Seamless Handover Scheme for MEC/SDN-Based Vehicular Networks
Abstract
:1. Introduction
- Designing and developing a reliable system structure for a VANET over a 5G system, with the deployment of MEC technology, that supports V2X and V2V communications.
- Designing and developing a novel seamless, fast handover mechanism for the introduced VANET system structure.
- Implementing the developed handover algorithm over an MEC server.
- Conducting a performance evaluation of the proposed system and the developed handover mechanism.
2. Background and Related Works
3. MEC/SDN Vehicular Network Structure
4. Novel Seamless Handover Scheme for MEC/SDN Vehicular Networks
4.1. Estimating Threshold Levels
4.2. Calculating Packet Error Rate
5. Performance Evaluation
5.1. Simulation Setup
5.2. Simulation Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiao, L.; Li, Y.; Chen, D.; Serikawa, S.; Guizani, M.; Lv, Z. A survey on 5G/6G, AI, and Robotics. Comput. Electr. Eng. 2021, 95, 107372. [Google Scholar] [CrossRef]
- Dogra, A.; Jha, R.K.; Jain, S. A survey on beyond 5G network with the advent of 6G: Architecture and emerging technologies. IEEE Access 2020, 9, 67512–67547. [Google Scholar] [CrossRef]
- Long, Q.; Chen, Y.; Zhang, H.; Lei, X. Software defined 5G and 6G networks: A survey. Mob. Netw. Appl. 2019, 1–21. [Google Scholar] [CrossRef]
- Navarro-Ortiz, J.; Romero-Diaz, P.; Sendra, S.; Ameigeiras, P.; Ramos-Munoz, J.J.; Lopez-Soler, J.M. A survey on 5G usage scenarios and traffic models. IEEE Commun. Surv. Tutor. 2020, 22, 905–929. [Google Scholar] [CrossRef]
- Siriwardhana, Y.; Porambage, P.; Liyanage, M.; Ylianttila, M. A Survey on Mobile Augmented Reality with 5G Mobile Edge Computing: Architectures, Applications, and Technical Aspects. IEEE Commun. Surv. Tutor. 2021, 23, 1160–1192. [Google Scholar] [CrossRef]
- De Alwis, C.; Kalla, A.; Pham, Q.V.; Kumar, P.; Dev, K.; Hwang, W.J.; Liyanage, M. Survey on 6G frontiers: Trends, applications, requirements, technologies and future research. IEEE Open J. Commun. Soc. 2021, 2, 836–886. [Google Scholar] [CrossRef]
- Mahmoud, H.H.H.; Amer, A.A.; Ismail, T. 6G: A comprehensive survey on technologies, applications, challenges, and research problems. Trans. Emerg. Telecommun. Technol. 2021, 32, e4233. [Google Scholar] [CrossRef]
- Morgado, A.; Huq, K.M.S.; Mumtaz, S.; Rodriguez, J. A survey of 5G technologies: Regulatory, standardization and industrial perspectives. Digit. Commun. Netw. 2018, 4, 87–97. [Google Scholar] [CrossRef]
- Jeong, J.; Shen, Y.; Oh, T.; Céspedes, S.; Benamar, N.; Wetterwald, M.; Härri, J. A comprehensive survey on vehicular networks for smart roads: A focus on IP-based approaches. Veh. Commun. 2021, 29, 100334. [Google Scholar] [CrossRef]
- Ismael, H.R.; Ameen, S.Y.; Kak, S.F.; Yasin, H.M.; Ibrahim, I.M.; Ahmed, A.M.; Rashid, Z.N.; Omar, N.; Salih, A.A.; Ahmed, D.M. Reliable communications for vehicular networks. Asian J. Res. Comput. Sci. 2021, 10, 33–49. [Google Scholar] [CrossRef]
- Zeadally, S.; Guerrero, J.; Contreras, J. A tutorial survey on vehicle-to-vehicle communications. Telecommun. Syst. 2020, 73, 469–489. [Google Scholar] [CrossRef]
- Al-Heety, O.S.; Zakaria, Z.; Ismail, M.; Shakir, M.M.; Alani, S.; Alsariera, H. A comprehensive survey: Benefits, services, recent works, challenges, security, and use cases for SDN-VANET. IEEE Access 2020, 8, 91028–91047. [Google Scholar] [CrossRef]
- Arena, F.; Pau, G.; Severino, A. A review on IEEE 802.11 p for intelligent transportation systems. J. Sens. Actuator Netw. 2020, 9, 22. [Google Scholar]
- Balador, A.; Cinque, E.; Pratesi, M.; Valentini, F.; Bai, C.; Gómez, A.A.; Mohammadi, M. Survey on decentralized congestion control methods for vehicular communication. Veh. Commun. 2021, 33, 100394. [Google Scholar] [CrossRef]
