Low-Cost Internet of Things Solution for Building Information Modeling Level 3B—Monitoring, Analysis and Management
Abstract
:1. Introduction
2. Literature Review
3. Methodology
4. Results
5. Limitations and Future Research Directions
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Program Code for Reading Data from the BMP280 Sensor—Source: Own Elaboration
Appendix A.2. The Code for the Program That Connects the Wi-Fi to the Network and the Sensor—Source Own Elaboration
References
- Doan, D.; Ghaffarianhoseini, A.; Naismith, N.; Zhang, T.; Tookey, T. What is BIM?: A need for a unique BIM definition. MATEC Web Conf. 2019, 266, 05005. [Google Scholar] [CrossRef]
- buildingSMART. Available online: https://www.buildingsmart.org/standards/bsi-standards/ (accessed on 8 June 2023).
- Kensek, K.M. Building Information Modeling; Routledge Taylor and Francis Group: New York, NY, USA, 2014; 285p. [Google Scholar]
- Holzer, D. The BIM Manager’s Handbook: Guidance for Professionals in Architecture, Engineering, and Construction; John Wiley & Sons Ltd.: West Sussex, UK, 2016; 214p. [Google Scholar]
- Kumar, B. A Practical Guide to Adopting BIM in Construction Projects; Whittles Publishing: Glasgow, UK, 2015; 128p. [Google Scholar]
- Henry, A.F.; Elambo, N.G.; Tah, J.H.M.; Fabrice, O.E.; Blanche, M.M. Embodied energy and CO2 analyses of mud-brick and cement-block houses. AIMS’s Energy 2014, 2, 18–40. [Google Scholar] [CrossRef]
- Sharma, A.; Kosasih, E.; Zhang, J.; Brintrup, A.; Calinescu, A. Digital Twins: State of the art theory and practice, challenges, and open research questions. J. Ind. Inf. Integr. 2022, 30, 1. [Google Scholar] [CrossRef]
- Nour El-Din, M.; Pereira, P.F.; Poças Martins, J.; Ramos, N.M.M. Digital Twins for Construction Assets Using BIM Standard Specifications. Buildings 2022, 12, 2155. [Google Scholar] [CrossRef]
- Robles, J.; Martín, C.; Díaz, M. OpenTwins: An open-source framework for the development of next-gen compositional digital twins. Comput. Ind. 2023, 152, 104007. [Google Scholar] [CrossRef]
- Heaton, J.; Parlikad, A.K.; Schooling, J. Design and development of BIM models to support operations and maintenance. Comput. Ind. 2019, 111, 172–186. [Google Scholar] [CrossRef]
- Eastman, C.M.; Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors; John Wiley & Sons: Hoboken, NJ, USA, 2011; 626p. [Google Scholar]
- Baghalzadeh Shishehgarkhaneh, M.; Keivani, A.; Moehler, R.C.; Jelodari, N.; Roshdi Laleh, S. Internet of Things (IoT), Building Information Modeling (BIM), and Digital Twin (DT) in construction industry: A review, bibliometric, and network analysis. Buildings 2022, 12, 1503. [Google Scholar] [CrossRef]
- Tang, S.; Shelden, D.R.; Eastman, C.M.; Pishdad-Bozorgi, P.; Gao, X. A review of building information modeling (BIM) and the internet of things (IoT) devices integration: Present status and future trends. Autom. Constr. 2019, 101, 127–139. [Google Scholar] [CrossRef]
- Chamari, L.; Petrova, E.; Pauwels, P. A web-based approach to BMS, BIM and IoT integration: A case study. In Proceedings of the 14th REHVA HVAC World Congress, CLIMA, Rotterdam, The Netherlands, 22–25 May 2022. [Google Scholar]
- Anosike, A.; Alafropatis, K.; Garza-Reyes, J.A.; Kumar, A.; Luthra, S.; Rocha-Lona, L. Lean manufacturing and internet of things—A synergetic or antagonist relationship? Comput. Ind. 2021, 129, 103464. [Google Scholar] [CrossRef]
- Leń, P.; Maciąg, M.; Maciąg, K. Design of an Automated Algorithm for Delimiting Land Use/Soil Valuation Classes as a Tool Supporting Data Processing in the Land Consolidation Procedure. Sustainability 2023, 15, 8486. [Google Scholar] [CrossRef]
