Transcriptome-Wide N6-Methyladenosine (m6A) Methylome Profiling of Heat Stress in Pak-choi (Brassica rapa ssp. chinensis)
Abstract
1. Background
2. Results and Discussion
2.1. Transcriptome-Wide Detection of m6A Modification in Pak-choi
2.2. m6A Topological Patterns in Pak-choi
2.3. Differentially Expressed Genes Analysis
2.4. Association Analysis between Differentially Expressed Genes and Differential m6A Peaks
3. Materials and Methods
3.1. Plant Material and Tissue Collection
3.2. Library Construction and RNA Sequencing
3.3. Data Analysis
3.4. Biological Information Analysis
3.5. Expression and Function Analysis of Multilayer Genes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Availability of Data and Materials
Ethics Approval and Consent to Participate
Consent for Publication
Abbreviations
CDS | coding sequence |
FPKM | fragments per kilobase of exon model per million mapped reads |
GO | gene ontology |
HSP | heat stress protein |
KEGG | kyoto encyclopedia of genes and genomes |
m6A | N6-methyladenosine |
m6A-seq | RNA sequencing based on m6A RNA immunoprecipitation |
UTR | untranslated region |
References
- Wei, C.M.; Gershowitz, A.; Moss, B. Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA. Cell 1975, 4, 379–386. [Google Scholar] [CrossRef]
- Cantara, W.A.; Crain, P.F.; Rozenski, J.; McCloskey, J.A.; Harris, K.A.; Zhang, X.; Vendeix, F.A.; Fabris, D.; Agris, P.F. The RNA modification database, RNAMDB: 2011 update. Nucleic Acids Res. 2010, 39 (Suppl.1), D195–D201. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Ji, X.; Guo, X.; Ji, S. Regulatory Role of N6-methyladenosine (m6A) methylation in RNA processing and human diseases. J. Cell. Biochem. 2017, 118, 2534–2543. [Google Scholar] [CrossRef]
- Niu, Y.; Zhao, X.; Wu, Y.S.; Li, M.M.; Wang, X.J.; Yang, Y.G. N6-methyladenosine (m6A) in RNA: An old modification with a novel epigenetic function. Genom. Proteom. Bioinform. 2013, 11, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Batista, P.J.; Molinie, B.; Wang, J.; Qu, K.; Zhang, J.; Li, L.; Bouley, D.M.; Lujan, E.; Haddad, B.; Daneshvar, K. m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 2014, 15, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.S.; He, C. Fate by RNA methylation: m6A steers stem cell pluripotency. Genome Biol. 2015, 16, 43. [Google Scholar] [CrossRef]
- Shen, L.; Liang, Z.; Gu, X.; Chen, Y.; Teo, Z.W.N.; Hou, X.; Cai, W.M.; Dedon, P.C.; Liu, L.; Yu, H. N6-methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis. Dev. Cell 2016, 38, 186–200. [Google Scholar] [CrossRef]
- Luo, G.Z.; MacQueen, A.; Zheng, G.; Duan, H.; Dore, L.C.; Lu, Z.; Liu, J.; Chen, K.; Jia, G.; Bergelson, J. Unique features of the m6A methylome in Arabidopsis thaliana. Nat. Commun. 2014, 5, 1–8. [Google Scholar] [CrossRef]
- Zhong, S.; Li, H.; Bodi, Z.; Button, J.; Vespa, L.; Herzog, M.; Fray, R.G. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell 2008, 20, 1278–1288. [Google Scholar] [CrossRef]
- Dominissini, D.; Moshitch-Moshkovitz, S.; Schwartz, S.; Salmon-Divon, M.; Ungar, L.; Osenberg, S.; Cesarkas, K.; Jacob-Hirsch, J.; Amariglio, N.; Kupiec, M. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012, 485, 201–206. [Google Scholar] [CrossRef]
- Meyer, K.D.; Saletore, Y.; Zumbo, P.; Elemento, O.; Mason, C.E.; Jaffrey, S.R. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 2012, 149, 1635–1646. [Google Scholar] [CrossRef] [PubMed]
