Sensor Fusion Enhances Anomaly Detection in a Flood Forecasting System
Abstract
:1. Introduction
1.1. Flooding
1.2. Floodwatch
1.3. Anomaly Detection
2. Related Works
2.1. Time-Series Anomaly Detection Methods
2.2. Applications of Anomaly Detection
2.3. Sensor Fusion
3. Materials and Methods
3.1. Device Grouping
3.2. Device Pairing
3.3. Sensor Fusion
3.4. Anomaly Detection
3.5. WeatherAPI Verification
Algorithm 1 Sensor Anomaly Detection System |
|
4. Experiments
4.1. Potential Data Sources
4.2. Synthetic Device Data
4.2.1. Simulated Devices
4.2.2. Simulated Anomalies
4.3. Procedures
5. Results
Analysis of Results
6. Discussion
6.1. Applications to Other IoT Settings
6.2. Limitations
6.3. Future Work
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IoT | Internet of Things |
ML | Machine Learning |
DBSCAN | Density-Based Clustering of Applications with Noise |
References
- Bangalore, M.; Smith, A.; Veldkamp, T. Exposure to floods, climate change, and poverty in Vietnam. Econ. Disasters Clim. Change 2019, 3, 79–99. [Google Scholar]
- Luo, T.; Maddocks, A.; Iceland, C.; Ward, P.; Winsemius, H. World’s 15 Countries with the Most People Exposed to River Floods. 2015. Available online: https://www.wri.org/insights/worlds-15-countries-most-people-exposed-river-floods (accessed on 5 February 2025).
- Khodadad, M.; Aguilar-Barajas, I.; Khan, A.Z. Green Infrastructure for Urban Flood Resilience: A Review of Recent Literature on Bibliometrics, Methodologies, and Typologies. Water 2023, 15, 523. [Google Scholar] [CrossRef]
- Chitwatkulsiri, D.; Miyamoto, H. Real-Time Urban Flood Forecasting Systems for Southeast Asia—A Review of Present Modelling and Its Future Prospects. Water 2023, 15, 178. [Google Scholar] [CrossRef]
- Mendoza-Cano, O.; Aquino-Santos, R.; López-de la Cruz, J.; Edwards, R.M.; Khouakhi, A.; Pattison, I.; Rangel-Licea, V.; Castellanos-Berjan, E.; Martinez-Preciado, M.; Rincón-Avalos, P.; et al. Experiments of an IoT-based wireless sensor network for flood monitoring in Colima, Mexico. J. Hydroinformatics 2021, 23, 385–401. [Google Scholar]
- Gupta, A.; Kim, A.; Karande, A.; Yan, S.; Manandhar, S.; Nguyen, N.R. Validating Crowdsourced Flood Images using Machine Learning and Real-time Weather Data. In Proceedings of the 2022 IEEE 16th International Conference on Big Data Science and Engineering (BigDataSE), Wuhan, China, 9–11 December 2022; pp. 7–12. [Google Scholar]
- Erhan, L.; Ndubuaku, M.; Di Mauro, M.; Song, W.; Chen, M.; Fortino, G.; Bagdasar, O.; Liotta, A. Smart anomaly detection in sensor systems: A multi-perspective review. Inf. Fusion 2021, 67, 64–79. [Google Scholar]
- Pang, G.; Shen, C.; Cao, L.; Hengel, A.V.D. Deep learning for anomaly detection: A review. ACM Comput. Surv. (CSUR) 2021, 54, 1–38. [Google Scholar]
- Samara, M.A.; Bennis, I.; Abouaissa, A.; Lorenz, P. A survey of outlier detection techniques in IoT: Review and classification. J. Sens. Actuator Netw. 2022, 11, 4. [Google Scholar] [CrossRef]
- Li, K.L.; Huang, H.K.; Tian, S.F.; Xu, W. Improving one-class SVM for anomaly detection. In Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 03EX693), Xi’an, China, 5 November 2003; Volume 5, pp. 3077–3081. [Google Scholar]
- Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 15–19 December 2008; pp. 413–422. [Google Scholar]
- Darban, Z.Z.; Webb, G.I.; Pan, S.; Aggarwal, C.C.; Salehi, M. Deep learning for time series anomaly detection: A survey. arXiv 2022, arXiv:2211.05244. [Google Scholar]
