Endophytic Strain Bacillus subtilis 26DCryChS Producing Cry1Ia Toxin from Bacillus thuringiensis Promotes Multifaceted Potato Defense against Phytophthora infestans (Mont.) de Bary and Pest Leptinotarsa decemlineata Say
Abstract
:1. Introduction
2. Results
2.1. Assay of Endophytic Properties of Bacillus Strains
2.2. Capacity of Bacillus Strains to Protect Potato Plants against Oomycete P. infestans
2.3. Insecticidal Activity of Bacillus Strains against L. decemlineata Larvae
2.4. Bacillus Strains Triggered Systemic Resistance in Potato Plants to P. infestans and Beetle L. decemlineata
3. Discussion
4. Materials and Methods
4.1. Plant, Microbe and Insect Material
4.2. Evaluation of Endophytic Properties of Bacillus Strains
4.3. Evaluation of the Ability of Bacillus Strains to Defend Potato Plants against P. infestans
4.4. Evaluation of Bacillus Strains Insecticidal Activity against L. decemlineata
4.5. Construction of Fluorescent B. subtilis 26DGFP
4.6. RNA Isolation and the Reverse Transcription Quantitative Polymerase Chain Reaction (qPCR)
4.7. Lignin Autofluorescence Registration
4.8. Statistics
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CFU | colony-forming units |
ET | ethylene |
JA | jasmonic acid |
PGPB | plant growth-promoting bacteria |
PR proteins | pathogens-related proteins |
SA | salicylic acid |
References
- Mesterhazy, A.; Oláh, J.; Popp, J. Losses in the Grain Supply Chain: Causes and Solutions. Sustainability 2020, 12, 2342. [Google Scholar] [CrossRef] [Green Version]
- Rakotonindraina, T.; Chauvin, J.-É.; Pellé, R.; Faivre, R.; Chatot, C.; Savary, S.; Aubertot, J.-N. Modeling of Yield Losses Caused by Potato Late Blight on Eight Cultivars with Different Levels of Resistance to Phytophthora infestans. Plant Dis. 2012, 96, 935–942. [Google Scholar] [CrossRef] [Green Version]
- McDonald, B.A.; Linde, C.C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 2002, 40, 349–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, I.M.; Tolman, J.H.; MacArthur, D.C. Insecticide resistance and cross-resistance development in Colorado potato beetle Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) populations in Canada 2008–2011. Pest Manag. Sci. 2014, 71, 712–721. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.; Bezuidenhout, C.C.; Berg, J.V.D. An Overview of Mechanisms of Cry Toxin Resistance in Lepidopteran Insects. J. Econ. Èntomol. 2017, 110, 362–377. [Google Scholar] [CrossRef] [PubMed]
- Loseva, O.; Ibrahim, M.; Candas, M.; Koller, C.; Bauer, L.S.; Lee, A.B., Jr. Changes in protease activity and Cry3Aa toxin binding in the Colorado potato beetle: Implications for insect resistance to Bacillus thuringiensis toxins. Insect Biochem. Mol. Boil. 2002, 32, 567–577. [Google Scholar] [CrossRef]
- Li, H.; Soares, M.A.; Torres, M.S.; Bergen, M.; White, J.F. Endophytic bacterium, Bacillus amyloliquefaciens, enhances ornamental hosta resistance to diseases and insect pests. J. Plant Interact. 2015, 10, 224–229. [Google Scholar] [CrossRef]
- Araújo, E.O. Rizobacteria in the control of pest insects in agriculture. Afr. J. Plant Sci. 2015, 9, 368–373. [Google Scholar] [CrossRef] [Green Version]
- Maksimov, I.; Maksimova, T.I.; Sarvarova, E.R.; Blagova, D.K.; Popov, V.O. Endophytic Bacteria as Effective Agents of New-Generation Biopesticides (Review). Appl. Biochem. Microbiol. 2018, 54, 128–140. [Google Scholar] [CrossRef]
- Muslim, A.; Hyakumachi, M.; Kageyama, K.; Suwandi, S. Induction of Systemic Resistance in Cucumber by Hypovirulent Binucleate Rhizoctonia Against Anthracnose Caused by Colletotrichum orbiculare. Trop. Life Sci. Res. 2019, 30, 109–122. [Google Scholar] [CrossRef]
- Rashid, M.H.; Chung, Y.R. Induction of systemic resistance against insect herbivores in plants by beneficial soil microbes. Front. Plant Sci. 2017, 8, 1816. [Google Scholar] [CrossRef] [Green Version]
