Outage Analysis of Distributed Antenna Systems in a Composite Fading Channel with Correlated Shadowing
Abstract
:1. Introduction
2. System Model
2.1. Network Topology
2.2. Channel Model
2.3. Shadowing Correlation
3. Outage Rate Analysis
3.1. Non-Cooperative Transmission
3.2. Maximal Ratio Combining
3.3. Selective Combining
4. Numerical Results
4.1. Outage Probability versus Transmit Power
4.2. Outage Probability Versus Inter-Separation between Transmitters
4.3. Optimal with Different Standard Deviation of Shadowing
4.4. Optimal with Varying Path-Loss Exponent n
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DAS | Distributed antenna system |
MIMO | Multiple-input-multiple-output |
IoT | Internet-of-Things |
SISO | Single-input-single-output |
MISO | multiple-input-single-output |
RAU | Remote antenna unit |
CT | Cooperative transmission |
SNR | Signal-to-noise-ratio |
5G | Fifth-generation |
Tx | Transmitter |
Rx | Receiver |
AWGN | Additive white Gaussian noise |
Probability density function | |
CDF | Cumulative distribution function |
MRC | Maximal ratio combining |
SC | Selective combining |
References
- Laneman, J.; Tse, D.; Wornell, G. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Trans. Inf. Theory 2004, 50, 3062–3080. [Google Scholar] [CrossRef]
- Stüber, G.L. Principles of Mobile Communication, 2nd ed.; Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands, 2001. [Google Scholar]
- Simon, M.K.; Alouini, M.-S. Digital Communication Over Fading Channels, 2nd ed.; Wiley-IEEE Press: Hoboken, NJ, USA, 2002. [Google Scholar]
- Chen, Z.; Yuan, J.; Vucetic, B. Analysis of transmit antenna selection/maximal-ratio combining in Rayleigh fading channels. IEEE Trans. Veh. Technol. 2005, 54, 1312–1321. [Google Scholar] [CrossRef]
- Chen, Z.; Chi, Z.; Li, Y.; Vucetic, B. Error performance of maximal-ratio combining with transmit antenna selection in flat Nakagami-m fading channels. IEEE Trans. Wirel. Commun. 2009, 8, 424–431. [Google Scholar] [CrossRef]
- Xing, W.; Wang, N.; Wang, C.; Liu, F.; Ji, Y. Co-channel interference of microcellular systems on shadowed Nakagami fading channels. In Proceedings of the IEEE VTC, Secaucus, NJ, USA, 18–20 May 1993. [Google Scholar]
- Hansen, F.; Meno, F.I. Mobile fading-Rayleigh and lognormal superimposed. IEEE Trans. Veh. Technol. 1977, 26, 332–335. [Google Scholar] [CrossRef]
- You, X.H.; Wang, D.M.; Sheng, B.; Gao, X.Q.; Zhao, X.S.; Chen, M. Cooperative distributed antenna systems for mobile communications: Coordinated and distributed MIMO. IEEE Wirel. Commun. 2010, 17, 35–43. [Google Scholar] [CrossRef]
- Wang, D.; You, X.; Wang, J.; Wang, Y.; Hou, X. Spectral efficiency of distributed MIMO cellular systems in a composite fading channel. In Proceedings of the IEEE ICC, Beijing, China, 19–23 May 2008; pp. 1259–1264. [Google Scholar]
- Sendonaris, A.; Erkip, E.; Aazhang, B. User cooperation diversity. Part I. System description. IEEE Trans. Commun. 2003, 51, 1927–1938. [Google Scholar] [CrossRef]
- Jung, H.; Weitnauer, M. Multi-packet opportunistic large array transmission on strip-shaped cooperative routes or networks. IEEE Trans. Wirel. Commun. 2014, 13, 144–158. [Google Scholar] [CrossRef]
- Jung, H.; Weitnauer, M.A. Multi-packet interference in opportunistic large array broadcasts over disk networks. IEEE Trans. Wirel. Commun. 2013, 12, 5631–5645. [Google Scholar] [CrossRef]
- Jung, H.; Chang, Y.; Ingram, M.A. Experimental range extension of concurrent cooperative transmission in indoor environments at 2.4 GHz. In Proceedings of the IEEE MILCOM, San Jose, CA, USA, 31 October–3 November 2010. [Google Scholar]