- Schmidl, S.; Wenig, P.; Papenbrock, T. Anomaly detection in time series: A comprehensive evaluation. Proc. VLDB Endow. 2022, 15, 1779–1797. [Google Scholar]
- Goh, J.; Adepu, S.; Tan, M.; Lee, Z.S. Anomaly detection in cyber physical systems using recurrent neural networks. In Proceedings of the 2017 IEEE 18th International Symposium on High Assurance Systems Engineering (HASE), Singapore, 12–14 January 2017; pp. 140–145. [Google Scholar]
- Chauhan, S.; Vig, L. Anomaly detection in ECG time signals via deep long short-term memory networks. In Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Paris, France, 19–21 October 2015; pp. 1–7. [Google Scholar]
- Audibert, J.; Michiardi, P.; Guyard, F.; Marti, S.; Zuluaga, M.A. Usad: Unsupervised anomaly detection on multivariate time series. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual, CA, USA, 6–10 July 2020; pp. 3395–3404. [Google Scholar]
- Sakurada, M.; Yairi, T. Anomaly detection using autoencoders with nonlinear dimensionality reduction. In Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, Gold Coast, Australia, 2 December 2014; pp. 4–11. [Google Scholar]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Malhotra, P.; Ramakrishnan, A.; Anand, G.; Vig, L.; Agarwal, P.; Shroff, G. LSTM-based encoder-decoder for multi-sensor anomaly detection. arXiv 2016, arXiv:1607.00148. [Google Scholar]
- Tuli, S.; Casale, G.; Jennings, N.R. Tranad: Deep transformer networks for anomaly detection in multivariate time series data. arXiv 2022, arXiv:2201.07284. [Google Scholar]
- Xu, J.; Wu, H.; Wang, J.; Long, M. Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv 2021, arXiv:2110.02642. [Google Scholar]
- Deng, A.; Hooi, B. Graph neural network-based anomaly detection in multivariate time series. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 2–9 February 2021; Volume 35, pp. 4027–4035. [Google Scholar]
- Jabez, J.; Muthukumar, B. Intrusion Detection System (IDS): Anomaly Detection Using Outlier Detection Approach. Procedia Comput. Sci. 2015, 48, 338–346. [Google Scholar]
- Alzahrani, R.J.; Alzahrani, A. A novel multi algorithm approach to identify network anomalies in the IoT using Fog computing and a model to distinguish between IoT and Non-IoT devices. J. Sens. Actuator Netw. 2023, 12, 19. [Google Scholar] [CrossRef]
- Zidi, S.; Moulahi, T.; Alaya, B. Fault detection in wireless sensor networks through SVM classifier. IEEE Sens. J. 2017, 18, 340–347. [Google Scholar]
- Cauteruccio, F.; Fortino, G.; Guerrieri, A.; Liotta, A.; Mocanu, D.C.; Perra, C.; Terracina, G.; Vega, M.T. Short-long term anomaly detection in wireless sensor networks based on machine learning and multi-parameterized edit distance. Inf. Fusion 2019, 52, 13–30. [Google Scholar]
- Holst, C.A.; Lohweg, V. A Redundancy Metric Set within Possibility Theory for Multi-Sensor Systems. Sensors 2021, 21, 2508. [Google Scholar] [CrossRef]
- Elmenreich, W. An Introduction to Sensor Fusion; Vienna University of Technology: Vienna, Austria, 2002; Volume 502, pp. 1–28. [Google Scholar]
- Alam, F.; Mehmood, R.; Katib, I.; Albogami, N.N.; Albeshri, A. Data fusion and IoT for smart ubiquitous environments: A survey. IEEE Access 2017, 5, 9533–9554. [Google Scholar]
- Cauteruccio, F.; Fortino, G.; Guerrieri, A.; Terracina, G. Discovery of hidden correlations between heterogeneous wireless sensor data streams. In Proceedings of the Internet and Distributed Computing Systems: 7th International Conference, IDCS 2014, Calabria, Italy, 22–24 September 2014; pp. 383–395. [Google Scholar]
