Lower Nitrogen Availability Enhances Resistance to Whiteflies in Tomato
Abstract
1. Introduction
2. Results
2.1. Nitrogen and Chlorophyll Analysis
2.2. Biomass, Fruit and Seed Production
2.3. Seed Germination
2.4. Resistance
2.5. Tolerance
3. Discussion
3.1. Plant Resistance and Tolerance
3.2. Economic Analysis of Lowering Rates of Fertilization
4. Materials and Methods
4.1. Study System
4.2. Experimental Design
4.3. Nitrogen and Chlorophyll Analyses
4.4. Biomass, Fruit and Seed Production
4.5. Seed Germination
4.6. Resistance
4.7. Tolerance
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karban, R.; Baldwin, I.T. Induced Responses to Herbivory; The University of Chicago Press: Chicago, IL, USA, 1997; pp. 1–319. [Google Scholar]
- Gong, B.; Zhang, G. Interactions between plants and herbivores: A review of plant defense. Acta Ecol. Sin. 2014, 34, 325–336. [Google Scholar] [CrossRef]
- Bennett, R.N.; Wallsgrove, R.M. Secondary metabolites in plant defence mechanisms. New Phytol. 1994, 127, 617–633. [Google Scholar] [CrossRef]
- Paige, K.N. Overcompensation, environmental stress, and the role of endoreduplication. Am. J. Bot. 2018, 105, 1105–1108. [Google Scholar] [CrossRef] [PubMed]
- Strauss, S.Y.; Agrawal, A.A. The ecology and evolution of plant tolerance to herbivory. Trends Ecol. Evol. 1999, 14, 179–185. [Google Scholar] [CrossRef]
- Tucker, C.; Avila-Sakar, G. Ontogenetic changes in tolerance to herbivory in Arabidopsis. Oecologia 2010, 164, 1005–1015. [Google Scholar] [CrossRef]
- Orians, C.M.; Thorn, A.; Gomez, S. Herbivore-induced resource sequestration in plants: Why bother? Oecologia 2011, 167, 1–9. [Google Scholar] [CrossRef]
- Carrillo, J.; McDermott, D.; Siemann, E. Loss of specificity: Native but not invasive populations of Triadica sebifera vary in tolerance to different herbivores. Oecologia 2014, 174, 863–871. [Google Scholar] [CrossRef]
- Hoque, S.; Avila-Sakar, G. Trade-offs and ontogenetic changes in resistance and tolerance to insect herbivory in Arabidopsis. Int. J. Plant Sci. 2015, 176, 150–158. [Google Scholar] [CrossRef]
- Puentes, A.; Ågren, J. Additive and non-additive effects of simulated leaf and inflorescence damage on survival, growth and reproduction of the perennial herb Arabidopsis lyrata. Oecologia 2012, 169, 1033–1042. [Google Scholar] [CrossRef]
- Kornelsen, J.; Avila-Sakar, G. Ontogenetic changes in defence against a generalist herbivore in Arabidopsis thaliana. Plant Ecol. 2015, 216, 847–857. [Google Scholar] [CrossRef]
- Fageria, N.; Baligar, V. Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar]
- Sainju, U.M.; Dris, R.; Singh, B. Mineral nutrition of tomato. J. Food Agric. Environ. 2003, 1, 176–183. [Google Scholar]
- Fageria, N.K. The Use of Nutrients in Crop Plants; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Naylor, R.L. Energy and resource constraints on intensive agricultural production. Annu. Rev. Energy Environ. 1996, 21, 99–123. [Google Scholar] [CrossRef]
- White, T.C.R. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 1984, 63, 90–105. [Google Scholar] [CrossRef] [PubMed]
- Minkenberg, O.P.; Ottenheim, J.J. Effect of leaf nitrogen content of tomato plants on preference and performance of a leafmining fly. Oecologia 1990, 83, 291–298. [Google Scholar] [CrossRef]
- Jauset, A.; Sarasúa, M.; Avilla, J.; Albajes, R. The impact of nitrogen fertilization of tomato on feeding site selection and oviposition by Trialeurodes vaporariorum. Entomol. Exp. Appl. 1998, 86, 175–182. [Google Scholar] [CrossRef]
