Comparative Study on the Phytochemical Composition and Antioxidant Activity of Grecian Juniper (Juniperus excelsa M. Bieb) Unripe and Ripe Galbuli
Abstract
:1. Introduction
2. Results
2.1. Proximate Composition
2.2. Composition of the Lipid Fraction
2.3. Amino Acid Composition of the Protein Fraction
2.4. Composition and Antioxidant Activity of Ethanol Extracts
3. Discussion
3.1. Moisture, Chlorophyll a and b, and Carotenoid Content
3.2. Amino Acid Composition of the Protein Fraction
3.3. The Yield Essential Oil
3.4. Fatty Acid Composition of the Lipid Fraction
3.5. Total Polyphenols, Flavonoids, and Antioxidant Activity
4. Materials and Methods
4.1. Plant Materials
4.2. Moisture Content
4.3. Protein Content
Amino Acid Composition
4.4. Total Chlorophylls and Carotenoid Content
4.5. Isolation of Essential Oil
4.6. Isolation of Lipid Fraction
4.6.1. Fatty Acid Composition
4.6.2. Sterols
4.6.3. Tocopherols
4.7. Composition and Antioxidant Activity of Extracts of J. excelsa Galbuli
4.7.1. Extraction Procedure
4.7.2. Determination of Total Phenolic Content (TPC)
4.7.3. Determination of Total Flavonoid Content (TFC)
4.7.4. Antioxidant Activity
2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) Radical Scavenging Activity
2,2′-Azino-bis(3-Ethylbenzothiazoline-6-Sulfonic Acid) (ABTS) Assay
Ferric Reducing Antioxidant Power Assay (FRAP)
Cupric Ion Reducing Antioxidant Capacity (CUPRAC)
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adams, R.P. Junipers of the World: The Genus Juniperus; Trafford Publishing: Vancouver, BC, Canada, 2004; ISBN 978-1490723259. [Google Scholar]
- Yordanov, D. Flora of the Republic of Bulgaria, Vol. IX; Bulgarian Academy of Science: Sofia, Bulgaria, 1963; p. 508. ISBN 978-954-9746-21-1. [Google Scholar]
- Farjon, A. Juniperus excelsa. The IUCN Red List of Threatened Species 2017: e.T42232A83944536. Available online: https://www.iucnredlist.org/species/16336618/16336867 (accessed on 11 May 2020).
- Peev, D.; Petrova, A.; Anchev, M.; Temniskova, D.; Denchev, C.M.; Ganeva, A.; Gussev, C.; Vladimirov, V. Juniperus excelsa. Plants and Fungi. Red Data Book of the Republic of Bulgaria; Bulgarian Academy of Sciences & Ministry of Environment and Waters: Sofia, Bulgaria, 2015. [Google Scholar]
- Filipowicz, N.; Kaminski, M.; Kurlenda, J.; Asztemborska, M.; Ochocka, J.R.; Kamiński, M. Antibacterial and antifungal activity of juniper berry oil and its selected components. Phytother. Res. 2003, 17, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Güvenç, A.; Küçükboyacι, N.; Goren, A.C. Fatty Acid Composition of Juniperus Species (Juniperus Section) Native to Turkey. Nat. Prod. Commun. 2012, 7, 919–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Öztürk, M.; Tümen, I.; Uǧur, A.; Aydoğmuş-Öztürk, F.; Topçu, G.; Ugur, A. Evaluation of fruit extracts of six Turkish Juniperus species for their antioxidant, anticholinesterase and antimicrobial activities. J. Sci. Food Agric. 2010, 91, 867–876. [Google Scholar] [CrossRef]
- Hafi, M.A.; Cazier, F.; Aboukaïs, A.; Jocelyne, B.; Beyrouthy, M.E. Chemical Composition of the Essential Oils from (Berries, Leaves and Twigs) of Juniperus excelsa M. Bieb. Growing Wild in Lebanon. J. Essent. Oil Bear. Plants 2015, 18, 844–851. [Google Scholar] [CrossRef]