- de Farias, C.M.; Pirmez, L.; Delicato, F.C.; Pires, P.F.; Guerrieri, A.; Fortino, G.; Cauteruccio, F.; Terracina, G. A multisensor data fusion algorithm using the hidden correlations in Multiapplication Wireless Sensor data streams. In Proceedings of the 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC), Calabria, Italy, 16–18 May 2017; pp. 96–102. [Google Scholar]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the KDD, Portland, OR, USA, 2–4 August 1996; Volume 96, pp. 226–231. [Google Scholar]
- Edmonds, J. Maximum matching and a polyhedron with 0, 1-vertices. J. Res. Natl. Bur. Stand. B 1965, 69, 55–56. [Google Scholar]
- Plummer, M.D.; Lovász, L. Matching Theory; Elsevier: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Micali, S.; Vazirani, V.V. An O (v|v| c |E|) algoithm for finding maximum matching in general graphs. In Proceedings of the 21st Annual Symposium on Foundations of Computer Science (sfcs 1980), Syracuse, NY, USA, 13–15 October 1980; pp. 17–27. [Google Scholar]
- DeMedeiros, K.; Hendawi, A.; Alvarez, M. A survey of AI-based anomaly detection in IoT and sensor networks. Sensors 2023, 23, 1352. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Zhao, Y.; Niu, C.; Liu, R.; Sun, W.; Pei, D. Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2828–2837. [Google Scholar]
- Goh, J.; Adepu, S.; Junejo, K.N.; Mathur, A. A dataset to support research in the design of secure water treatment systems. In Proceedings of the Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, 10–12 October 2016; pp. 88–99. [Google Scholar]
- Ahmed, C.M.; Palleti, V.R.; Mathur, A.P. WADI: A water distribution testbed for research in the design of secure cyber physical systems. In Proceedings of the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks, Pittsburgh, PA, USA, 21 April 2017; pp. 25–28. [Google Scholar]
- Hundman, K.; Constantinou, V.; Laporte, C.; Colwell, I.; Soderstrom, T. Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 387–395. [Google Scholar]
- Bamaqa, A.; Sedky, M.; Bosakowski, T.; Bakhtiari Bastaki, B.; Alshammari, N.O. SIMCD: SIMulated crowd data for anomaly detection and prediction. Expert Syst. Appl. 2022, 203, 117475. [Google Scholar] [CrossRef]
- Tanaka, K.; Kudo, M.; Kimura, K. Sensor Data Simulation for Anomaly Detection of the Elderly Living Alone. arXiv 2023. [Google Scholar] [CrossRef]
- Pedro Mena, R.A.B.; Kerby, L. Detecting Anomalies in Simulated Nuclear Data Using Autoencoders. Nucl. Technol. 2024, 210, 112–125. [Google Scholar] [CrossRef]
- Steinbuss, G.; Böhm, K. Benchmarking unsupervised outlier detection with realistic synthetic data. Acm Trans. Knowl. Discov. Data (TKDD) 2021, 15, 1–20. [Google Scholar] [CrossRef]
- WeatherAPI. Free Weather API—WeatherAPI.com. 2023. World’s 15 Countries with the Most People Exposed to River Floods. 2015. Available online: https://www.weatherapi.com (accessed on 5 February 2025).
- Cook, A.A.; Mısırlı, G.; Fan, Z. Anomaly detection for IoT time-series data: A survey. IEEE Internet Things J. 2019, 7, 6481–6494. [Google Scholar] [CrossRef]
- Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. (CSUR) 2009, 41, 1–58. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Jeong, Y.; Yang, E.; Ryu, J.H.; Park, I.; Kang, M. AnomalyBERT: Self-Supervised Transformer for Time Series Anomaly Detection using Data Degradation Scheme. arXiv 2023, arXiv:2305.04468. [Google Scholar]
- Xu, H.; Pang, G.; Wang, Y.; Wang, Y. Deep Isolation Forest for Anomaly Detection. IEEE Trans. Knowl. Data Eng. 2023, 35, 12591–12604. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y.; Jian, S.; Liao, Q.; Wang, Y.; Pang, G. Calibrated one-class classification for unsupervised time series anomaly detection. arXiv 2022, arXiv:2207.12201. [Google Scholar] [CrossRef]
