Next Article in Journal
Special Issue: Empowering eHealth with Smart Internet of Things (IoT) Medical Devices
Next Article in Special Issue
An Autonomous Wireless Health Monitoring System Based on Heartbeat and Accelerometer Sensors
Previous Article in Journal
Hybrid TOA/RSS Range-Based Localization with Self-Calibration in Asynchronous Wireless Networks
Open AccessArticle

A System for Monitoring Breathing Activity Using an Ultrasonic Radar Detection with Low Power Consumption

1
Electrical Engineering Technical College, Middle Technical University, Baghdad 1022, Iraq
2
School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia
3
Joint and Operations Analysis Division, Defence Science and Technology Group, Melbourne, VIC 3207, Australia
*
Author to whom correspondence should be addressed.
J. Sens. Actuator Netw. 2019, 8(2), 32; https://doi.org/10.3390/jsan8020032
Received: 28 April 2019 / Revised: 20 May 2019 / Accepted: 22 May 2019 / Published: 24 May 2019
(This article belongs to the Special Issue Future Wireless Systems for Human Bond Communications)
  |  
PDF [4108 KB, uploaded 30 May 2019]
  |  

Abstract

Continuous monitoring of breathing activity plays a major role in detecting and classifying a breathing abnormality. This work aims to facilitate detection of abnormal breathing syndromes, including tachypnea, bradypnea, central apnea, and irregular breathing by tracking of thorax movement resulting from respiratory rhythms based on ultrasonic radar detection. This paper proposes a non-contact, non-invasive, low cost, low power consumption, portable, and precise system for simultaneous monitoring of normal and abnormal breathing activity in real-time using an ultrasonic PING sensor and microcontroller PIC18F452. Moreover, the obtained abnormal breathing syndrome is reported to the concerned physician’s mobile telephone through a global system for mobile communication (GSM) modem to handle the case depending on the patient’s emergency condition. In addition, the power consumption of the proposed monitoring system is reduced via a duty cycle using an energy-efficient sleep/wake scheme. Experiments were conducted on 12 participants without any physical contact at different distances of 0.5, 1, 2, and 3 m and the breathing rates measured with the proposed system were then compared with those measured by a piezo respiratory belt transducer. The experimental results illustrate the feasibility of the proposed system to extract breathing rate and detect the related abnormal breathing syndromes with a high degree of agreement, strong correlation coefficient, and low error ratio. The results also showed that the total current consumption of the proposed monitoring system based on the sleep/wake scheme was 6.936 mA compared to 321.75 mA when the traditional operation was used instead. Consequently, this led to a 97.8% of power savings and extended the battery life time from 8 h to approximately 370 h. The proposed monitoring system could be used in both clinical and home settings. View Full-Text
Keywords: non-contact monitoring system; breathing abnormality; eupnea; tachypnea; bradypnea; central apnea; ultrasonic (PING) sensor; microcontroller PIC18F452; global system for mobile communication (GSM); power consumption model non-contact monitoring system; breathing abnormality; eupnea; tachypnea; bradypnea; central apnea; ultrasonic (PING) sensor; microcontroller PIC18F452; global system for mobile communication (GSM); power consumption model
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Al-Naji, A.; Al-Askery, A.J.; Gharghan, S.K.; Chahl, J. A System for Monitoring Breathing Activity Using an Ultrasonic Radar Detection with Low Power Consumption. J. Sens. Actuator Netw. 2019, 8, 32.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
J. Sens. Actuator Netw. EISSN 2224-2708 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top