- Azzimonti, B.; Cochis, A.; El Beyrouthy, M.; Iriti, M.; Uberti, F.; Sorrentino, R.; Landini, M.M.; Rimondini, L.; Varoni, E. Essential Oil from Berries of Lebanese Juniperus excelsa M. Bieb Displays Similar Antibacterial Activity to Chlorhexidine but Higher Cytocompatibility with Human Oral Primary Cells. Molecules 2015, 20, 9344–9357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saygin, A.G.; Gose, I.; Alim, A.; Saygin, H.; Alim, B.A. Investigation of Effects of Essential Oil from Berries of Juniperus excelsa Bieb. Subsp excelsa (Cupressaceae) on Angiogenesis in Shell-less Chick Embryo (CAM) Culture. J. Essent. Oil Bear. Plants 2015, 18, 1100–1107. [Google Scholar] [CrossRef]
- Topçu, G.; Goren, A.C.; Bilsel, G.; Bílsel, M.; Çakmak, O.; Schilling, J.; Kingston, D.G.I. Cytotoxic Activity and Essential Oil Composition of Leaves and Berries of Juniperus excelsa. Pharm. Biol. 2005, 43, 125–128. [Google Scholar] [CrossRef]
- Weli, A.M.; Al-Hinai, S.R.; Hossain, M.M.; Al-Sabahi, J.N. Composition of essential oil of Omani Juniperus excels fruit and antimicrobial activity against foodborne pathogenic bacteria. J. Taibah Univ. Sci. 2014, 8, 225–230. [Google Scholar] [CrossRef]
- El-Achi, N.; Bakkour, Y.; El-Nakat, H.; El-Omar, F. HPLC analysis for identification and quantification of phenolic acids and flavonoid in Juniperus excelsa. J. Nat. Prod. 2014, 7, 62–167. [Google Scholar]
- Angioni, A.; Barra, A.; Russo, M.; Coroneo, V.; Dessi, S.; Cabras, P. Chemical composition of the essential oils of Juniperus from ripe and unripe berries and leaves and their antimicrobial activity. J. Agric. Food Chem. 2003, 51, 3073–3078. [Google Scholar] [CrossRef]
- Unlu, M.; Vardar-Unlu, G.; Vural, N.; Donmez, E.; Cakmak, O. Composition and antimicrobial activity of Juniperus excelsa essential oil. Chem. Nat. Compd. 2008, 44, 129–131. [Google Scholar] [CrossRef]
- Sokovic, M.; Ristić, M.; Grubišić, D. Chemical Composition and Antifungal Activity of the Essential Oil from Juniperus excelsa Berries. Pharm. Boil. 2004, 42, 328–331. [Google Scholar] [CrossRef]
- Moein, S.; Moein, M. Antioxidant activities and phenolic content of Juniperus excelsa extract. Iran. J. Pharm. Res. 2010, 6, 133–140. [Google Scholar] [CrossRef]
- Reza, M.; Soheila, M.; Farkhondeh, V.M. Study the relationship between antioxidant potential and phenolic contents of Juniperus excelsa fruit. Int. J. Pharm. Pharm. Sci. 2014, 6, 192–194. [Google Scholar]
- Semerdjieva, I.; Shiwakoti, S.; Cantrell, C.L.; Zheljazkov, V.; Astatkie, T.; Schlegel, V.; Radoukova, T. Hydrodistillation Extraction Kinetics Regression Models for Essential Oil Yield and Composition in Juniperus virginiana, J. excelsa, and J. sabina. Molecules 2019, 24, 986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheljazkov, V.D.; Semerdjieva, I.; Dincheva, I.; Kačániová, M.; Astatkie, T.; Radoukova, T.; Schlegel, V. Antimicrobial and antioxidant activity of Juniper galbuli essential oil constituents eluted at different times. Ind. Crop. Prod. 2017, 109, 529–537. [Google Scholar] [CrossRef]
- Lesjak, M.; Beara, I.; Orcic, D.; Anackov, G.; Knezevic, P.; Mrkonjic, Z.; Mimica-Dukic, N. Bioactivity and chemical profiling of the Juniperus excelsa, which support its usage as a food preservative and nutraceutical. Int. J. Food Prop. 2017, 20, 1652–1663. [Google Scholar] [CrossRef]
- Darvishi, M.; Esmaeili, S.; Dehghan-Nayeri, N.; Mashati, P.; Gharehbaghian, A. Anticancer effect and enhancement of therapeutic potential of Vincristine by extract from aerial parts of Juniperus excelsa on pre-B acute lymphoblastic leukemia cell lines. J. Appl. Biomed. 2017, 15, 219–226. [Google Scholar] [CrossRef]
- Nakanishi, T.; Iida, N.; Inatomi, Y.; Murata, H.; Inada, A.; Murata, J.; Lang, F.A.; Iinuma, M.; Tanaka, T. Neolignan and flavonoid glycosides in Juniperus communis var. depressa. Phytochemistry 2004, 65, 207–213. [Google Scholar] [CrossRef]