- Žanić, K.; Dumičić, G.; Škaljac, M.; Ban, S.G.; Urlić, B. The effects of nitrogen rate and the ratio of NO3−: NH4+ on Bemisia tabaci populations in hydroponic tomato crops. Crop Prot. 2011, 30, 228–233. [Google Scholar] [CrossRef]
- Mattson, W.J., Jr. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 1980, 11, 119–162. [Google Scholar] [CrossRef]
- Hunt, D.W.; Drury, C.F.; Maw, H.E.L. Influence of nitrogen on the performance of Colorado potato beetle (Coleoptera: Chrysomelidae) on tomato. Environ. Entomol. 1992, 21, 817–821. [Google Scholar] [CrossRef]
- Herms, D.A. Effects of fertilization on insect resistance of woody ornamental plants: Reassessing an entrenched paradigm. Environ. Entomol. 2002, 31, 923–933. [Google Scholar] [CrossRef]
- De Barro, P.J.; Liu, S.S.; Boykin, L.M.; Dinsdale, A.B. Bemisia tabaci: A statement of species status. Annu. Rev. Entomol. 2011, 56, 1–19. [Google Scholar] [CrossRef]
- Maschinski, J.; Whitham, T.G. The continuum of plant responses to herbivory: The influence of plant association, nutrient availability, and timing. Am. Nat. 1989, 134, 1–19. [Google Scholar] [CrossRef]
- Avila-Sakar, G.; Laarakker, A. The shape of the function of tolerance to herbivory. Am. J. Plant Sci. Biotechnol. 2011, 5, 76–82. [Google Scholar]
- Hochwender, C.G.; Marquis, R.J.; Stowe, K.A. The potential for and constraints on the evolution of compensatory ability in Asclepias syriaca. Oecologia 2000, 122, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Wise, M.J.; Abrahamson, W.G. Beyond the compensatory continuum: Environmental resource levels and plant tolerance of herbivory. Oikos 2005, 109, 417–428. [Google Scholar] [CrossRef]
- Siddappaji, M.H.; Scholes, D.R.; Krishnankutty, S.M.; Calla, B.; Clough, S.J.; Zielinski, R.E.; Paige, K.N. The role of invertases in plant compensatory responses to simulated herbivory. BMC Plant Biol. 2015, 15, 278. [Google Scholar] [CrossRef]
- Züst, T.; Agrawal, A.A. Trade-offs between plant growth and defense against insect herbivory: An emerging mechanistic synthesis. Annu. Rev. Plant Biol. 2017, 68, 513–534. [Google Scholar] [CrossRef]
- Mauricio, R.; Rausher, M.D.; Burdick, D.S. Variation in the defense strategies of plants: Are resistance and tolerance mutually exclusive? Ecology 1997, 78, 1301–1311. [Google Scholar] [CrossRef]
- Harper, J.L. Population Biology of Plants; Academic Press: London, UK, 1977; pp. 1–892. [Google Scholar]
- Mitchell, C.; Brennan, R.M.; Graham, J.; Karley, A.J. Plant defense against herbivorous pests: Exploiting resistance and tolerance traits for sustainable crop protection. Front. Plant Sci. 2016, 7, 1132. [Google Scholar] [CrossRef]
- Inbar, M.; Gerling, D. Plant-mediated interactions between whiteflies, herbivores, and natural enemies. Annu. Rev. Entomol. 2008, 53, 431–448. [Google Scholar] [CrossRef]
- Bergougnoux, V. The history of tomato: From domestication to biopharming. Biotechnol. Adv. 2014, 32, 170–189. [Google Scholar] [CrossRef] [PubMed]
- Luckwill, L.C. The Genus Lycopersicon: Historical, Biological, and Taxonomic Survey of the Wild and Cultivated Tomatoes; Aberdeen University Press: Aberdeen, UK, 1943. [Google Scholar]
- Simmons, A.T.; Gurr, G.M. Trichomes of Lycopersicon species and their hybrids: Effects on pests and natural enemies. Agric. For. Entomol. 2005, 7, 265–276. [Google Scholar] [CrossRef]