- Ji, B.; Zhang, X.; Mumtaz, S.; Han, C.; Li, C.; Wen, H.; Wang, D. Survey on the internet of vehicles: Network architectures and applications. IEEE Commun. Stand. Mag. 2020, 4, 34–41. [Google Scholar] [CrossRef]
- Bhatia, J.; Dave, R.; Bhayani, H.; Tanwar, S.; Nayyar, A. SDN-based real-time urban traffic analysis in VANET environment. Comput. Commun. 2020, 149, 162–175. [Google Scholar] [CrossRef]
- Yu, H.; Liu, R.; Li, Z.; Ren, Y.; Jiang, H. An RSU Deployment Strategy based on Traffic Demand in Vehicular Ad Hoc Networks (VANETs). IEEE Internet Things J. 2021. [Google Scholar] [CrossRef]
- Sharma, S.; Kaul, A. VANETs Cloud: Architecture, Applications, Challenges, and Issues. Arch. Comput. Methods Eng. 2021, 28, 2081–2102. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Alzahrani, A.A. A comprehensive survey on handover management for vehicular ad hoc network based on 5G mobile networks technology. Trans. Emerg. Telecommun. Technol. 2019, 30, e3546. [Google Scholar] [CrossRef]
- Tayyab, M.; Gelabert, X.; Jäntti, R. A survey on handover management: From LTE to NR. IEEE Access 2019, 7, 118907–118930. [Google Scholar] [CrossRef]
- Ahmad, R.; Sundararajan, E.A. A survey on femtocell handover management in dense heterogeneous 5G networks. Telecommun. Syst. 2020, 75, 481–507. [Google Scholar] [CrossRef]
- Duo, R.; Wu, C.; Yoshinaga, T.; Zhang, J.; Ji, Y. SDN-based handover scheme in cellular/IEEE 802.11 p hybrid vehicular networks. Sensors 2020, 20, 1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.H.; Han, Y.H.; Min, S.G. A network-based seamless handover scheme for VANETs. IEEE Access 2018, 6, 56311–56322. [Google Scholar] [CrossRef]
- Pham, Q.V.; Fang, F.; Ha, V.N.; Piran, M.J.; Le, M.; Le, L.B.; Hwang, W.J.; Ding, Z. A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art. IEEE Access 2020, 8, 116974–117017. [Google Scholar] [CrossRef]
- Filali, A.; Abouaomar, A.; Cherkaoui, S.; Kobbane, A.; Guizani, M. Multi-access edge computing: A survey. IEEE Access 2020, 8, 197017–197046. [Google Scholar] [CrossRef]
- Liu, L.; Chen, C.; Pei, Q.; Maharjan, S.; Zhang, Y. Vehicular edge computing and networking: A survey. Mob. Netw. Appl. 2020, 26, 1145–1168. [Google Scholar] [CrossRef]
- Boukerche, A.; Soto, V. Computation offloading and retrieval for vehicular edge computing: Algorithms, models, and classification. ACM Comput. Surv. (CSUR) 2020, 53, 1–35. [Google Scholar] [CrossRef]
- Cheng, X.; Huang, Z.; Chen, S. Vehicular communication channel measurement, modelling, and application for beyond 5G and 6G. IET Commun. 2020, 14, 3303–3311. [Google Scholar] [CrossRef]
- Sharma, A.; Vanjani, P.; Paliwal, N.; Basnayaka, C.M.W.; Jayakody, D.N.K.; Wang, H.C.; Muthuchidambaranathan, P. Communication and networking technologies for UAVs: A survey. J. Netw. Comput. Appl. 2020, 168, 102739. [Google Scholar] [CrossRef]
- Hussain, R.; Lee, J.; Zeadally, S. Trust in VANET: A survey of current solutions and future research opportunities. IEEE Trans. Intell. Transp. Syst. 2020, 22, 2553–2571. [Google Scholar] [CrossRef]
- Hamdi, M.M.; Audah, L.; Rashid, S.A.; Mohammed, A.H.; Alani, S.; Mustafa, A.S. A review of applications, characteristics and challenges in vehicular ad hoc networks (VANETs). In Proceedings of the 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey, 26–28 June 2020; IEEE: Manhattan, NY, USA, 2020; pp. 1–7. [Google Scholar]
- Gyawali, S.; Xu, S.; Qian, Y.; Hu, R.Q. Challenges and solutions for cellular based v2x communications. IEEE Commun. Surv. Tutor. 2020, 23, 222–255. [Google Scholar] [CrossRef]
- Jubara, H.E.I. An efficient handover procedure in vehicular communication. In Proceedings of the 2020 2nd International Conference on Computer and Information Sciences (ICCIS), Sakaka, Saudi Arabia, 13–15 October 2020; IEEE: Manhattan, NY, USA, 2020; pp. 1–5. [Google Scholar]