- Seca, A.M.L.; Silva, A.M.S. The chemical composition of the Juniperus genus (1970–2004). In Recent Progress in Medicinal Plants; Studium Press (India) Pvt. Ltd.: New Delhi, India, 2007; Volume 16, pp. 401–522. [Google Scholar] [CrossRef]
- Chang, C.-I.; Chen, C.-R.; Chen, W.-C.; Kuo, C.-L.; Kuo, Y.-H. A new phenolic and a new lignan from the roots of Juniperus chinensis. Nat. Prod. Commun. 2010, 5, 55–57. [Google Scholar] [CrossRef] [Green Version]
- Schepetkin, I.A.; Faulkner, C.L.; Nelson-Overton, L.K.; Wiley, J.A.; Quinn, M.T. Macrophage immunomodulatory activity of polysaccharides isolated from Juniperus scopolorum. Int. Immunopharmacol. 2005, 5, 1783–1799. [Google Scholar] [CrossRef] [PubMed]
- Mongrand, S.; Badoc, A.; Patouille, B.; Lacomblez, C.; Chavent, M.; Cassagne, C.; Bessoule, J.-J. Taxonomy of gymnospermae: Multivariate analyses of leaf fatty acid composition. Phytochemistry 2001, 58, 101–115. [Google Scholar] [CrossRef]
- Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Asif, M. Chemistry and antioxidant activity of plants containing some phenolic compounds. In Chemistry International; International Scientific Organization: Faisalabad, Pakistan, 2015; Volume 1, pp. 35–52. ISBN 24109649. [Google Scholar]
- Smith, P.; Ashmore, M.R.; Black, H.I.J.; Burgess, P.J.; Evans, C.D.; Quine, T.A.; Thomson, A.M.; Hicks, K.; Orr, H.G. REVIEW: The role of ecosystems and their management in regulating climate, and soil, water and air quality. J. Appl. Ecol. 2012, 50, 812–829. [Google Scholar] [CrossRef]
- Negussie, A.; Good, J.E.; Mayhead, G.J. The Effect OF Pre-Treatments and Diurnal Temperature Variations on the Germination of Juniperus excelsa. Int. Tree Crop. J. 1991, 7, 57–66. [Google Scholar] [CrossRef]
- Kopralev, I.; Yordanova, M.; Mladenov, C. Climate. In Geography of Bulgaria; Kopralev, I., Ed.; Geographical Institute at BAS, ForCom Publ. House: Sofia, Bulgaria, 2002. [Google Scholar]
- Larcher, W. Physiological Plant Ecology; Springer: Berlin/Heidelberg, Germany, 1995; pp. 424–426. [Google Scholar]
- Richardson, A.D.; Duigan, S.P.; Berlyn, G.P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 2002, 153, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Rozas, V.; DeSoto, L.; Olano, J.M. Sex-specific, age-dependent sensitivity of tree-ring growth to climate in the dioecious tree Juniperus thurifera. New Phytol. 2009, 182, 687–697. [Google Scholar] [CrossRef]
- Muhammad, I.; Mossa, J.S.; El-Feraly, F.S. Antibacterial diterpenes from the leaves and seeds of Juniperus excelsa M. Bieb. Phytother. Res. 1992, 6, 261–264. [Google Scholar] [CrossRef]
- Herchi, W.; Al Hujaili, A.D.; Sakouhi, F.; Sebei, K.; Trabelsi, H.; Kallel, H.; Boukhchina, S. Flaxseed Hull: Chemical Composition and Antioxidant Activity during Development. J. Oleo Sci. 2014, 63, 681–689. [Google Scholar] [CrossRef] [Green Version]
- Mazur, M.; Boratyńska, K.; Marcysiak, K.; Didukh, Y.; Romo, A.; Kosiński, P.; Boratyński, A. Low level of inter-populational differentiation in Juniperus excelsa M. Bieb. (Cupressaceae). Dendrobiology 2004, 52, 39–46. [Google Scholar]
- Asif, M.H.; Lakhwani, D.; Pathak, S.; Gupta, P.; Bag, S.K.; Nath, P.; Trivedi, P.K. Transcriptome analysis of ripe and unripe fruit tissue of banana identifies major metabolic networks involved in fruit ripening process. BMC Plant Biol. 2014, 14, 316. [Google Scholar] [CrossRef] [Green Version]