- Chang, Y.; Jung, H.; Ingram, M.A. Demonstration of a new degree of freedom in wireless routing: Concurrent cooperative transmission. In Proceedings of the HotEMNETS 2010 Workshop on Hot Topics in Embedded Networked Sensors, Killarney, Ireland, 28–29 June 2010. [Google Scholar]
- Jung, H. Experimentation and Physical Layer Modeling for Opportunistic Large Array-Based Networks. Ph.D. Thesis, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 2014. [Google Scholar]
- Jung, H.; Weitnauer, M.A. Characterization of path-loss disparity in virtual multiple-input-single-output links. Int. J. Antennas Propag. 2014, 2014, 650236. [Google Scholar] [CrossRef]
- Jung, H.; Weitnauer, M.A. SNR penalty from the path-loss disparity in virtual multiple-input-single-output (VMISO) link. In Proceedings of the IEEE ICC, Budapest, Hungary, 9–13 June 2013. [Google Scholar]
- Jung, H.; Weitnauer, M.A. Analysis of link asymmetry in virtual multiple-input-single-output (VMISO) systems. Ad Hoc Netw. 2017, 63, 20–29. [Google Scholar] [CrossRef]
- Lin, J.; Jung, H.; Chang, Y.J.; Jung, J.W.; Weitnauer, M.A. On cooperative transmission range extension in multi-hop wireless ad-hoc and sensor networks: A review. Ad Hoc Netw. 2015, 29, 117–134. [Google Scholar] [CrossRef]
- Jung, H.; Lee, I.-H. Analog cooperative beamforming with spherically-bound random arrays for physical-layer secure communications. IEEE Commun. Lett. 2018, 22, 546–549. [Google Scholar] [CrossRef]
- Jung, H.; Lee, I.-H. Secrecy rate of analog collaborative beamforming with virtual antenna array following spatial random distributions. IEEE Wirel. Commun. Lett. 2018. [Google Scholar] [CrossRef]
- Jung, H.; Lee, I.-H. Outage analysis of multihop wireless backhaul using millimeter wave under blockage effects. Int. J. Antennas Propag. 2017, 2017, 4519365. [Google Scholar] [CrossRef]
- Jung, H.; Lee, I.-H. Connectivity analysis of millimeter-wave device-to-device networks with blockage. Int. J. Antennas Propag. 2016, 2016, 7939671. [Google Scholar] [CrossRef]
- Jung, H.; Lee, I.-H. Outage analysis of millimeter-wave wireless backhaul in the presence of blockage. IEEE Commun. Lett. 2016, 20, 2268–2271. [Google Scholar] [CrossRef]
- Roh, W.; Paulraj, A. Outage performance of the distributed antenna systems in a composite fading channe. In Proceedings of the IEEE VTC, Vancouver, BC, Canada, 24–28 September 2002. [Google Scholar]
- Chen, H.M.; Wang, J.B.; Chen, M. Downlink outage probability of distributed antenna systems over shadowed Nakagami-m fading channels with antenna selection. In Proceedings of the International Conference on Wireless Communications & Signal Processing, Nanjing, China, 13–15 November 2009. [Google Scholar]
- Chen, H.M.; Wang, J.B.; Chen, M. Performance analysis of the distributed antenna system with antenna selective transmission over generalized fading channels. In Proceedings of the IEEE International Conference on Wireless Communications & Signal Processing, Nanjing, China, 13–15 November 2009. [Google Scholar]
- Coso, A.D.; Spagnolini, U.; Ibars, C. Cooperative distributed MIMO channels in wireless sensor networks. IEEE J. Sel. Areas Commun. 2007, 25, 402–414. [Google Scholar] [CrossRef] [Green Version]
- Dohler, M.; Gkelias, A.; Aghvami, H. A resource allocation strategy for distributed MIMO multi-hop communication systems. IEEE Commun. Lett. 2004, 8, 99–101. [Google Scholar] [CrossRef]
- Choi, W.; Andrews, J.G. Downlink performance and capacity of distributed antenna systems in a multicell environment. IEEE Trans. Commun. 2007, 6, 69–73. [Google Scholar] [Green Version]