- Ruff, L.; Vandermeulen, R.; Goernitz, N.; Deecke, L.; Siddiqui, S.A.; Binder, A.; Müller, E.; Kloft, M. Deep one-class classification. In Proceedings of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 4393–4402. [Google Scholar]
- Garg, A.; Zhang, W.; Samaran, J.; Savitha, R.; Foo, C.S. An evaluation of anomaly detection and diagnosis in multivariate time series. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 2508–2517. [Google Scholar]
- Wu, H.; Hu, T.; Liu, Y.; Zhou, H.; Wang, J.; Long, M. Timesnet: Temporal 2d-variation modeling for general time series analysis. arXiv 2022, arXiv:2210.02186. [Google Scholar]
- Dagar, R.; Som, S.; Khatri, S.K. Smart farming—IoT in agriculture. In Proceedings of the 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 11–12 July 2018; pp. 1052–1056. [Google Scholar]
- Johnston, S.J.; Basford, P.J.; Bulot, F.M.; Apetroaie-Cristea, M.; Easton, N.H.; Davenport, C.; Foster, G.L.; Loxham, M.; Morris, A.K.; Cox, S.J. City scale particulate matter monitoring using LoRaWAN based air quality IoT devices. Sensors 2019, 19, 209. [Google Scholar] [CrossRef] [PubMed]
Without Proposed Method | Using Proposed Method | |||||
---|---|---|---|---|---|---|
Model | Precision | Recall | F1-Score | Precision | Recall | F1-Score |
AnomalyBERT [49] | 0.8455 | 0.6817 | 0.7548 | 0.9194 | 0.6963 | 0.7925 |
AnomalyTransformer [21] | 0.7159 | 0.8020 | 0.7565 | 0.7604 | 0.8172 | 0.7878 |
COUTA [51] | 0.7387 | 0.7790 | 0.7583 | 0.7077 | 0.8628 | 0.7776 |
DeepIsolationForest [50] | 0.7317 | 0.7935 | 0.7614 | 0.7822 | 0.8545 | 0.8168 |
DeepSVDD [52] | 0.6804 | 0.5922 | 0.6332 | 0.7463 | 0.7421 | 0.7442 |
TcnED [53] | 0.7361 | 0.5094 | 0.6021 | 0.8397 | 0.8060 | 0.8224 |
TimesNet [54] | 0.4085 | 0.5853 | 0.4812 | 0.4297 | 0.7696 | 0.5514 |
TranAD [20] | 0.7720 | 0.7108 | 0.7401 | 0.8371 | 0.7575 | 0.7953 |
USAD [16] | 0.7190 | 0.5785 | 0.6411 | 0.7627 | 0.8153 | 0.7881 |
Increase In | |||
---|---|---|---|
Model | Precision | Recall | F1-Score |
AnomalyBERT | 0.0739 | 0.0146 | 0.0377 |
AnomalyTransformer | 0.0445 | 0.0152 | 0.0313 |
COUTA | −0.0310 | 0.0838 | 0.0193 |
DeepIsolationForest | 0.0505 | 0.0610 | 0.0554 |
DeepSVDD | 0.0659 | 0.1499 | 0.1110 |
TcnED | 0.1036 | 0.2966 | 0.2203 |
TimesNet | 0.0212 | 0.1843 | 0.0702 |
TranAD | 0.0651 | 0.0467 | 0.0552 |
USAD | 0.0437 | 0.2368 | 0.1470 |
avg. | 0.0486 | 0.1210 | 0.0830 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, A.; Karande, A.; Dahlquist, N.; Ferrero, F.; Nguyen, N.R. Sensor Fusion Enhances Anomaly Detection in a Flood Forecasting System. J. Sens. Actuator Netw. 2025, 14, 34. https://doi.org/10.3390/jsan14020034
Ma A, Karande A, Dahlquist N, Ferrero F, Nguyen NR. Sensor Fusion Enhances Anomaly Detection in a Flood Forecasting System. Journal of Sensor and Actuator Networks. 2025; 14(2):34. https://doi.org/10.3390/jsan14020034
Chicago/Turabian StyleMa, Andrew, Abhir Karande, Natalie Dahlquist, Fabien Ferrero, and N. Rich Nguyen. 2025. "Sensor Fusion Enhances Anomaly Detection in a Flood Forecasting System" Journal of Sensor and Actuator Networks 14, no. 2: 34. https://doi.org/10.3390/jsan14020034
APA StyleMa, A., Karande, A., Dahlquist, N., Ferrero, F., & Nguyen, N. R. (2025). Sensor Fusion Enhances Anomaly Detection in a Flood Forecasting System. Journal of Sensor and Actuator Networks, 14(2), 34. https://doi.org/10.3390/jsan14020034