- Mymko, D.; Avila-Sakar, G. The influence of leaf ontogenetic stage and plant reproductive phenology on trichome density and constitutive resistance in six tomato varieties. Arthropod Plant Interact. 2019, 13, 797–803. [Google Scholar] [CrossRef]
- Gomez, S.; Ferrieri, R.A.; Schueller, M.; Orians, C.M. Methyl jasmonate elicits rapid changes in carbon and nitrogen dynamics in tomato. New Phytol. 2010, 188, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Schwachtje, J.; Minchin, P.E.; Jahnke, S.; van Dongen, J.T.; Schittko, U.; Baldwin, I.T. SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots. Proc. Natl. Acad. Sci. USA 2006, 103, 12935–12940. [Google Scholar] [CrossRef] [PubMed]
- White, A.C.; Rogers, A.; Rees, M.; Osborne, C.P. How can we make plants grow faster? A source–sink perspective on growth rate. J. Exp. Bot. 2016, 67, 31–45. [Google Scholar] [CrossRef]
- Wooliver, R.; Pfennigwerth, A.A.; Bailey, J.K.; Schweitzer, J.A. Plant functional constraints guide macroevolutionary trade-offs in competitive and conservative growth responses to nitrogen. Funct. Ecol. 2016, 30, 1099–1108. [Google Scholar] [CrossRef]
- Agrawal, A.A.; Fishbein, M. Plant defense syndromes. Ecology 2006, 87, S132–S149. [Google Scholar] [CrossRef]
- Löyttyniemi, K. Nitrogen fertilization and nutrient contents in Scots pine in relation to the browsing preference by moose (Alces alces). Folia For. 1981, 487, 1–4. [Google Scholar]
- Bryant, J.P.; Chapin, F.S., III; Klein, D.R. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 1983, 40, 357–368. [Google Scholar] [CrossRef]
- Stamp, N. Out of the quagmire of plant defense hypotheses. Q. Rev. Biol. 2003, 78, 23–55. [Google Scholar] [CrossRef]
- Herms, D.A.; Mattson, W.J., Jr. The Dilemma of Plants: To Grow or Defend. Q. Rev. Biol. 1992, 67, 283–335. [Google Scholar] [CrossRef]
- Hoffland, E.; Dicke, M.; Van Tintelen, W.; Dijkman, H.; Van Beusichem, M.L. Nitrogen availability and defense of tomato against two-spotted spider mite. J. Chem. Ecol. 2000, 26, 2697–2711. [Google Scholar] [CrossRef]
- Royer, M.; Larbat, R.; Le Bot, J.; Adamowicz, S.; Robin, C. Is the C:N ratio a reliable indicator of C allocation to primary and defence-related metabolisms in tomato? Phytochemistry 2013, 88, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Tripp, K.E.; Kroen, W.K.; Peet, M.M.; Willits, D.H. Fewer whiteflies found on CO2-enriched greenhouse tomatoes with high C : N ratios. HortScience 1992, 27, 1079–1080. [Google Scholar] [CrossRef]
- Jauset, A.; Sarasúa, M.; Avilla, J.; Albajes, R. Effect of nitrogen fertilization level applied to tomato on the greenhouse whitefly. Crop Prot. 2000, 19, 255–261. [Google Scholar] [CrossRef]
- Weinig, C.; Stinchcombe, J.R.; Schmitt, J. Evolutionary genetics of resistance and tolerance to natural herbivory in Arabidopsis thaliana. Evolution 2003, 57, 1270–1280. [Google Scholar] [CrossRef]
- Carmona, D.; Fornoni, J. Herbivores can select for mixed defensive strategies in plants. New Phytol. 2013, 197, 576–585. [Google Scholar] [CrossRef]
- Buckley, N.E.; Avila-Sakar, G. Reproduction, growth, and defense trade-offs vary with gender and reproductive allocation in Ilex glabra (Aquifoliaceae). Am. J. Bot. 2013, 100, 357–364. [Google Scholar] [CrossRef]
- Sainju, U.; Singh, B.; Whitehead, W. Cover crops and nitrogen fertilization effects on soil carbon and nitrogen and tomato yield. Can. J. Soil Sci. 2000, 80, 523–532. [Google Scholar] [CrossRef]