- Khawas, P.; Das, A.J.; Sit, N.; Badwaik, L.S.; Deka, S.C. Nutritional Composition of Culinary Musa ABB at Different Stages of Development. Am. J. Food Sci. Technol. 2014, 2, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Goswami, B.; Borthakur, A. Chemical and biochemical aspects of developing culinary banana (Musa ABB) ‘Kachkal’. Food Chem. 1996, 55, 169–172. [Google Scholar] [CrossRef]
- Poddar, S.; Lederer, R.J. Juniper Berries as an Exclusive Winter Forage for Townsend’s Solitaires. Am. Midl. Nat. 1982, 108, 34. [Google Scholar] [CrossRef]
- Nasri, N.; Tlili, N.; Elfalleh, W.; Cherif, E.; Ferchichi, A.; Khaldi, A.; Triki, S. Chemical compounds from Phoenician juniper berries (Juniperus phoenicea). Nat. Prod. Res. 2011, 25, 1733–1742. [Google Scholar] [CrossRef]
- Odabaş-Serin, Z. Some chemical, nutritional and mineral properties of dried juniper (Juniperus drupacea L.) Berries growing in turkey. Appl. Ecol. Environ. Res. 2019, 17, 17. [Google Scholar] [CrossRef]
- Emami, S.A.; Asili, J.; Mohagheghi, Z.; Hassanzadeh, M.K. Antioxidant Activity of Leaves and Fruits of Iranian Conifers. Evid. Based Complement. Altern. Med. 2007, 4, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Nulifer, O. Chapter 30—Juniperus Species: Features, Profile and Applications to Diabetes. In Bioactive Food as Dietary Interventions for Diabetes, 2nd ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 447–459. [Google Scholar]
- Ozkaya, A.; Ciftci, H.; Yilmaz, O.; Zafer Tel, A.; Cil, E.; Cevrimli, B.S. Vitamin, trace element, and fatty acid levels of Vitex agnus-castus L., Juniperus oxycedrus L., and Papaver somniferum L. plant seeds. J. Chem. 2013. [Google Scholar] [CrossRef] [Green Version]
- Bin Sayeed, M.S.; Karim, S.M.R.; Sharmin, T.; Morshed, M.M. Critical Analysis on Characterization, Systemic Effect, and Therapeutic Potential of Beta-Sitosterol: A Plant-Derived Orphan Phytosterol. Medicines 2016, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Britz, S.J.; Kremer, D.F. Warm Temperatures or Drought during Seed Maturation Increase Free α-Tocopherol in Seeds of Soybean (Glycine max [L.] Merr.). J. Agric. Food Chem. 2002, 50, 6058–6063. [Google Scholar] [CrossRef]
- Oh, M.-M.; Carey, E.; Rajashekar, C. Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiol. Biochem. 2009, 47, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Alimentarius, C. Codex standard for named vegetable oils. Codex-Stan 1999, 210, 1–13, (revised 2001, 2003, 2009, amended 2005, 2011). [Google Scholar]
- Bakkour, Y.; El-Achi, N.; Tabcheh, M.; El-Nakat, H. Chemical composition and antioxidant activities of the essential oils from green and ripe berries of Juniperus excelsa growing in Lebanon. Int. J. Pharm. Life Sci. 2013, 4, 2362–2367. [Google Scholar]
- Orhan, N.; Orhan, I.E.; Ergun, F. Insights into cholinesterase inhibitory and antioxidant activities of five Juniperus species. Food Chem. Toxicol. 2011, 49, 2305–2312. [Google Scholar] [CrossRef]
- Martz, F.; Peltola, R.; Fontanay, S.; Duval, R.E.; Julkunen-Tiitto, R.; Stark, S. Effect of Latitude and Altitude on the Terpenoid and Soluble Phenolic Composition of Juniper (Juniperus communis) Needles and Evaluation of Their Antibacterial Activity in the Boreal Zone. J. Agric. Food Chem. 2009, 57, 9575–9584. [Google Scholar] [CrossRef]
- Miceli, N.; Trovato, A.; Dugo, P.; Cacciola, F.; Donato, P.A.E.; Marino, A.; Bellinghieri, V.; La Barbera, T.M.; Guvenc, A.; Taviano, M.F. Comparative Analysis of Flavonoid Profile, Antioxidant and Antimicrobial Activity of the Berries of Juniperus communis L. var. communis and Juniperus communis L. var. saxatilis Pall. from Turkey. J. Agric. Food Chem. 2009, 57, 6570–6577. [Google Scholar] [CrossRef]