- Turk, Ž. Interoperability in construction—Mission impossible? Dev. Built Environ. 2020, 4, 100018. [Google Scholar] [CrossRef]
- Esser, S.; Vilgertshofer, S.; Borrmann, A. A reference framework enabling temporal scalability of object-based synchronization in BIM Level 3 systems, European Conference on Computing in Construction. In Proceedings of the 40th International CIB W78 Conference Heraklion, Crete, Greece, 10–12 July 2023. [Google Scholar]
- Sobhkhiz, S.; Zhou, Y.C.; Lin, J.R.; El-Diraby, T.E. Framing and evaluating the best practices of IFC-Based automated rule checking: A case study. Buildings 2021, 11, 456. [Google Scholar] [CrossRef]
- Barrios, P.; Danjou, C.; Eynard, B. Literature review and methodological framework for integration of IoT and PLM in manufacturing industry. Comput. Ind. 2022, 140, 103688. [Google Scholar] [CrossRef]
- Ruiz-Zafra, A.; Benghazi, K.; Noguera, M. IFC+: Towards the integration of IoT into early stages of building design. Autom. Constr. 2022, 136, 104129. [Google Scholar]
- Wu, I.C.; Liu, C.C. A visual and persuasive energy conservation system based on BIM and IoT technology. Sensors 2019, 20, 139. [Google Scholar] [CrossRef] [PubMed]
- Schraven, M.H.; Droste, K.; Carducci, C.G.C.; Müller, D.; Monti, A. Open-Source Internet of Things Gateways for Building Automation Applications. J. Sens. Actuator Netw. 2022, 11, 74. [Google Scholar] [CrossRef]
- Scianna, A.; Gaglio, G.F.; La Guardia, M. Structure monitoring with BIM and IoT: The case study of a bridge beam model. ISPRS Int. J. Geo-Inf. 2022, 11, 173. [Google Scholar] [CrossRef]
- Peng, S.; Su, G.; Chen, J.; Du, P. Design of an IoT-BIM-GIS based risk management system for hospital basic operation. In Proceedings of the 2017 IEEE Symposium on Service-Oriented System Engineering (SOSE), San Francisco, CA, USA, 6–9 April 2017; pp. 69–74. [Google Scholar]
- Chen, H.; Hou, L.; Zhang, G.K.; Moon, S. Development of BIM, IoT and AR/VR technologies for fire safety and upskilling. Autom. Constr. 2021, 125, 103631. [Google Scholar] [CrossRef]
- Shen, Y.T.; Yang, C.E.; Lu, P.W. The integration of BIM and IoT for air quality monitoring and visualization. In Proceedings of the HCI International 2019-Posters: 21st International Conference, HCII 2019, Orlando, FL, USA, 26–31 July 2019; Proceedings, Part II 21. Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 515–520. [Google Scholar]
- Hussein, Z.; Banimelhem, O. Energy-Efficient Relay Tracking and Predicting Movement Patterns with Multiple Mobile Camera Sensors. J. Sens. Actuator Netw. 2023, 12, 35. [Google Scholar] [CrossRef]
- Mohammed, B.H.; Husairi, A.; Sallehudin, H.; Alaba, F.A.; Safie, N. A Conceptual Framework for Securing IoT-BIM. In Proceedings of the 2022 Applied Informatics International Conference (AiIC), Serdang, Malaysia, 18–19 May 2022; pp. 68–71. [Google Scholar]
- Arif, F.; Khan, W.A. Smart progress monitoring framework for building construction elements using videography—MATLAB—BIM integration. Int. J. Civ. Eng. 2021, 19, 717–732. [Google Scholar] [CrossRef]
- Megahed, N.A.; Hassan, A.M. Evolution of BIM to DTs: A Paradigm Shift for the Post-Pandemic AECO Industry. Urban Sci. 2022, 6, 67. [Google Scholar] [CrossRef]
- Kochański, Ł.; Borkowski, A.S. Automating the conceptual design of residental areas using visual and generative programming. J. Eng. Des. 2024, 35, 195–216. [Google Scholar] [CrossRef]