- Heeb, A.; Lundegårdh, B.; Ericsson, T.; Savage, G.P. Effects of nitrate-, ammonium-, and organic-nitrogen-based fertilizers on growth and yield of tomatoes. J. Plant Nutr. Soil Sci. 2005, 168, 123–129. [Google Scholar] [CrossRef]
- Johnson, M.W.; Caprio, L.C.; Coughlin, J.A.; Tabashnik, B.E.; Rosenheim, J.A.; Welter, S.C. Effect of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) on yield of fresh market tomatoes. J. Econ. Entomol. 1992, 85, 2370–2376. [Google Scholar] [CrossRef]
- Allison, F.E. The enigma of soil nitrogen balance sheets. Adv. Agron. 1955, 7, 213–250. [Google Scholar]
- Singandhupe, R.; Rao, G.; Patil, N.; Brahmanand, P. Fertigation studies and irrigation scheduling in drip irrigation system in tomato crop (Lycopersicon esculentum L.). Eur. J. Agron. 2003, 19, 327–340. [Google Scholar] [CrossRef]
- Jones, D.L.; Healey, J.R.; Willett, V.B.; Farrar, J.F.; Hodge, A. Dissolved organic nitrogen uptake by plants—An important N uptake pathway? Soil Biol. Biochem. 2005, 37, 413–423. [Google Scholar] [CrossRef]
- Sweeney, D.; Graetz, D.; Bottcher, A.; Locascio, S.; Campbell, K. Tomato yield and nitrogen recovery as influenced by irrigation method, nitrogen source, and mulch. HortScience 1987, 22, 27–29. [Google Scholar]
- Bowmer, K.H. Ecosystem effects from nutrient and pesticide pollutants: Catchment care as a solution. Resources 2013, 2, 439–456. [Google Scholar] [CrossRef]
- Gao, Y.; He, N.; Zhang, X. Effects of reactive nitrogen deposition on terrestrial and aquatic ecosystems. Ecol. Eng. 2014, 70, 312–318. [Google Scholar] [CrossRef]
- Owens, L.; Edwards, W.; Van Keuren, R. Groundwater nitrate levels under fertilized grass and grass-legume pastures. J. Environ. Qual. 1994, 23, 752–758. [Google Scholar] [CrossRef]
- Dinnes, D.L.; Karlen, D.L.; Jaynes, D.B.; Kaspar, T.C.; Hatfield, J.L.; Colvin, T.S.; Cambardella, C.A. Nitrogen management strategies to reduce nitrate leaching in tile-drained Midwestern soils. Agron. J. 2002, 94, 153–171. [Google Scholar] [CrossRef]
- Ding, J.; Jiang, X.; Ma, M.; Zhou, B.; Guan, D.; Zhao, B.; Zhou, J.; Cao, F.; Li, L.; Li, J. Effect of 35 years inorganic fertilizer and manure amendment on structure of bacterial and archaeal communities in black soil of northeast China. Appl. Soil Ecol. 2016, 105, 187–195. [Google Scholar] [CrossRef]
- Good, A.G.; Beatty, P.H. Fertilizing Nature: A Tragedy of Excess in the Commons. PLoS Biol. 2011, 9, e1001124. [Google Scholar] [CrossRef]
- Loomis, J.; Kent, P.; Strange, L.; Fausch, K.; Covich, A. Measuring the total economic value of restoring ecosystem services in an impaired river basin: Results from a contingent valuation survey. Ecol. Econ. 2000, 33, 103–117. [Google Scholar] [CrossRef]
- Musuna, A. A method for monitoring whitefly, Bemisia tabaci (Genn.), in cotton in Zimbabwe. Agric. Ecosyst. Environ. 1986, 17, 29–35. [Google Scholar] [CrossRef]
- Tosh, C.R.; Brogan, B. Control of tomato whiteflies using the confusion effect of plant odours. Agron. Sustain. Dev. 2015, 35, 183–193. [Google Scholar] [CrossRef]
- van Lenteren, J.C.; Noldus, L. Whitefly-plant relationships: Behavioural and ecological aspects. In Whiteflies: Their Bionomics, Pest Status and Management; Intercept Press: Andover, UK, 1990; pp. 47–89. [Google Scholar]
- Cohen, S.; Berlinger, M. Transmission and cultural control of whitefly-borne viruses. Agric. Ecosyst. Environ. 1986, 17, 89–97. [Google Scholar] [CrossRef]