- Tang, J.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS Characterization of Phenolic Compounds from Medicinal Plants (Hops and Juniper Berries) and Their Antioxidant Activity. Foods 2019, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Thiers, B. Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff; New York Botanical Garden’s Virtual Herbarium: New York, NY, USA, 2019; Available online: http://sweetgum.nybg.org/ih (accessed on 10 June 2020).
- Medizina. The State Pharmacopoeia of the USSR, 11th ed.; Medizina: Moscow, Russia, 1990. [Google Scholar]
- AOAC International. AOAC Official Methods of Analysis of Association of Official Analytical Chemists, 15th/20th ed.; AOAC International: Arlington, VA, USA, 1990/2016; Method 976.06.
- Schoefs, B. Chlorophyll and carotenoid analysis in food products. Properties of the pigments and methods of analysis. Trends Food Sci. Technol. 2002, 13, 361–371. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Extraction of Phtosynthetic Tissues: Chlorophylls and Carotenoids. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.2.1–F4.2.6. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- ISO. ISO 659:2014. Oilseeds. Determination of Oil Content; (Reference Method); International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- ISO. ISO 12966-1:2014. Animal and Vegetable Fats and Oils. Gas Chromatography of Fatty Acid Methyl Esters—Part 1: Guidelines on Modern Gas Chromatography of Fatty Acid Methyl Esters; International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- ISO. ISO 12966-2:2017. Animal and Vegetable Fats and Oils. Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- ISO. ISO 18609:2000. Animal and Vegetable Fats and Oils. Determination of Unsaponifiable Matter. Method Using Hexane Extraction; International Organization for Standardization: Geneva, Switzerland, 2000. [Google Scholar]
- Ivanov, S.; Bitcheva, P.; Konova, B. Méthode de détermination chromatographyque et colorimétrique des phytosterols dans les huiles végétales et les concentres steroliques. Rev. Franc. Corps Gras 1972, 19, 177–180. [Google Scholar]
- ISO. ISO 12228-1:2014. Part 1: Animal and Vegetable Fats and Oils. Determination of Individual and Total Sterols Contents. Gas Chromatographic Method; International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- ISO. ISO 9936:2016. Animal and Vegetable Fats and Oils. Determination of Tocopherol and Tocotrienol Contents by High-Performance Liquid Chromatography; International Organization for Standardization: Geneva, Switzerland, 2016. [Google Scholar]
- Stintzing, F.C.; Herbach, K.M.; Mosshammer, M.R.; Carle, R.; Yi, W.; Sellappan, S.; Akoh, C.C.; Bunch, R.; Felker, P. Color, Betalain Pattern, and Antioxidant Properties of Cactus Pear (Opuntia spp.) Clones. J. Agric. Food Chem. 2005, 53, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Kivrak, I.; Duru, M.E.; Öztürk, M.; Mercan, N.; Harmandar, M.; Topçu, G. Antioxidant, anticholinesterase and antimicrobial constituents from the essential oil and ethanol extract of Salvia potentillifolia. Food Chem. 2009, 116, 470–479. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apak, R.; Güçlü, K.; Özyürek, M.; Çelik, S.E. Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim. Acta 2007, 160, 413–419. [Google Scholar] [CrossRef]
Indicators | Location 1 | Location 2 | Location 3 | |||
---|---|---|---|---|---|---|
Unripe | Ripe | Unripe | Ripe | Unripe | Ripe | |