- Xing, W.; Wang, N.; Wang, C.; Liu, F.; Ji, Y. Shadow fading correlation between uplink and downlink. In Proceedings of the IEEE VTC, Rhodes, Greece, 6–9 May 2001. [Google Scholar]
- Butterworth, K.S.; Sowerby, K.W.; Williamson, A.G. Correlated shadowing in an in-building propagation environment. Electron. Lett. 1997, 33, 420–422. [Google Scholar] [CrossRef]
- He, R.; Zhong, Z.; Ai, B.; Oestges, C. Shadow fading correlation in high-speed railway environments. IEEE Trans. Veh. Technol. 2015, 64, 2762–2772. [Google Scholar] [CrossRef]
- Szyszkowicz, S.S.; Yanikomeroglu, H.; Thompson, J.S. On the feasibility of wireless shadowing correlation models. IEEE Trans. Veh. Technol. 2010, 59, 4222–4236. [Google Scholar] [CrossRef]
- Alouini, M.S.; Simon, M.K. Dual diversity over log-normal fading channels. IEEE Trans. Commun. 2002, 50, 1946–1959. [Google Scholar] [CrossRef]
- Szyszkowicz, S.S.; Yanikomeroglu, H. Limit theorem on the sum of identically distributed equally and positively correlated joint log-normals. IEEE Trans. Commun. 2009, 57, 3538–3542. [Google Scholar] [CrossRef]
- Baum, D.; Hansen, J.; Salo, J. An interim channel model for beyond- 3G systems: Extending the 3GPP spatial channel model (SCM). In Proceedings of the IEEE VTC, Stockholm, Sweden, 30 May–1 June 2005. [Google Scholar]
- Salo, J.; Vuokko, L.; El-Sallabi, H.M.; Vainikainen, P. An additive model as a physical basis for shadow fading. IEEE Trans. Veh. Technol. 2007, 56, 13–26. [Google Scholar] [CrossRef]
- Ni, W.; Zou, W.; Wang, H. Modeling of spatially cross-correlated shadow fading in distributed radio access networks. In Proceedings of the IEEE ICC, Beijing, China, 19–23 May 2008. [Google Scholar]
- Jalden, N.; Zetterberg, P.; Ottersten, B.; Hong, A.; Thoma, R. Correlation properties of large scale fading based on indoor measurements. In Proceedings of the IEEE WCNC, Kowloon, China, 11–15 March 2007; pp. 1894–1899. [Google Scholar]
- Algans, A.; Pedersen, K.; Mogensen, P. Experimental analysis of the joint statistical properties of azimuth spread, delay spread, and shadow fading. IEEE J. Sel. Areas Commun. 2002, 20, 523–531. [Google Scholar] [CrossRef]
- Catrein, D.; Mathar, R. Gaussian random fields as a model for spatially correlated log-normal fading. In Proceedings of the IEEE ATNAC, Adelaide, Australia, 7–10 December 2008. [Google Scholar]
- Haleem, M.; Avidor, D.; Valenzuela, R. Fixed wireless access system with autonomous resource assignment. In Proceedings of the IEEE PIMRC, Boston, MA, USA, 8–11 September 1998. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions 10th Printing with Corrections; Dover: Mineola, NY, USA, 1972. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imran, M.; Jung, H. Outage Analysis of Distributed Antenna Systems in a Composite Fading Channel with Correlated Shadowing. J. Sens. Actuator Netw. 2018, 7, 32. https://doi.org/10.3390/jsan7030032
Imran M, Jung H. Outage Analysis of Distributed Antenna Systems in a Composite Fading Channel with Correlated Shadowing. Journal of Sensor and Actuator Networks. 2018; 7(3):32. https://doi.org/10.3390/jsan7030032
Chicago/Turabian StyleImran, Muhammad, and Haejoon Jung. 2018. "Outage Analysis of Distributed Antenna Systems in a Composite Fading Channel with Correlated Shadowing" Journal of Sensor and Actuator Networks 7, no. 3: 32. https://doi.org/10.3390/jsan7030032
APA StyleImran, M., & Jung, H. (2018). Outage Analysis of Distributed Antenna Systems in a Composite Fading Channel with Correlated Shadowing. Journal of Sensor and Actuator Networks, 7(3), 32. https://doi.org/10.3390/jsan7030032