- Bodi, Z.; Zhong, S.; Mehra, S.; Song, J.; Graham, N.; Li, H.; May, S.; Fray, R.G. Adenosine methylation in Arabidopsis mRNA is associated with the 3′ end and reduced levels cause developmental defects. Front. Plant Sci. 2012, 3, 48. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, I.; De Vos, R.C.; Bones, A.M.; Hall, R.D. Plant molecular stress responses face climate change. Trends Plant Sci. 2010, 15, 664–674. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lin, X.; Chen, A.; Peterson, T.; Ma, K.; Bertzky, M.; Ciais, P.; Kapos, V.; Peng, C.; Poulter, B. Global priority conservation areas in the face of 21st century climate change. PLoS ONE 2013, 8, e54839. [Google Scholar] [CrossRef]
- Kotak, S.; Vierling, E.; Bäumlein, H.; Von Koskull-Döring, P. A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell 2007, 19, 182–195. [Google Scholar] [CrossRef]
- Nakashima, K.; Yamaguchi-Shinozaki, K.; Shinozaki, K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front. Plant Sci. 2014, 5, 170. [Google Scholar] [CrossRef]
- Yu, J.; Li, Y.; Wang, T.; Zhong, X. Modification of N6-methyladenosine RNA methylation on heat shock protein expression. PloS ONE 2018, 13, e0198604. [Google Scholar] [CrossRef]
- Meyer, K.D.; Patil, D.P.; Zhou, J.; Zinoviev, A.; Skabkin, M.A.; Elemento, O.; Pestova, T.V.; Qian, S.B.; Jaffrey, S.R. 5′ UTR m6A promotes cap-independent translation. Cell 2015, 163, 999–1010. [Google Scholar] [CrossRef]
- Wan, Y.; Tang, K.; Zhang, D.; Xie, S.; Zhu, X.; Wang, Z.; Lang, Z. Transcriptome-wide high-throughput deep m6A-seq reveals unique differential m6A methylation patterns between three organs in Arabidopsis thaliana. Genome Biol. 2015, 16, 272. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, K.; Zhang, D.; Wan, Y.; Wen, Y.; Lu, Q.; Wang, L. High-throughput m6A-seq reveals RNA m6A methylation patterns in the chloroplast and mitochondria transcriptomes of Arabidopsis thaliana. PLoS ONE 2017, 12, e0185612. [Google Scholar] [CrossRef]
- Zhou, J.; Wan, J.; Gao, X.; Zhang, X.; Jaffrey, S.R.; Qian, S.B. Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature 2015, 526, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Li, S.; Zhang, X.S.; Sui, N. Functional implications of active N6-methyladenosine in plants. Front. Cell Dev. Biol. 2020, 8, 291. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.J.; Kramer, M.C.; Gosai, S.J.; Yu, X.; Vandivier, L.E.; Nelson, A.D.; Anderson, Z.D.; Beilstein, M.A.; Fray, R.G.; Lyons, E. N6-methyladenosine inhibits local ribonucleolytic cleavage to stabilize mRNAs in Arabidopsis. Cell Rep. 2018, 25, 1146–1157.e3. [Google Scholar] [CrossRef] [PubMed]
- Dominissini, D.; Moshitch-Moshkovitz, S.; Salmon-Divon, M.; Amariglio, N.; Rechavi, G. Transcriptome-wide mapping of N6-methyladenosine by m6A-seq based on immunocapturing and massively parallel sequencing. Nat. Protoc. 2013, 8, 176–189. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S.; Agarwala, S.D.; Mumbach, M.R.; Jovanovic, M.; Mertins, P.; Shishkin, A.; Tabach, Y.; Mikkelsen, T.S.; Satija, R.; Ruvkun, G. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 2013, 155, 1409–1421. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, X.; Zhang, X. Using non-uniform read distribution models to improve isoform expression inference in RNA-Seq. Bioinformatics 2011, 27, 502–508. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, L.; Meng, J.; Rao, M.K.; Chen, Y.; Huang, Y. MeTDiff: A novel differential rna methylation analysis for MeRIP-Seq data. IEEE/ACM Trans. Comput. Biol. Bioinform. 2018, 15, 526–534. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.G.; He, Q.Y. ChIPseeker: An R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 2015, 31, 2382–2383. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37 (Suppl.2), W202–W208. [Google Scholar] [CrossRef] [PubMed]
