolulu, HI, USA, 22–25 September 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Mu, Q.; Liu, L.; Chen, L.; Jiang, Y. CQI table design to support 256 QAM in small cell environment. In Proceedings of the 2013 International Conference on Wireless Communications and Signal Processing; Institute of Electrical and Electronics Engineers (IEEE), Hangzhou, China, 24–26 October 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Iwamoto, M.; Matsuoka, S.; Iwasaki, H.; Otsuka, H. Transmission performance of OFDM with 1024-QAM in the presence of EVM degradation. In Proceedings of the 2014 IEEE Asia Pacific Conference on Wireless and Mobile; Institute of Electrical and Electronics Engineers (IEEE), Bali, Indonesia, 28–30 August 2014; pp. 12–16. [Google Scholar] [CrossRef]
- Ota, T.; Nakamura, M.; Otsuka, H. Performance evaluation of OFDM-based 256- and 1024-QAM in multipath fading propagation conditions. In Proceedings of the 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN); Institute of Electrical and Electronics Engineers (IEEE), Milan, Italy, 4–7 July 2017; pp. 554–556. [Google Scholar] [CrossRef]
- Naganuma, N.; Osawa, K.; Mashino, J.; Suyama, S.; Otsuka, H. Proposal of CQI table switching control method corresponding to 256-QAM for CRE in HetNet. In Proceedings of the 2018 International Conference on Information Networking (ICOIN); Institute of Electrical and Electronics Engineers (IEEE), Chiang Mai, Thailand, 10–12 January 2018; pp. 331–335. [Google Scholar] [CrossRef]
- ITU Report, M.2135-1. Guidelines for Evaluation of Radio Interface Technologies for IMT-Advanced; International Telecommunication Union: Geneva, Switzerland, 2009. [Google Scholar]
- Evolved Universal Terrestrial Radio Access (E-UTRA); Introduction of 1024 Quadrature Amplitude Modulation (QAM) in LTE downlink (Release 15); Technical report No. 36.783; 3GPP: Valbonne, France, 2017.
- Tian, R.; Senda, K.; Ota, T.; Otsuka, H. Transmission performance of OFDM-based 1024-QAM in multipath fading conditions. IEICE Commun. Express 2018, 7, 272–277. [Google Scholar] [CrossRef]
- Otsuka, H.; Tian, R.; Senda, K. Transmission Performance of an OFDM-Based Higher-Order Modulation Scheme in Multipath Fading Channels. J. Sens. Actuator Netw. 2019, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Kemmochi, F.; Fujisawa, K.; Otsuka, H. Potential Design for Modulation and Coding Scheme in mmWave Multicarrier HetNets. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall); Institute of Electrical and Electronics Engineers (IEEE), Honolulu, HI, USA, 22–25 September 2019; pp. 3–12. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
Parameter | Value | |
---|---|---|
Macro-eNB | Pico-eNB | |
Cell layout | Hexagonal grid, 19 cell sites, 3 sectors per site | 4 picos per sector |
Cell radius (ISD) | 289 m (500 m) | - |
Tx power | 46 dBm | 30 dBm |
Tx antenna gain | 14 dBi | 5 dBi |
Antenna height | 32 m | 10 m |
Carrier frequency | 2.0 GHz | 2.0 or 3.4 GHz |
System bandwidth | 10 MHz | 10 MHz |
UE distribution | 30 UEs per sector, 2/3 clustered distribution | |
Scheduling algorithm | Proportional fairness | |
Link adaptation | 15 MCS (QPSK to 256-QAM) | |
Traffic model | Full buffer | |
Link to system mapping | EESM | |
MIMO | 2 × 2 SU-MIMO |
MCS Index | Modulation | Coding Rate | Efficiency (bps/Hz) |
---|---|---|---|
0 | Out of range | ||
1 | QPSK | 1/13 | 0.152 |
2 | 1/5 | 0.377 | |
3 | 7/16 | 0.875 | |
4 | 16-QAM | 3/8 | 1.500 |
5 | 1/2 | 2.000 | |
6 | 3/5 | 2.400 | |
7 | 64-QAM | 5/9 | 3.333 |
8 | 9/20 | 3.700 | |
9 | 13/20 | 3.900 | |
10 | 3/4 | 4.500 | |
11 | 17/20 | 5.100 | |
12 | 256-QAM | 7/10 | 5.600 |
13 | 19/24 | 6.333 | |
14 | 13/15 | 6.933 | |
15 | 23/25 | 7.360 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujisawa, K.; Kemmochi, F.; Otsuka, H. Personal Picocell Scheme Using Adaptive Control CRE in Heterogeneous Mobile Networks. J. Sens. Actuator Netw. 2020, 9, 48. https://doi.org/10.3390/jsan9040048
Fujisawa K, Kemmochi F, Otsuka H. Personal Picocell Scheme Using Adaptive Control CRE in Heterogeneous Mobile Networks. Journal of Sensor and Actuator Networks. 2020; 9(4):48. https://doi.org/10.3390/jsan9040048
Chicago/Turabian StyleFujisawa, Kento, Fumiya Kemmochi, and Hiroyuki Otsuka. 2020. "Personal Picocell Scheme Using Adaptive Control CRE in Heterogeneous Mobile Networks" Journal of Sensor and Actuator Networks 9, no. 4: 48. https://doi.org/10.3390/jsan9040048
APA StyleFujisawa, K., Kemmochi, F., & Otsuka, H. (2020). Personal Picocell Scheme Using Adaptive Control CRE in Heterogeneous Mobile Networks. Journal of Sensor and Actuator Networks, 9(4), 48. https://doi.org/10.3390/jsan9040048