- Isikdag, U. BIM and IoT: A synopsis from GIS perspective. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 33–38. [Google Scholar] [CrossRef]
- Izonin, I.; Tkachenko, R.; Mitoulis, S.A.; Faramarzi, A.; Tsmots, I.; Mashtalir, D. Machine learning for predicting energy efficiency of buildings: A small data approach. Procedia Comput. Sci. 2024, 231, 72–77. [Google Scholar] [CrossRef]
- Dzhengiz, T.; Miller, E.M.; Ovaska, J.P.; Patala, S. Unpacking the circular economy: A problematizing review. Int. J. Manag. Rev. 2023, 25, 270–296. [Google Scholar] [CrossRef]
- Sava, G.N.; Pluteanu, S.; Tanasiev, V.; Patrascu, R.; Necula, H. Integration of BIM solutions and IoT in smart houses. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, 12–15 June 2018; pp. 1–4. [Google Scholar]
- Popova, S.; Izonin, I. Application of the Smart House System for Reconstruction of Residential Buildings from an Obsolete Housing Stock. Smart Cities 2022, 6, 57–71. [Google Scholar] [CrossRef]
- Valinejadshoubi, M.; Moselhi, O.; Bagchi, A.; Salem, A. Development of an IoT and BIM-based automated alert system for thermal comfort monitoring in buildings. Sustain. Cities Soc. 2021, 66, 102602. [Google Scholar]
- Desogus, G.; Quaquero, E.; Rubiu, G.; Gatto, G.; Perra, C. Bim and iot sensors integration: A framework for consumption and indoor conditions data monitoring of existing buildings. Sustainability 2021, 13, 4496. [Google Scholar] [CrossRef]
- Hasan, S.M.; Lee, K.; Moon, D.; Kwon, S.; Jinwoo, S.; Lee, S. Augmented reality and digital twin system for interaction with construction machinery. J. Asian Arch. Build. Eng. 2021, 21, 564–574. [Google Scholar] [CrossRef]
- Zahid, H.; Elmansoury, O.; Yaagoubi, R. Dynamic Predicted Mean Vote: An IoT-BIM integrated approach for indoor thermal comfort optimization. Autom. Constr. 2021, 129, 103805. [Google Scholar] [CrossRef]
- Kang, K.; Lin, J.; Zhang, J. BIM-and IoT-based monitoring framework for building performance management. J. Struct. Integr. Maint. 2018, 3, 254–261. [Google Scholar] [CrossRef]
- Liu, C.C.; Kuo, W.L.; Shiu, R.S.; Wu, I.C. Estimating and Visualizing Thermal Comfort Level via a Predicted Mean Vote in a BIM System; Osaka University: Osaka, Japan, 2014. [Google Scholar]
- Kim, E.; Cho, Y.; Kim, G. Real time building data collecting using IoT and BIM. In Proceedings of the 2018 Asian Conference on Design and Engineering, Okinawa, Japan, 1–3 November 2018; pp. 1–3. [Google Scholar]
- Vestin, A.; Säfsten, K.; Löfving, M. Smart factories for single-family wooden houses–a practitioner’s perspective. Constr. Innov. 2021, 21, 64–84. [Google Scholar] [CrossRef]
- Rusimamto, P.W.; Endryansyah, L.A.; Harimurti, R.; Anistyasari, Y. Implementation of arduino pro mini and ESP32 cam for temperature monitoring on automatic thermogun IoT-based. Indones. J. Electr. Eng. Comput. Sci. 2021, 23, 1366–1375. [Google Scholar] [CrossRef]
- Hasibuan, A.; Qodri, A.; Isa, M. Temperature monitoring system using arduino uno and smartphone application. Bull. Comput. Sci. Electr. Eng. 2021, 2, 46–55. [Google Scholar]
- Chandramohan, J.; Nagarajan, R.; Satheeshkumar, K.; Ajithkumar, N.; Gopinath, P.A.; Ranjithkumar, S. Intelligent smart home automation and security system using Arduino and Wi-fi. Int. J. Eng. Comput. Sci. (IJECS) 2017, 6, 20694–20698. [Google Scholar]
- Gunputh, S.; Murdan, A.P.; Oree, V. Design and implementation of a low-cost Arduino-based smart home system. In Proceedings of the 2017 IEEE 9th international conference on communication software and networks (ICCSN), Guangzhou, China, 6–8 May 2017; pp. 1491–1495. [Google Scholar]