Moisture, % | 37.4 ± 3.6 | 36.9 ± 3.5 | 37.7 ± 3.5 | 29.6 ± 2.8 | 31.9 ± 3.0 | 32.0 ± 3.0 |
Protein, % | 14.4 ± 1.4 | 13.6 ± 1.3 | 16.4 ± 1.5 | 14.9 ± 1.4 | 13.9 ± 1.3 | 15.4 ± 1.5 |
Chlorophyll a, μg/g dw | 121.2 ± 12.0 | 128.6 ± 12.0 | 126.4 ± 11.5 | 117.6 ± 10.0 | 94.2 ± 9.2 | 193.1 ± 18.0 |
Chlorophyll b, μg/g dw | 64.2 ± 6.3 | 58.4 ± 5.2 | 83.5 ± 8.0 | 58.7 ± 5.5 | 51.5 ± 5.0 | 80.3 ± 7.8 |
Total Chlorophyll, μg/g dw | 185.4 ± 18.0 | 187.1 ± 17.2 | 209.9 ± 19.0 | 176.3 ± 17.0 | 145.6 ± 13.6 | 273.4 ± 25.0 |
Total Carotenoid, μg/g dw | 49.5 ± 4.5 | 50.3 ± 5.0 | 47.0 ± 4.5 | 41.7 ± 4.0 | 46.5 ± 4.5 | 50.4 ± 5.0 |
Essential oil yield, % | 1.9 ± 0.2 | 5.1 ± 0.5 | 1.9 ± 0.2 | 2.6 ± 0.2 | - * | 2.5 ± 0.2 |
Lipid fraction, % | 6.6 ± 0.6 | 9.1 ± 0.9 | 7.0 ± 0.7 | 5.5 ± 0.5 | - | 4.5 ± 0.4 |
Fatty Acid | Location 1 | Location 2 | Location 3 ** | |||
---|---|---|---|---|---|---|
Unripe | Ripe | Unripe | Ripe | Ripe | ||
Capric acid | C 10:0 | * - | 0.4 ± 0.0 | * - | 0.5 ± 0.0 | 0.4 ± 0.0 |
Lauric acid | C 12:0 | 0.7 ± 0.0 | 0.5 ± 0.0 | 1.3 ± 0.9 | 0.8 ± 0.0 | 0.7 ± 0.0 |
Tridecanoic acid | C 13:0 | 0.2 ± 0.0 | 0.2 ± 0.0 | * - | 0.6 ± 0.0 | 0.6 ± 0.0 |
Myristic acid | C 14:0 | 1.3 ± 0.1 | 0.6 ± 0.0 | 2.5 ± 0.1 | 1.6 ± 0.0 | 1.2 ± 0.0 |
Myristoleic acid | C 14:1 | 0.9 ± 0.0 | 0.4 ± 0.0 | 2.4 ± 1.2 | 1.4 ± 0.0 | 1.3 ± 0.0 |
Pentadecenoic acid | C 15:1 | 0.3 ± 0.0 | 0.2 ± 0.0 | 0.8 ± 0.0 | 0.3 ± 0.0 | 0.3 ± 0.0 |
Palmitic acid | C 16:0 | 31.8 ± 2.6 | 29.9 ± 3.0 | 41.3 ± 2.7 | 31.2 ± 2.4 | 32.2 ± 2.4 |
Palmitoleic acid | C 16:1 | 0.3 ± 0.0 | * - | * - | 0.8 ± 0.0 | 1.1 ± 0.0 |
Margaric acid | C 17:0 | 0.3 ± 0.0 | 0.2 ± 0.0 | 0.3 ± 0.0 | 0.3 ± 0.0 | 0.2 ± 0.0 |
Heptadecenoic acid | C 17:1 | 0.3 ± 0.0 | 0.4 ± 0.0 | 0.6 ± 0.0 | 0.4 ± 0.0 | 0.5 ± 0.0 |
Stearic acid | C 18:0 | 4.5 ± 0.1 | 8.4 ± 1.0 | 4.7 ± 1.0 | 6.8 ± 1.0 | 6.7 ± 0.0 |
Oleic acid | C 18:1 | 19.4 ± 1.1 | 22.8 ± 2.5 | 8.4 ± 1.0 | 30.0 ± 2.3 | 32.6 ± 0.0 |
trans | C 18:1 | * - | * - | * - | 0.3 ± 0.0 | * - |
Linoleic acid | C 18:2 | 26.2 ± 2.2 | 23.9 ± 2.2 | 17.5 ± 2.7 | 15.2 ± 1.1 | 13.2 ± 1.1 |
Linolenic acid | C 18:3 | 1.9 ± 0.1 | 4.8 ± 0.0 | 1.3 ± 0.0 | 2.5 ± 0.1 | 1.9 ± 0.1 |
Heneicosanoic acid | C 21:0 | 0.6 ± 0.0 | 0.4 ± 0.0 | 0.9 ± 0.0 | 0.3 ± 0.0 | 0.4 ± 0.0 |
Arachidic acid | C 20:0 | * - | 0.2 ± 0.0 | 0.3 ± 0.0 | * - | 0.2 ± 0.0 |
Eicosadienoic acid | C 20:2 | 0.2 ± 0.0 | 0.6 ± 0.0 | 2.3 ± 1.0 | 0.9 ± 0.0 | 1.6 ± 0.0 |
Eicosatrienoic acid | C 20:3 | 8.8 ± 0.6 | 3.9 ± 0.1 | 7.1 ± 0.0 | 2.1 ± 0.1 | 1.7 ± 0.0 |
Eicosapentaenoic acid | C 20:5 | * - | * - | * - | 0.3 ± 0.0 | * - |
Erucic acid | C 22:1 | * - | * - | 0.7 ± 0.0 | * - | * - |
Docosadienoic acid | C 22:2 | 0.3 ± 0.0 | 0.2 ± 0.0 | 0.5 ± 0.0 | 0.3 ± 0.0 | 0.2 ± 0.0 |
Lignoceric acid | C 24:0 | 2.0 ± 0.0 | 1.8 ± 0.1 | 6.4 ± 1.0 | 2.7 ± 0.1 | 2.7 ± 0.1 |
Nervonic acid | C 24:1 | * - | 0.2 ± 0.00 | 0.7 ± 0.00 | 0.7 ± 0.00 | 0.3 ± 0.00 |
Biologically Active Substances | Location 1 | Location 2 | Location 3 * | ||
---|---|---|---|---|---|
Unripe | Ripe | Unripe | Ripe | Ripe | |
Unsaponifiable matter, % | 9.8 ± 0.1 | 5.5 ± 0.1 | 11.6 ± 0.1 | 11.4 ± 0.2 | 13.5 ± 0.3 |
Sterols, % | 0.2 ± 0.0 | 0.1 ± 0.0 | 0.2 ± 0.04 | 0.3 ± 0.0 | 0.3 ± 0.0 |
Tocopherols, mg/kg | 625 ± 10.0 | 1894 ± 21.0 | 721 ± 12.02 | 1457 ± 20.1 | 1476 ± 15.0 |
Sterol and Tocopherol Composition | Location 1 | Location 2 | Location 3 ** | ||
---|---|---|---|---|---|
Unripe | Ripe | Unripe | Ripe | Ripe | |
Sterols | |||||
Cholesterol | 0.2 ± 0.0 | 0.5 ± 0.0 | 0.5 ± 0.0 | - * | 0.7 ± 0.0 |
Brasicasterol | 5.5 ± 0.2 | 6.4 ± 0.1 | 7.3 ± 0.3 | 5.9 ± 0.2 | 6.7 ± 0.2 |