- Heinz, S.; Benner, C.; Spann, N.; Bertolino, E.; Lin, Y.C.; Laslo, P.; Cheng, J.X.; Murre, C.; Singh, H.; Glass, C.K. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 2010, 38, 576–589. [Google Scholar] [CrossRef] [PubMed]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1–13. [Google Scholar] [CrossRef]
- Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44. [Google Scholar]
Sample | Raw Reads | Raw Bases | Clean Reads | Clean Bases | Valid Bases | Q30 | GC |
---|---|---|---|---|---|---|---|
CK_1_input | 85.82 M | 12.92 G | 82.01 M | 9.07 G | 70.23% | 87.33% | 48.42% |
CK_1_IP | 80.33 M | 12.09 G | 76.98 M | 10.38 G | 85.82% | 87.88% | 47.28% |
CK_2_input | 86.32 M | 12.99 G | 83.84 M | 9.49 G | 73.04% | 87.36% | 48.52% |
CK_2_IP | 64.75 M | 9.71 G | 63.71 M | 8.38 G | 86.28% | 89.74% | 47.28% |
CK_3_input | 85.15 M | 12.82 G | 83.75 M | 9.59 G | 74.80% | 88.50% | 48.31% |
CK_3_IP | 73.17 M | 11.01 G | 69.33 M | 8.84 G | 80.32% | 87.21% | 46.96% |
T43_1_input | 80.40 M | 12.10 G | 78.73 M | 8.93 G | 73.79% | 88.72% | 48.16% |
T43_1_IP | 80.10 M | 12.01 G | 79.10 M | 9.40 G | 78.27% | 87.65% | 46.45% |
T43_2_input | 75.21 M | 11.28 G | 74.94 M | 8.54 G | 75.73% | 89.72% | 48.07% |
T43_2_IP | 77.01 M | 11.59 G | 73.52 M | 9.47 G | 81.67% | 88.03% | 46.85% |
T43_3_input | 85.14 M | 12.82 G | 81.97 M | 9.50 G | 74.11% | 87.03% | 48.03% |
T43_3_IP | 78.39 M | 11.80 G | 74.95 M | 9.48 G | 80.35% | 88.62% | 46.79% |
Sample | Total Reads | Total Mapped Reads | Multiple Mapped | Uniquely Mapped | Reads Mapped in Proper Pairs |
---|---|---|---|---|---|
CK_1_input | 82,012,256 | 72,759,712 (88.72%) | 4,178,829 (5.10%) | 68,580,883 (83.62%) | 66,920,836 (81.60%) |
CK_1_IP | 76,984,824 | 67,393,417 (87.54%) | 3,465,135 (4.50%) | 63,928,282 (83.04%) | 59,429,546 (77.20%) |
CK_2_input | 83,839,082 | 74,908,623 (89.35%) | 4,645,028 (5.54%) | 70,263,595 (83.81%) | 68,417,558 (81.61%) |
CK_2_IP | 63,714,740 | 56,726,613 (89.03%) | 3,176,962 (4.99%) | 53,549,651 (84.05%) | 50,426,514 (79.14%) |
CK_3_input | 83,747,818 | 75,954,376 (90.69%) | 4,321,180 (5.16%) | 71,633,196 (85.53%) | 69,931,644 (83.50%) |
CK_3_IP | 69,326,216 | 60,695,740 (87.55%) | 3,178,979 (4.59%) | 57,516,761 (82.97%) | 54,734,078 (78.95%) |
T43_1_input | 78,733,522 | 71,546,508 (90.87%) | 4,487,991 (5.70%) | 67,058,517 (85.17%) | 65,867,334 (83.66%) |
T43_1_IP | 79,099,558 | 69,007,966 (87.24%) | 4,462,602 (5.64%) | 64,545,364 (81.60%) | 61,905,290 (78.26%) |
T43_2_input | 74,935,246 | 68,759,115 (91.76%) | 4,272,256 (5.70%) | 64,486,859 (86.06%) | 63,435,032 (84.65%) |
T43_2_IP | 73,516,480 | 64,743,517 (88.07%) | 3,957,284 (5.38%) | 60,786,233 (82.68%) | 58,314,510 (79.32%) |
T43_3_input | 81,967,046 | 72,968,341 (89.02%) | 4,605,436 (5.62%) | 68,362,905 (83.40%) | 66,579,194 (81.23%) |
T43_3_IP | 74,954,614 | 66,014,828 (88.07%) | 4,025,106 (5.37%) | 61,989,722 (82.70%) | 59,600,270 (79.52%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Wang, J.; Hou, X. Transcriptome-Wide N6-Methyladenosine (m6A) Methylome Profiling of Heat Stress in Pak-choi (Brassica rapa ssp. chinensis). Plants 2020, 9, 1080. https://doi.org/10.3390/plants9091080
Liu G, Wang J, Hou X. Transcriptome-Wide N6-Methyladenosine (m6A) Methylome Profiling of Heat Stress in Pak-choi (Brassica rapa ssp. chinensis). Plants. 2020; 9(9):1080. https://doi.org/10.3390/plants9091080
Chicago/Turabian StyleLiu, Gaofeng, Jin Wang, and Xilin Hou. 2020. "Transcriptome-Wide N6-Methyladenosine (m6A) Methylome Profiling of Heat Stress in Pak-choi (Brassica rapa ssp. chinensis)" Plants 9, no. 9: 1080. https://doi.org/10.3390/plants9091080
APA StyleLiu, G., Wang, J., & Hou, X. (2020). Transcriptome-Wide N6-Methyladenosine (m6A) Methylome Profiling of Heat Stress in Pak-choi (Brassica rapa ssp. chinensis). Plants, 9(9), 1080. https://doi.org/10.3390/plants9091080