- Morales, F.; Jones, P. The ecology and epidemiology of whitefly-transmitted viruses in Latin America. Virus Res. 2004, 100, 57–65. [Google Scholar] [CrossRef]
- Tsai, W.; Shih, S.; Green, S.; Lee, L.; Luther, G.; Ratulangi, M.; Sembel, D.; Jan, F.-J. Identification of a new begomovirus associated with yellow leaf curl diseases of tomato and pepper in Sulawesi, Indonesia. Plant Dis. 2009, 93, 321. [Google Scholar] [CrossRef]
- Palumbo, J.; Horowitz, A.; Prabhaker, N. Insecticidal control and resistance management for Bemisia tabaci. Crop Prot. 2001, 20, 739–765. [Google Scholar] [CrossRef]
- Horowitz, A.R.; Antignus, Y.; Gerling, D. Management of Bemisia tabaci whiteflies. In The Whitefly, Bemisia Tabaci (Homoptera: Aleyrodidae) Interaction with Geminivirus-Infected Host Plants: Bemisia Tabaci, Host Plants and Geminiviruses; Thompson, W.M., Ed.; Springer Science & Business Media: New York, NY, USA, 2011; pp. 293–322. [Google Scholar]
- Sharaf, N. Chemical control of Bemisia tabaci. Agric. Ecosyst. Environ. 1986, 17, 111–127. [Google Scholar] [CrossRef]
- Byrne, D.N.; Bellows, T.S., Jr. Whitefly biology. Annu. Rev. Entomol. 1991, 36, 431–457. [Google Scholar] [CrossRef]
- Peet, M.M. Irrigation and fertilization. In Tomatoes; Heuvelink, E., Ed.; CABI Pub: Wallingford, UK, 2005; pp. 171–198. [Google Scholar]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. In Circular. California Agricultural Experiment Station; CABI: Berkeley, CA, USA, 1950. [Google Scholar]
- Locascio, S.J.; Hochmuth, G.J.; Rhoads, F.M.; Olson, S.M.; Smajstrla, A.G.; Hanlon, E.A. Nitrogen and potassium application scheduling effects on drip-irrigated tomato yield and leaf tissue analysis. HortScience 1997, 32, 230–235. [Google Scholar] [CrossRef]
- Kelley, W.T.; Boyhan, G.E.; Harrison, K.A.; Sumner, P.E.; Langston, D.B.; Sparks, A.N.; Culpepper, S.; Hurst, W.C.; Fonsah, E.G. Commercial Tomato Production Handbook; The University of Georgia: Athens, GA, USA; Fort Valley State University: Fort Valley, GA, USA, 2010. [Google Scholar]
- Schepers, J.; Francis, D.; Vigil, M.; Below, F. Comparison of corn leaf nitrogen concentration and chlorophyll meter readings. Commun. Soil Sci. Plant Anal. 1992, 23, 2173–2187. [Google Scholar] [CrossRef]
- Fitzgerald, G.; Rodriguez, D.; O’Leary, G. Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index—The canopy chlorophyll content index (CCCI). Field Crops Res. 2010, 116, 318–324. [Google Scholar] [CrossRef]
- Sestak, Z.; Catský, J.; Jarvis, P.G. Plant photosynthetic production. In Manual of Methods; Junk: Hague, The Netherlands, 1971; p. 118. [Google Scholar]
- Renault, S.; Croser, C.; Franklin, J.A.; Zwiazek, J.J. Effects of NaCl and Na2SO4 on red-osier dogwood (Cornus stolonifera Michx) seedlings. Plant Soil 2001, 233, 261–268. [Google Scholar] [CrossRef]
- Jakobsson, A.; Eriksson, O. A comparative study of seed number, seed size, seedling size and recruitment in grassland plants. Oikos 2000, 88, 494–502. [Google Scholar] [CrossRef]
Response Variable | W | C(W) | V | N | V*N | W*V | W*N | W*V*N |
---|---|---|---|---|---|---|---|---|
Total fruit fresh weight | 0.75 | 3.33 * | 0.76 | 20.17 *** | 0.51 | 0.24 | 0.85 | 1.42 |
Total fruit dry weight | 1.80 | 2.71 † | 2.29 | 19.17 *** | 1.63 | 0.12 | 0.50 | 1.05 |
Fruit size (fresh weight) | 0.15 a | 0.72 | 1.20 | 3.94 * | 3.05 ** | 0.23 | 0.79 | 0.38 |