- Lahlali, R.; Aksissou, W.; Lyousfi, N.; Ezrari, S.; Blenzar, A.; Tahiri, A.; Ennahli, S.; Hrustić, J.; MacLean, D.; Amiri, S. Biocontrol activity and putative mechanism of Bacillus amyloliquefaciens (SF14 and SP10), Alcaligenes faecalis ACBC1, and Pantoea agglomerans ACBP1 against brown rot disease of fruit. Microb. Pathog. 2020, 139, 103914. [Google Scholar] [CrossRef] [PubMed]
- Maksimov, I.V.; Blagova, D.K.; Veselova, S.V.; Sorokan, A.V.; Burkhanova, G.F.; Cherepanova, E.A.; Sarvarova, E.R.; Rumyantsev, S.D.; Alekseev, V.Y.; Khayrullin, R.M. Recombinant Bacillus subtilis 26DCryChS line with gene Btcry1Ia encoding Cry1Ia toxin from Bacillus thuringiensis promotes integrated wheat defense against pathogen Stagonospora nodorum Berk. and greenbug Schizaphis graminum Rond. Biol. Control. 2020, 144, 104242. [Google Scholar] [CrossRef]
- Ben Khedher, S.; Boukedi, H.; Dammak, M.; Kilani-Feki, O.; Sellami-Boudawara, T.; Abdelkefi-Mesrati, L.; Tounsi, S. Combinatorial effect of Bacillus amyloliquefaciens AG1 biosurfactant and Bacillus thuringiensis Vip3Aa16 toxin on Spodoptera littoralis larvae. J. Invertebr. Pathol. 2017, 144, 11–17. [Google Scholar] [CrossRef]
- De Vleesschauwer, D.; Höfte, M. Rhizobacteria-induced systemic resistance. Adv. Bot. Res. 2009, 51, 223–281. [Google Scholar] [CrossRef] [Green Version]
- Jouzani, G.S.; Valijanian, E.; Sharafi, R. Bacillus thuringiensis: A successful insecticide with new environmental features and tidings. Appl. Microbiol. Biotechnol. 2017, 101, 2691–2711. [Google Scholar] [CrossRef]
- Palma, L. Bacillus thuringiensis—Based biopesticides, are they as effective as they should be? Rev. Argent. Microbiol. 2017, 49, 119–128. [Google Scholar] [CrossRef]
- Sansinenea, E. Discovery and description of Bacillus thuringiensis. In Bacillus Thuringiensis Biotechnology; Sansinenea, E., Ed.; Springer: Dordrecht, The Netherlands, 2012; Chapter 1; pp. 3–18. [Google Scholar] [CrossRef]
- Maghsoudi, S.; Jalali, E. Noble UV protective agent for Bacillus thuringiensis based on a combination of graphene oxide and olive oil. Sci. Rep. 2017, 7, Art.11019. [Google Scholar] [CrossRef] [Green Version]
- Pangesti, N.; Vandenbrande, S.; ADicke, M.P.; Raaijmakers, J.M.; Van Loon, J.J.A. Antagonism between two root-associated beneficial Pseudomonas strains does not affect plant growth promotion and induced resistance against a leaf-chewing herbivore. FEMS Microbiol. Ecol. 2017, 93. [Google Scholar] [CrossRef] [Green Version]
- Pieterse, C.M.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; van Wees, S.C.; Bakker, P.A. Induced systemic resistance by beneficial microbes. Ann. Rev. Phytopathol. 2014, 52, 347–375. [Google Scholar] [CrossRef] [Green Version]
- Kloepper, J.W.; Ryu, C.M.; Zhang, S. Induced Systemic Resistance and Promotion of Plant Growth by Bacillus spp. Phytopathology 2004, 94, 1259–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Shao, D.; Jiang, C.; Shi, J.; Li, Q.; Huang, Q.; Rajoka, M.S.R.; Yang, H.; Jin, M. Biological activity of lipopeptides from Bacillus. Appl. Microbiol. Biotechnol. 2017, 101, 5951–5960. [Google Scholar] [CrossRef] [PubMed]
- Toral, L.; Rodríguez, M.; Béjar, V.; Sampedro, I. Antifungal activity of lipopeptides from Bacillus XT1 CECT 8661 against Botrytis cinereal. Front. Microbiol. 2018, 26, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.P.; Uhl, J.; Grosch, R.; Alquéres, S.; Pittroff, S.; Dietel, K.; Schmitt-Kopplin, P.; Borriss, R.; Hartmann, A. Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Mol. Plant Microbe Interact. 2015, 28, 984–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.Y.; Lim, D.J.; Noh, M.Y.; Kim, J.C.; Kim, Y.C.; Kim, I.S. Characterization of biosurfactants as insecticidal metabolites produced by Bacillus subtilis Y9. Entomol. Res. 2017, 47, 55–59. [Google Scholar] [CrossRef]
- Hernandez-Fernandez, J. Bacillus thuringiensis: A natural tool in insect pest control. In The Handbook of Microbial Bioresurses; Gupta, V.R., Ed.; CAB Int.: Wallingford, UK, 2016; pp. 121–139. Available online: http://longfiles.com/9bmrpich3cvu/The_Handbook_of_Microbial_Bioresources.pdf.html (accessed on 26 August 2020).