Campesterol | 13.9 ± 0.3 | - * | 9.9 ± 0.3 | 9.2 ± 0.2 | 26.5 ± 0.5 |
Stigmasterol | 8.9 ± 0.2 | - * | 3.3 ± 0.2 | 4.6 ± 0.3 | - * |
β-Sitosterol | 70.3 ± 0.6 | 91.7 ± 0.6 | 76.7 ± 0.6 | 71.9 ± 0.6 | 64.8 ± 0.4 |
Δ5-Avenasterol | 0.4 ± 0.0 | 0.8 ± 0.1 | 2.1 ± 0.1 | - * | 0.5 ± 0.1 |
Δ7-Stigmasterol | 0.8 ± 0.1 | 0.6 ± 0.01 | 0.2 ± 0.0 | 8.4 ± 0.2 | 0.8 ± 0.1 |
Tocopherols | |||||
α-Tocopherol | 33.8 ± 0.3 | 85.5 ± 0.6 | 57.5 ± 0.5 | 19.0 ± 0.3 | 88.5 ± 0.6 |
α-Tocotrienol | 66.2 ± 0.45 | 6.1 ± 0.2 | 42.5 ± 0.5 | 37.6 ± 0.3 | 11.5 ± 0.3 |
β-Tocopherol | - * | - * | - * | 17.2 ± 0.2 | - * |
γ-Tocopherol | - * | 8.4 ± 0.4 | - * | 26.2 ± 0.2 | - * |
Amino Acid | Location 1 | Location 2 | Location 3 | |||
---|---|---|---|---|---|---|
Unripe | Ripe | Unripe | Ripe | Unripe | Ripe | |
Asparagine | 8.6 ± 0.1 | 7.2 ± 0.1 | 5.9 ± 0.0 | 4.7 ± 0.1 | 3.4 ± 0.2 | 6.9 ± 0.1 |
Serine | 1.9 ± 0.0 | 1.8 ± 0.0 | 4.0 ± 0.1 | 2.4 ± 0.0 | 0.9 ± 0.0 | 2.5 ± 0.0 |
Glutamic acid | 4.0 ± 0.0 | 2.9 ± 0.0 | 6.7 ± 0.1 | 3.9 ± 0.0 | 2.8 ± 0.0 | 3.8 ± 0.0 |
Glycine | 1.0 ± 0.0 | 0.7 ± 0.0 | 1.2 ± 0.0 | 1.0 ± 0.0 | 0.8 ± 0.0 | 1.0 ± 0.1 |
Histidine | 6.5 ± 0.1 | 5.5 ± 0.1 | 7.6 ± 0.1 | 8.0 ± 0.1 | 6.1 ± 0.1 | 6.8 ± 0.1 |
Arginine | 3.2 ± 0.1 | 2.7 ± 0.1 | 3.4 ± 0.1 | 3.3 ± 0.0 | 2.5 ± 0.1 | 3.2 ± 0.1 |
Thryptophan | 2.4 ± 0.1 | 2.2 ± 0.0 | 3.1 ± 0.1 | 3.5 ± 0.1 | 2.2 ± 0.1 | 2.8 ± 0.1 |
Alanine | 5.1 ± 0.1 | 4.6 ± 0.1 | 6.3 ± 0.1 | 7.1 ± 0.1 | 4.8 ± 0.1 | 5.4 ± 0.1 |
Proline | 2.2 ± 0.1 | 5.4 ± 0.1 | 2.9 ± 0.1 | 3.5 ± 0.1 | 2.1 ± 0.1 | 2.7 ± 0.1 |
Cysteine | trace * | trace | 0.1 ± 0.0 | 0.1 ± 0.0 | trace | trace |
Tyrosine | 1.2 ± 0.0 | 1.7 ± 0.0 | 1.3 ± 0.0 | 2.2 ± 0.0 | 1.2 ± 0.0 | 1.9 ± 0.0 |
Valine | 3.1 ± 0.0 | 2.7 ± 0.0 | 3.8 ± 0.1 | 4.2 ± 0.1 | 2.9 ± 0.1 | 4.2 ± 0.1 |
Methionine | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.30 ± 0.0 | 0.3 ± 0.0 | 0.3 ± 0.0 | 0.9 ± 0.0 |
Lysine | 4.4 ± 0.1 | 4.0 ± 0.1 | 5.5 ± 0.1 | 5.7 ± 0.1 | 4.8 ± 0.1 | 6.1 ± 0.1 |
Isoleucine | 3.2 ± 0.1 | 2.8 ± 0.0 | 3.9 ± 0.1 | 4.4 ± 0.1 | 2.9 ± 0.1 | 3.4 ± 0.1 |
Leucine | 0.5 ± 0.0 | 0.4 ± 0.0 | 0.6 ± 0.0 | 0.7 ± 0.0 | 0.6 ± 0.0 | 0.5 ± 0.0 |
Phenylalanine | 2.9 ± 0.0 | 2.5 ± 0.0 | 3.3 ± 0.1 | 4.0 ± 0.1 | 2.4 ± 0.0 | 5.3 ± 0.1 |
Total Phenolic and Flavonoid Content and Antioxidant Activity | Location 1 | Location 2 | Location 3 | |||
---|---|---|---|---|---|---|
Unripe | Ripe | Unripe | Ripe | Unripe | Ripe | |
solvent 95% ethanol | ||||||
TPC, mg GAE 1/g dw 2 | 4.0 ± 0.5 b,* | 3.1 ± 0.1 b,c,** | 4.2 ± 0.1 ns | 2.06 ± 0.2 d,** | 4.28 ± 0.4 a,ns | 2.0 ± 0.1 e,** |
TFC, mg QE 3/g dw | 1.8 ± 0.0 b,** | 2.1 ± 0.1 c,** | 1.7 ± 0.3 b,* | 0.5 ± 0.0 ns | 4.3 ± 0.0 a,** | 3.1 ± 0.0 d,** |
DPPH, mM TE/g dw | 23.2 ± 1.1 d,** | 6.9 ± 1.0.1 c,** | 24.8 ± 0.1 ** | 11.5 ± 1.1 e,** | 34.8 ± 0.0 a,** | 10.0 ± 0.0 e,f,** |
ABTS, mM TE/g dw | 66.3 ± 0.8 ** | 26.7 ± 1.7 b,** | 68.1 ± 1.4 a,c,ns | 35.0 ± 2.3 d,** | 90.4 ± 0.3 e,** | 32.3 ± 2.6 d,f,ns |
FRAP, mM TE/g dw | 40.3 ± 1.3 ** | 14.4 ± 2.7 b,** | 37.9 ± 2.6 a,c,ns | 18.5 ± 1.9 b,d,ns | 46.7 ± 1.0 e,** | 15.6 ± 2.9 d,f,ns |
CUPRAC, mM TE/g dw | 71.0 ± 0.5 a,** | 47.1 ± 0.7 b,** | 72.5 ± 5.6 c,ns | 50.5 ± 0.1 ns | 101.0 ± 1.0 d,** | 36.0 ± 3.8 b,** |
solvent 70% ethanol | ||||||
TPC, mg GAE/g dw | 2.3 ± 0.1 b,** | 3.0 ± 0.2 ns | 0.9 ± 0.0 c,** | 2.8 ± 0.1 ns | 12.3 ± 0.6 a,** | 2.1 ± 0.2 ns |
TFC, mg QE/g dw | 0.5 ± 0.0 a,** | 1.5 ± 0.0 b,** | 0.8 ± 0.0 c,** | 0.4 ± 0.1 d,** | 1.66 ± 0.0 e,** | 0.6 ± 0.0 f,** |
DPPH, mM TE/g dw | 69.8 ± 3.5 a,** | 29.5 ± 1.2 b,** | 38.0 ± 2.3 b,c,ns | 20.3 ± 5.1 b,d,ns | 372.9 ± 6.5 a,** | 21.7 ± 6.1 d,f,ns |