- Sarah, A.; Ghozali, T.; Giano, G.; Mulyadi, M.; Octaviani, S.; Hikmaturokhman, A. Learning IoT: Basic experiments of home automation using ESP8266, arduino and XBee. In Proceedings of the 2020 IEEE International Conference on Smart Internet of Things (SmartIoT), Beijing, China, 14–16 August 2020; pp. 290–294. [Google Scholar]
- Nayyar, A.; Puri, V. A review of Arduino board’s, Lilypad’s & Arduino shields. In Proceedings of the 2016 3rd international conference on computing for sustainable global development (INDIACom), New Delhi, India, 16–18 March 2016; pp. 1485–1492. [Google Scholar]
- Fezari, M.; Al Dahoud, A. Integrated development environment “IDE” for Arduino. In WSN Applications; Arduino: Piedmont, Italy, 2018; pp. 1–12. [Google Scholar]
- Kumar, N.S.; Vuayalakshmi, B.; Prarthana, R.J.; Shankar, A. IOT based smart garbage alert system using Arduino UNO. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22–25 November 2016; pp. 1028–1034. [Google Scholar]
- Soni, D.; Makwana, A. A survey on mqtt: A protocol of internet of things (iot). In Proceedings of the International Conference on Telecommunication, Power Analysis and Computing Techniques (ICTPACT-2017), Chennai, India, 6–8 April 2017; Volume 20, pp. 173–177. [Google Scholar]
- Shah, H.; Soomro, T.R. Node. js challenges in implementation. Glob. J. Comput. Sci. Technol. 2017, 17, 73–83. [Google Scholar]
- Bloch, T. Connecting research on semantic enrichment of BIM-review of approaches, methods and possible applications. J. Inf. Technol. Constr. 2022, 27, 416–440. [Google Scholar] [CrossRef]
- Meadati, P.; Irizarry, J.; Akhnoukh, A. Building information modeling implementation-current and desired status. In Computing in Civil Engineering; ASCE Library: Reston, VA, USA, 2011; pp. 512–519. [Google Scholar]
- Kensek, K.M. Integration of Environmental Sensors with BIM: Case Studies Using Arduino, Dynamo, and the Revit API; Instituto de Ciencias de la Construcción Eduardo Torroja (IETCC): Madrid, Spain, 2014. [Google Scholar]
- Thabet, W.; Lucas, J.; Srinivasan, S. Linking life cycle BIM data to a facility management system using Revit Dynamo. Organ. Technol. Manag. Constr. Int. J. 2022, 14, 2539–2558. [Google Scholar] [CrossRef]
- Pogorelskiy, S.; Kocsis, I. BIM and Computational Fluid Dynamics Analysis for Thermal Management Improvement in Data Centres. Buildings 2023, 13, 2636. [Google Scholar] [CrossRef]
- Wu, L.; Lu, W.; Xue, F.; Li, X.; Zhao, R.; Tang, M. Linking permissioned blockchain to Internet of Things (IoT)-BIM platform for off-site production management in modular construction. Comput. Ind. 2022, 135, 103573. [Google Scholar] [CrossRef]
- Yazdinejad, A.; Dehghantanha, A.; Parizi, R.M.; Srivastava, G.; Karimipour, H. Secure intelligent fuzzy blockchain framework: Effective threat detection in iot networks. Comput. Ind. 2023, 144, 103801. [Google Scholar] [CrossRef]
- Han, T.; Ma, T.; Fang, Z.; Zhang, Y.; Han, C. A BIM-IoT and intelligent compaction integrated framework for advanced road compaction quality monitoring and management. Comput. Electr. Eng. 2022, 100, 107981. [Google Scholar] [CrossRef]
- Teizer, J.; Wolf, M.; Golovina, O.; Perschewski, M.; Propach, M.; Neges, M.; König, M. Internet of Things (IoT) for integrating environmental and localization data in Building Information Modeling (BIM). In ISARC Proceedings of the International Symposium on Automation and Robotics in Construction, Taipei, Taiwan, 28 June–1 July 2017; IAARC Publications: Cambridge, UK, 2017; Volume 34. [Google Scholar]