- Li, Y.; Wu, C.; Xing, Z.; Gao, B.; Zhang, L. Engineering the bacterial endophyte Burkholderia pyrrocinia JK-SH007 for the control of Lepidoptera larvae by introducing the cry218 genes of Bacillus thuringiensis. Biotechnol. Biotechnol. Equip. 2017, 31, 1167–1172. [Google Scholar] [CrossRef] [Green Version]
- Tailor, R.; Tippett, J.; Gibb, G.; Pells, S.; Pike, D.; Jordan, L.; Ely, S. Identification and characterization of a novel Bacillus thuringiensis delta-endotoxin entomocidal to coleopteran and lepidopteran larvae. Mol. Microbiol. 1992, 6, 1211–1217. [Google Scholar] [CrossRef]
- Majumdar, S.; Chakraborty, U. Optimization of protease production from plant growth promoting Bacillus amyloliquefaciens showing antagonistic activity against phytopathogens. Int. J. Pharm. Bio. Sci. 2017, 8, 635–642. [Google Scholar] [CrossRef]
- Chang, W.T.; Hsieh, C.H.; Hsieh, H.S. Conversion of crude chitosan to an anti-fungal protease by Bacillus cereus. World J. Microbiol. Biotechnol. 2009, 25, 375–383. [Google Scholar] [CrossRef]
- Wraight, S.P.; Ramos, M.E. Characterization of the synergistic interaction between Beauveria bassiana strain GHA and Bacillus thuringiensis morrisoni strain tenebrionis applied against Colorado potato beetle larvae. J. Invertebr. Pathol. 2017, 144, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.-Q.; Zou, W.-H.; Li, D.-L.; Chen, J.-T.; Huang, Q.; Zhou, L.-J.; Tian, X.-X.; Chen, Y.-J.; Peng, H.-J. Expression of Bacillus thuringiensis toxin Cyt2Ba in the entomopathogenic fungus Beauveria bassiana increases its virulence towards Aedes mosquitoes. PLoS Negl. Trop. Dis. 2019, 13, e0007590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorokan, A.V.; Benkovskaya, G.V.; Maksimov, I.V. The influence of potato endophytes on Leptinotarsa decemlineata endosymbionts promotes mortality of the pest. J. Invertebr. Pathol. 2016, 136, 65–67. [Google Scholar] [CrossRef]
- Westman, S.M.; Kloth, K.J.; Hanson, J.; Ohlsson, A.B.; Albrectsen, B.R. Defence priming in Arabidopsis—A Meta-Analysis. Sci. Rep. 2019, 9, 13309–13320. [Google Scholar] [CrossRef] [PubMed]
- Caarls, L.; Van der Does, D.; Hickman, R.; Jansen, W.; van Verk, M.C.; Proietti, S.; Lorenzo, O.G.; Solano, R.; Pieterse, C.M.J.; Van Wees, S.C.M. Assessing the role of ETHYLENE RESPONSE FACTOR transcriptional repressors in salicylic acid-mediated suppression of jasmonic acid-responsive genes. Plant Cell Physiol. 2017, 58, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela-Soto, J.H.; Estrada-Hernandez, M.G.; Ibarra-Laclette, E.; Delano-Frier, J.P. Inoculation of tomato plants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards whitefly Bemisia tabaci development. Planta 2010, 231, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Niu, D.D.; Liu, H.X.; Jiang, C.H.; Wang, Y.P.; Wang, Q.Y.; Jin, H.L. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Mol. Plant Microbe Interact. 2011, 24, 533–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudrappa, T.; Biedrzycki, M.L.; Kunjeti, S.G.; Donofrio, N.M.; Czymmek, K.J.; Paré, P.W.; Bais, H.P. The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun. Integr. Biol. 2010, 3, 130–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, H.; Nakaho, K.; Ishihara, T.; Ando, S.; Wada, T.; Kanayama, Y.; Asano, S.; Yoshida, S.; Tsushima, S.; Hyakumachi, M. Transcriptional profile of tomato roots exhibiting Bacillus thuringiensis-induced resistance to Ralstonia solanacearum. Plant Cell Rep. 2014, 33, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Akram, W.; Mahboob, A.; Javed, A.A. Bacillus thuringiensis strain 199 can induce systemic resistance in tomato against Fusarium wilt. Eur. J. Microbiol. Immunol. 