- Souza, V.B.; Pereira, M.H.; Lelis, L.H.; Masip-Bruin, X. Enhancing resource availability in vehicular fog computing through smart inter-domain handover. In Proceedings of the GLOBECOM 2020-2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; IEEE: Manhattan, NY, USA, 2020; pp. 1–6. [Google Scholar]
- Chang, Y.H.; Liu, H.H.; Wei, H.Y. Group-based sidelink communication for seamless vehicular handover. IEEE Access 2019, 7, 56431–56442. [Google Scholar] [CrossRef]
- Ge, X.; Li, Z.; Li, S. 5G software defined vehicular networks. IEEE Commun. Mag. 2017, 55, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Duo, R.; Wu, C.; Yoshinaga, T.; Ji, Y. SDN-based handover approach in IEEE 802.11 p and LTE hybrid vehicular networks. In Proceedings of the 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Guangzhou, China, 8–12 October 2018; IEEE: Manhattan, NY, USA, 2018; pp. 1870–1875. [Google Scholar]
- Muthanna, A.; Shamilova, R.; Ateya, A.A.; Paramonov, A.; Hammoudeh, M. A mobile edge computing/software-defined networking-enabled architecture for vehicular networks. Internet Technol. Lett. 2020, 3, e109. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Wang, H.; Chen, X.; Li, X.; Xu, S. Data offloading techniques through vehicular ad hoc networks: A survey. IEEE Access 2018, 6, 65250–65259. [Google Scholar] [CrossRef]
- Baik, J.J.; Park, R.S.; Chun, H.Y.; Kim, J.J. A laboratory model of urban street-canyon flows. J. Appl. Meteorol. 2020, 39, 1592–1600. [Google Scholar] [CrossRef]
- Vladyko, A.; Khakimov, A.; Muthanna, A.; Ateya, A.A.; Koucheryavy, A. Distributed edge computing to assist ultra-low-latency VANET applications. Future Internet 2019, 11, 128. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
Road length | 5 Km |
Number of vehicles (N) | N ϵ {200, 400, 600} |
Number of RSUs | 5 |
Number of MEC units | 5 |
MEC unit placement | Equidistant |
Vehicle velocity | Vi ϵ {30, 40, 50, 60, 70} Km/h |
Traffic density | Tdvi ϵ {0.1, 0.2, 0.3} veh./m |
Radio transmission range of RSUs | 500 m |
Maximum transmission level | 20 dBm |
Storage/RAM (MEC) | 2048 Mb |
Storage/HDD (MEC) | 5 Gb |
Processing/CPU (MEC) | ϵ {0.7, 2.5} GHz |
Maximum workload | 50 events/s |
Service rate | 10 Mbps |
Streaming service bandwidth | ϵ {10, 2048} (Kb/S) |
Vehicle task energy | ϵ {20, 80} (watt/s) |
Initial threshold level, SNRRx-th-1 | 30 dB |
Third threshold level, SNRRx-th-3 | 20 dB |
Data rate | 18 Mbps |
Channel bandwidth | 10 MHz |
Receiver sensitivity | −94.0 dBm |
Packet transmission frequency | 10 Hz |
Packet size | 190 bytes |
OpenFlow switch | 1.3 |
Service rate of controller | 30,000 req/s |
Average request rate of switch | ϵ {1500, 3000} |
SDN controller processing delay | 0.5 μs |
OpenFlow switch processing delay | 5 μs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monir, N.; Toraya, M.M.; Vladyko, A.; Muthanna, A.; Torad, M.A.; El-Samie, F.E.A.; Ateya, A.A. Seamless Handover Scheme for MEC/SDN-Based Vehicular Networks. J. Sens. Actuator Netw. 2022, 11, 9. https://doi.org/10.3390/jsan11010009
Monir N, Toraya MM, Vladyko A, Muthanna A, Torad MA, El-Samie FEA, Ateya AA. Seamless Handover Scheme for MEC/SDN-Based Vehicular Networks. Journal of Sensor and Actuator Networks. 2022; 11(1):9. https://doi.org/10.3390/jsan11010009
Chicago/Turabian StyleMonir, Nirmin, Maha M. Toraya, Andrei Vladyko, Ammar Muthanna, Mohamed A. Torad, Fathi E. Abd El-Samie, and Abdelhamied A. Ateya. 2022. "Seamless Handover Scheme for MEC/SDN-Based Vehicular Networks" Journal of Sensor and Actuator Networks 11, no. 1: 9. https://doi.org/10.3390/jsan11010009
APA StyleMonir, N., Toraya, M. M., Vladyko, A., Muthanna, A., Torad, M. A., El-Samie, F. E. A., & Ateya, A. A. (2022). Seamless Handover Scheme for MEC/SDN-Based Vehicular Networks. Journal of Sensor and Actuator Networks, 11(1), 9. https://doi.org/10.3390/jsan11010009