ABTS, mM TE/g dw | 119.0 ± 5.6 ns | 89.1 ± 6.7 ns | 120.2 ± 5.1 ns | 6996 ± 10.2 b,** | 297.6 ± 7.3 a,** | 37.8 ± 0.4 c,** |
FRAP, mM TE/g dw | 71.8 ± 0.4 b,* | 60.1 ± 0.9 c,** | 78.9 ± 1.1 d,** | 28.0 ± 0.7 e,** | 184.9 ± 1.7 a,** | 22.4 ± 1.2 ** |
CUPRAC, mM TE/g dw | 148.0 ± 1.0 b,** | 5.5 ± 0.0 c,** | 131.1 ± 1.2 d,** | 64.0 ± 9.0 e,** | 473.9 ± 2.0 a,** | 49.3 ± 2.0 f,** |
DPPH | ABTS | FRAP | CUPRAC | |
---|---|---|---|---|
Correlation (r2) between phenolic compounds and antioxidant activity in all 95% ethanol extracts | ||||
TPC *, mg GAE/g dw *** | 0.8329 | 0.8573 | 0.8908 | 0.8610 |
TFC **, mg QE/g dw | 0.4866 | 0.4778 | 0.3709 | 0.4644 |
Correlation (r2) between phenolic compounds and antioxidant activity in the 95% ethanol extracts from the unripe galbuli | ||||
TPC, mg GAE/g dw | 0.8030 | 0.7654 | 0.5121 | 0.7506 |
TFC, mg QE/g dw | 0.9870 | 0.9949 | 0.9730 | 0.9969 |
Correlation (r2) between phenolic compounds and antioxidant activity in the 95% ethanol extracts in the ripe galbuli | ||||
TPC, mg GAE/g dw | −0.9309 | −0.9312 | −0.6916 | 0.3392 |
TFC, mg QE/g dw | −0.4420 | −0.4413 | −0.7777 | −0.9090 |
Correlation (r2) between phenolic compounds and antioxidant activity in all 70% ethanol extracts | ||||
TPC, mg GAE/g dw | 0.9718 | 0.9023 | 0.8753 | 0.9302 |
TFC, mg QE/g dw | 0.6582 | 0.6810 | 0.7300 | 0.6261 |
Correlation (r2) between phenolic compounds and antioxidant activity in the 70% ethanol extracts from the unripe galbuli | ||||
TPC, mg GAE/g dw | 0.9996 | 0.9930 | 0.9858 | 0.9976 |
TFC, mg QE/g dw | 0.9435 | 0.9699 | 0.9809 | 0.9567 |
Correlation (r2) between phenolic compounds and antioxidant activity in the 70% ethanol extracts of the ripe galbuli | ||||
TPC, mg GAE/g dw | 0.5606 | 0.3115 | 0.7675 | −0.4732 |
TFC, mg QE/g dw | 0.9996 | −0.6355 | 0.9525 | −0.9974 |
Correlation (r2) between phenolic compounds and antioxidant activity in both ethanol extracts | ||||
TPC, mg GAE/g dw | 0.9220 | 0.8346 | 0.8105 | 0.8859 |
TFC, mg QE/g dw | −0.0082 | −0.0289 | −0.0491 | −0.0152 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stankov, S.; Fidan, H.; Petkova, Z.; Stoyanova, M.; Petkova, N.; Stoyanova, A.; Semerdjieva, I.; Radoukova, T.; Zheljazkov, V.D. Comparative Study on the Phytochemical Composition and Antioxidant Activity of Grecian Juniper (Juniperus excelsa M. Bieb) Unripe and Ripe Galbuli. Plants 2020, 9, 1207. https://doi.org/10.3390/plants9091207
Stankov S, Fidan H, Petkova Z, Stoyanova M, Petkova N, Stoyanova A, Semerdjieva I, Radoukova T, Zheljazkov VD. Comparative Study on the Phytochemical Composition and Antioxidant Activity of Grecian Juniper (Juniperus excelsa M. Bieb) Unripe and Ripe Galbuli. Plants. 2020; 9(9):1207. https://doi.org/10.3390/plants9091207
Chicago/Turabian StyleStankov, Stanko, Hafize Fidan, Zhana Petkova, Magdalena Stoyanova, Nadezhda Petkova, Albena Stoyanova, Ivanka Semerdjieva, Tzenka Radoukova, and Valtcho D. Zheljazkov. 2020. "Comparative Study on the Phytochemical Composition and Antioxidant Activity of Grecian Juniper (Juniperus excelsa M. Bieb) Unripe and Ripe Galbuli" Plants 9, no. 9: 1207. https://doi.org/10.3390/plants9091207
APA StyleStankov, S., Fidan, H., Petkova, Z., Stoyanova, M., Petkova, N., Stoyanova, A., Semerdjieva, I., Radoukova, T., & Zheljazkov, V. D. (2020). Comparative Study on the Phytochemical Composition and Antioxidant Activity of Grecian Juniper (Juniperus excelsa M. Bieb) Unripe and Ripe Galbuli. Plants, 9(9), 1207. https://doi.org/10.3390/plants9091207