2013, 3, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Veselova, S.V.; Burkhanova, G.F.; Rumyantseva, S.D.; Blagova, D.K.; Maksimov, I.V. Strains of Bacillus ssp. regulate wheat resistance to aphids Schizaphis graminum Rond. Appl. Biochem. Microbiol. 2019, 55, 46–52. [Google Scholar] [CrossRef]
- Ramos, O.F.; Smith, C.M.; Fritz, A.K.; Madl, R.L. Salicylic acid-mediated synthetic elicitors of systemic acquired resistance administered to wheat plants at jointing stage induced phenolics in mature grains. Crop Sci. 2017, 57, 3122–3129. [Google Scholar] [CrossRef]
- Van Loon, L.C.; Rep, M.; Pieterse, C.M. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 2006, 44, 135–162. [Google Scholar] [CrossRef] [Green Version]
- Burkhanova, G.F.; Veselova, S.V.; Sorokan’, A.V.; Blagova, D.K.; Nuzhnaya, T.V.; Maksimov, I.V. Strains of Bacillus ssp. regulate potato resistance to Septoria nodorum Berk. Appl. Biochem. Microbiol. 2017, 53, 346–352. [Google Scholar] [CrossRef]
- Maksimov, I.V.; Sorokan’, A.V.; Chereoanova, E.A.; Surina, O.B.; Troshina, N.B.; Yarullina, L.G. Effects of salicylic and jasmonic acids on the components of pro/antioxidant system in potato plants infected with late blight. Russ. J. Plant Physiol. 2011, 58, 299–306. [Google Scholar] [CrossRef]
- Sorokan, A.V.; Burkhanova, G.F.; Benkovskaya, G.V.; Maksimov, I.V. Colorado potato beetle microsymbiont Enterobacter BC-8 inhibits defense mechanisms of potato plants using crosstalk between jasmonate- and salicylate-mediated signaling pathways. Arthropod Plant Int. 2020, 14, 161–168. [Google Scholar] [CrossRef]
- Yarullina, L.G.; Kasimova, R.I.; Akhatova, A.R. Comparison of the transcriptional activity of protective protein genes in different wheat cultivars infected with Septoria nodorum Berk. Appl. Biochem. Microbiol. 2014, 50, 664–667. [Google Scholar] [CrossRef]
- Xue, M.; Yi, H. Induction of disease resistance providing new insight into sulfur dioxide preservation in Vitis vinifera L. Sci. Hortic. 2017, 225, 567–573. [Google Scholar] [CrossRef]
- Koike, N.; Hyakumachi, M.; Kageyama, K. Induction of systemic resistance in cucumber against several diseases by plant growth-promoting fungi: Lignification and superoxide generation. Eur. J. Plant Pathol. 2001, 107, 523–532. [Google Scholar] [CrossRef]
- Nakkeeran, S.; Kavitha, K.; Chandrasekar, G.; Renukadevi, P.; Fernando, W. Induction of plant defense compounds by Pseudomonas chlororaphis PA23 and Bacillus subtilis BSCBE4 in controlling damping-off of hot pepper caused by Pythium aphanidermatum. Biocontrol. Sci. Technol. 2006, 16, 403–416. [Google Scholar] [CrossRef]
- Saxena, D.; Stotzky, G.B. B. thuringiensis corn has a higher lignin content than non-B. thuringiensis corn. Am. J. Bot. 2001, 88, 1704–1706. [Google Scholar] [CrossRef] [Green Version]
- Available online: http://ibg.anrb.ru/wp-content/uploads/2019/04/Katalog-endofit.doc (accessed on 30 June 2020).