- Borkowski, A.S. Evolution of BIM: Epistemology, genesis and division into periods. J. Inf. Technol. Constr. 2023, 28, 646–661. [Google Scholar] [CrossRef]
Authors | Main Idea and Application | Difference |
---|---|---|
Rusimamto, P. W., Endryansyah, L. A., Harimurti, R., and Anistyasari, Y. (2021) [46] | Automatic temperature measurement using cameras (wifi) | A solution based on the more expensive Arduino pro mini |
Hasibuan, A., Qodri, A., and Isa, M. (2021) [47] | Temperature measurement with transmission to a smartphone | Kit on Arduino Uno |
Chandramohan, J., Nagarajan, R., Satheeshkumar, K., Ajithkumar, N., Gopinath, P. A., and Ranjithkumar, S. (2017) [48] | Low-cost solution and new communication protocol for monitoring and controlling the home environment | Without using BIM |
Gunputh, S., Murdan, A. P., and Oree, V. (2017) [49] | Low-cost, multi-faceted home automation system based on the Arduino microcontroller for thermal comfort control and energy management | without using MQTT |
Sarah, A., Ghozali, T., Giano, G., Mulyadi, M., Octaviani, S., and Hikmaturokhman, A. (2020) [50] | IoT trainer project to understand IoT concepts, which are divided into three aspects: IoT devices, connectivity and cloud or application system | Dedicated and difficult-to-replicate solutions |
Product | Function | Feature | Price [USD] |
---|---|---|---|
NodeMCU V3 with ESP8266 wifi module | Microcontroller | 10 GPIO pins, 1-Wire, I2C bus, Analog-to-Digital Converter, PCB antenna. Built-in microUSB connector CH340 USB–UART converter, Wi-Fi: 2.4 GHz Flash memory: 4 MB | 4.16 |
BMP280 | Temperature and pressure sensor | Interface: I2C or SPI Measured pressure range: 300–1100 hPa Accuracy: 1 hPa Supply voltage: 3.3 V Temperature measurement range: −40 to +85 °C Size: 15 × 10 mm | 1.97 |
Wires complete | Female–female, female–male | 10 cm | 1.97 |
MB102 | Power module for contact plates | Input voltage: 6.5–12 V Output voltages: 5 V and 3.3 V Current capacity: 700 mA Jumpers to change the output voltage DC power input (5.5 mm × 2.1 mm) USB port ON/OFF button Indicator light | 1.70 |
USB cable | USB type A (m)–micro USB type B (m) | USB compatibility: 1.0, 1.1, 2.0 Cable length: 80 cm Data link | 1.21 |
Power charger | 5 V 1000 mA | For devices with a DC voltage of 5 V and up to 1 A (1000 mA) Outside/inside entry hole dimensions: 5.5 mm/inside 2.5 or 2.1 mm (universal) Switching mode (stabilized) Input 110–240 V~AC | 4.56 |
Total | 15.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borkowski, A.S. Low-Cost Internet of Things Solution for Building Information Modeling Level 3B—Monitoring, Analysis and Management. J. Sens. Actuator Netw. 2024, 13, 19. https://doi.org/10.3390/jsan13020019
Borkowski AS. Low-Cost Internet of Things Solution for Building Information Modeling Level 3B—Monitoring, Analysis and Management. Journal of Sensor and Actuator Networks. 2024; 13(2):19. https://doi.org/10.3390/jsan13020019
Chicago/Turabian StyleBorkowski, Andrzej Szymon. 2024. "Low-Cost Internet of Things Solution for Building Information Modeling Level 3B—Monitoring, Analysis and Management" Journal of Sensor and Actuator Networks 13, no. 2: 19. https://doi.org/10.3390/jsan13020019
APA StyleBorkowski, A. S. (2024). Low-Cost Internet of Things Solution for Building Information Modeling Level 3B—Monitoring, Analysis and Management. Journal of Sensor and Actuator Networks, 13(2), 19. https://doi.org/10.3390/jsan13020019