Seed production (full model) | 1.70 | 2.66 † | 2.43 † | 2.95 † | 0.43 | 0.56 | 0.29 | 1.54 |
Seed production (reduced model) | 1.76 | 2.58 † | 2.40 † | 3.21 * | - - - | - - - | - - - | - - - |
Total seed mass | 0.39 | 1.58 | 5.02 ** | 1.43 | 1.16 | 0.24 | 0.81 | 0.78 |
Total vegetative biomass | 0.99 | 1.62 | 2.94 * | 68.03 *** | 1.31 | 1.16 | 1.21 | 0.64 |
Root: shoot ratio | 1.07 | 3.06 * | 27.35 *** | 14.22 *** | 0.83 | 0.42 | 0.45 | 0.77 |
Chile | USA | |||
---|---|---|---|---|
Cost of fertilizer | Normal | Reduced 50% | Normal | Reduced 50% |
Price of fertilizer per kg N | $1.06 | $1.06 | $0.62 | $0.62 |
N application rate (kg N/ha) 1;2;3 | 520 | 260 | 252.2 4 | 126.1 |
Expense on fertilizer per ha 5;6 | $551.20 | $275.60 | $156.36 8 | $78.18 |
Cost of pesticide per ha | Normal | Reduced 30% | Difference | |
Price of pesticide 5; 6 | $1538.50 | $1076.95 | ||
Labor cost of application | $769.20 | $538.44 | ||
Total cost of pesticide application | $2307.70 | $1615.39 | $692.31 | |
Cost of washing fruit | Normal | Reduced 15% | Difference | |
Tomato production kg/ha 7 | 63,000 7 | 53,550 | ||
Fruit that need to be washed (%) | 33.0 | 28.05 | ||
Cost of washing per kg | $0.034 | $0.034 | ||
Total cost of washing per ha | $706.86 | $510.71 | $196.15 | |
Value of crop (gains) | Normal | Reduced 15% | Difference | |
Tomato production kg/ha | 63,000 7 | 53,550 | ||
Value of crop/kg | $0.1253 | $0.1253 | ||
Gains per ha | $7894.21 | $6710.08 | $1184.13 | |
Net gains or losses per ha | Gains | Losses | Net Change | |
Crop value | $1184.13 | |||
Savings on N | $275.60 | |||
Savings on pesticide | $692.31 | |||
Savings on costs of washing fruits | $196.15 | |||
Total | $1164.06 | $1184.13 | −$20.07 |
Name | Molecular Weight | Concentration | |
---|---|---|---|
Macronutrients | |||
K2HPO4 | Potassium phosphate (monobasic) | 136.6 | 1.8 mM |
K2SO4 | Potassium sulfate | 174.26 | 3.6 mM |
Ca(NO3)2·4H2O | Calcium nitrate (tetrahydrate) | 236.4 | 4.45/2.2/0 mM * |
MgSO4·7H2O | Magnesium sulfate (heptahydrate) | 246.48 | 0.5 mM |
CaCl2· 2H2O | Calcium chloride (dihydrate) | 147.01 | 0/2.2/4.45 mM * |
Micronutrients | |||
H3BO3 | Boric acid | 61.83 | 23 µM |
MnCl2·4H2O | Manganese chloride | 197.9 | 5 µM |
ZnSO4·7H2O | Zinc sulphate | 287.5 | 0.4 µM |
CuSO4·5H2O | Cupric sulphate | 249.7 | 0.2 µM |
MoO3 | Molybdic acid | 0.1 µM | |
FeEDTA | Ethylene Diamine Tetraacetic Acid (ferric-sodium salt) | 367.1 | 7 µM |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramachandran, S.; Renault, S.; Markham, J.; Verdugo, J.; Albornoz, M.; Avila-Sakar, G. Lower Nitrogen Availability Enhances Resistance to Whiteflies in Tomato. Plants 2020, 9, 1096. https://doi.org/10.3390/plants9091096
Ramachandran S, Renault S, Markham J, Verdugo J, Albornoz M, Avila-Sakar G. Lower Nitrogen Availability Enhances Resistance to Whiteflies in Tomato. Plants. 2020; 9(9):1096. https://doi.org/10.3390/plants9091096
Chicago/Turabian StyleRamachandran, Sreedevi, Sylvie Renault, John Markham, Jaime Verdugo, Marta Albornoz, and Germán Avila-Sakar. 2020. "Lower Nitrogen Availability Enhances Resistance to Whiteflies in Tomato" Plants 9, no. 9: 1096. https://doi.org/10.3390/plants9091096
APA StyleRamachandran, S., Renault, S., Markham, J., Verdugo, J., Albornoz, M., & Avila-Sakar, G. (2020). Lower Nitrogen Availability Enhances Resistance to Whiteflies in Tomato. Plants, 9(9), 1096. https://doi.org/10.3390/plants9091096