- Yasbin, R.E.; Wilson, G.A.; Young, F.E. Transformation and transfection in lysogenic strains of Bacillus subtilis: Evidence for selective induction of prophage in competent cells. J. Bacteriol. 1975, 121, 296–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Efetova, M.; Zeier, J.; Riederer, M.; Lee, C.W.; Stingl, N.; Mueller, M.; Hartung, W.; Hedrich, R.; Deeken, R. A central role of abscisic acid in drought stress protection of Agrobacterium-induced tumors on Arabidopsis. Plant Physiol. 2007, 145, 853–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variant | CFU*103/g |
---|---|
water (0) | - |
B. subtilis 26D | 420 ± 63a |
B. thuringiensis B-5351 | 7.5 ± 0.25b |
B. subtilis 26DCryChS | 487 ± 53a |
Variant/Parameter | Mortality, % (7th Day after Feeding) | |
---|---|---|
Surface-Contaminated Plants | Plant + Endophyte | |
Water | 4.1 ± 0.7a | 6.7 ± 0.5a |
B. subtilis 26D | 18.1 ± 3.5b | 38.1 ± 5.2b |
B. thuringiensis B-5351 | 76.7 ± 6.35c | 55.6 ± 5.8c |
B. subtilis 26DCryChS | 48 ± 11.8d | 80.7 ± 13.3d |
Gene | Gene Product | NCBI Access Number | Primers |
---|---|---|---|
StPR6 | Trypsin inhybitor, PR-6 | AY089962 | F 5’-gctgaggattggtgagaggta-3’ R 5’-ccacatcaccataatccaact-3’ |
StPR1 | basic antimicrobial protein PR-1 | AY050221 | F 5’-tgggtggtggttcatttcttgt-3’ 5’-catttaattccttacacatcataa-g-3’ |
StAOS | allene oxide synthase | DQ174273 | F 5’-gcacactttccctctaccttac-3’ R 5’-ccaagtttctccgcttcatcta-3’ |
StOPAR | 12-12-oxophytodienic acid reductase | JN241968 | F 5’-gggatacacagattaccctttcc-3’ R 5’- tcgggcttcacaagttcttac-3’ |
StAct | actin | X55749 | F 5’-gatggtgtcagccacac-3’ R 5’-attccagcagcttccattcc-3’ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorokan, A.; Benkovskaya, G.; Burkhanova, G.; Blagova, D.; Maksimov, I. Endophytic Strain Bacillus subtilis 26DCryChS Producing Cry1Ia Toxin from Bacillus thuringiensis Promotes Multifaceted Potato Defense against Phytophthora infestans (Mont.) de Bary and Pest Leptinotarsa decemlineata Say. Plants 2020, 9, 1115. https://doi.org/10.3390/plants9091115
Sorokan A, Benkovskaya G, Burkhanova G, Blagova D, Maksimov I. Endophytic Strain Bacillus subtilis 26DCryChS Producing Cry1Ia Toxin from Bacillus thuringiensis Promotes Multifaceted Potato Defense against Phytophthora infestans (Mont.) de Bary and Pest Leptinotarsa decemlineata Say. Plants. 2020; 9(9):1115. https://doi.org/10.3390/plants9091115
Chicago/Turabian StyleSorokan, Antonina, Galina Benkovskaya, Guzel Burkhanova, Darya Blagova, and Igor Maksimov. 2020. "Endophytic Strain Bacillus subtilis 26DCryChS Producing Cry1Ia Toxin from Bacillus thuringiensis Promotes Multifaceted Potato Defense against Phytophthora infestans (Mont.) de Bary and Pest Leptinotarsa decemlineata Say" Plants 9, no. 9: 1115. https://doi.org/10.3390/plants9091115
APA StyleSorokan, A., Benkovskaya, G., Burkhanova, G., Blagova, D., & Maksimov, I. (2020). Endophytic Strain Bacillus subtilis 26DCryChS Producing Cry1Ia Toxin from Bacillus thuringiensis Promotes Multifaceted Potato Defense against Phytophthora infestans (Mont.) de Bary and Pest Leptinotarsa decemlineata Say. Plants, 9(9), 1115. https://doi.org/10.3390/plants9091115