What Does the Molecular Genetics of Different Types of Restorer-of-Fertility Genes Imply?
Abstract
1. Introduction
2. Pentatricopeptide Repeat Protein is the Most Abundant Type of Rf Gene Product
3. What Do Rfs Encode Other than PPR Proteins?
4. How Have S-orf and Rf Evolved?
4.1. Evolution of S-orf
4.2. Evolution of PPR Rfs
4.3. Evolution of Non-PPR Rfs
5. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kaul, M.H.L. Male Sterility in Higher Plants; Springer: Berlin/Heidelberg, Germany, 1988; pp. 3–14. [Google Scholar]
- Levings, C.S., III. Thoughts on cytoplasmic male sterility in cms-T maize. Plant Cell 1993, 5, 1285–1290. [Google Scholar] [CrossRef]
- McVetty, P.B.E.; Pinnisch, R.; Scarth, R. The significance of floral characteristics in seed production of four summer rape cultivar A-lines with pol cytoplasm. Can. J. Plant Sci. 1989, 69, 915–918. [Google Scholar] [CrossRef]
- Goto, S.; Yoshioka, T.; Ohta, S.; Kita, M.; Hamada, H.; Shimizu, T. QTL mapping of male sterility and transmission pattern in progeny of Satsuma mandarin. PLoS ONE 2018, 13, e0200844. [Google Scholar] [CrossRef] [PubMed]
- Hosaka, K.; Sanetomo, R. Development of a rapid identification method for potato cytoplasm and its use for evaluating Japanese collections. Theor. Appl. Genet. 2012, 125, 1237–1251. [Google Scholar] [CrossRef] [PubMed]
- Donoso, J.M.; Eduardo, I.; Picañol, R.; Batlle, I.; Howad, W.; Aranzana, M.J.; Arús, P. High-density mapping suggests cytoplasmic male sterility with two restorer genes in almond X peach progenies. Hortic. Res. 2015, 2, 15016. [Google Scholar] [CrossRef]
- Jones, H.A.; Clarke, A.E. Inheritance of male sterility in the onion and the production of hybrid seed. Proc. Am. Soc. Hortic. Sci. 1943, 43, 189–194. [Google Scholar]
- Duvick, D.N. Cytoplasmic pollen sterility in corn. Adv. Genet. 1965, 13, 1–56. [Google Scholar]
- Bosemark, N.O. Genetics and breeding. In Sugar Beet; Draycott, A.P., Ed.; Oxford: Blackwell, UK, 2006; pp. 50–88. [Google Scholar]
- Schnable, P.S.; Wise, R.P. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci. 1998, 3, 175–180. [Google Scholar] [CrossRef]
- Hanson, M.R.; Bentolila, S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 2004, 16, S154–S169. [Google Scholar] [CrossRef]
- Chase, C.D. Cytoplasmic male sterility: A window to the world of plant mitochondrial-nuclear interactions. Trends Genet. 2007, 23, 81–90. [Google Scholar] [CrossRef]
- Ducos, E.; Touzet, P.; Boutry, M. The male sterile G cytoplasm of wild beet displays modified mitochondrial respiratory complexes. Plant J. 2001, 26, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.D.; Koloušková, P.; Sloan, D.; Štorchová, H. Non-coding RNA may be associated with cytoplasmic male sterility in Silene vulgaris. J. Exp. Bot. 2017, 68, 1599–1612. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Szklarczyk, M.; Szymański, M.; Wójcik-Jagła, M.; Simon, P.W.; Weihe, A.; Börner, T. Mitochondrial atp9 genes from petaloid male-sterile and male-fertile carrots differ in their status of heteroplasmy, recombination involvement, post-transcriptional processing as well as accumulation of RNA and protein product. Theor. Appl. Genet. 2014, 127, 1689–1701. [Google Scholar] [CrossRef] [PubMed]
- Budar, F.; Pelletier, G. Male sterility in plants: Occurrence, determinism, significance and use. CR Acad. Sci. Paris Life Sci. 2001, 324, 543–550. [Google Scholar] [CrossRef]
- Kazama, T.; Okuno, M.; Watari, Y.; Yanase, S.; Koizuka, C.; Tsuruta, Y.; Sugaya, H.; Toyoda, A.; Itoh, T.; Tsutsumi, N.; et al. Curing cytoplasmic male sterility via TALEN-mediated mitochondrial genome editing. Nat. Plants 2019, 5, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Wise, R.P.; Schnable, P.S. The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 1996, 272, 1334–1336. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.G. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 2014, 65, 579–606. [Google Scholar] [CrossRef]
- Touzet, P.; Meyer, E.H. Cytoplasmic male sterility and mitochondrial metabolism in plants. Mitochondrion 2014, 19, 166–171. [Google Scholar] [CrossRef]
- Horn, R.; Gupta, K.J.; Colombo, N. Mitochondrion role in molecular basis of cytoplasmic male sterility. Mitochondrion 2014, 19, 198–205. [Google Scholar] [CrossRef]
- Hu, J.; Huang, W.; Huang, Q.; Qin, X.; Yu, C.; Wang, L.; Li, S.; Zhu, R.; Zhu, Y. Mitochondria and cytoplasmic male sterility in plants. Mitochondrion 2014, 19, 282–288. [Google Scholar] [CrossRef]
- Yamagishi, H.; Bhat, S.R. Cytoplasmic male sterility in Brassicaceae crops. Breed. Sci. 2014, 64, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Bohra, A.; Jha, U.C.; Adhimoolam, P.; Bisht, D.; Singh, N.P. Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep. 2016, 35, 967–993. [Google Scholar] [CrossRef] [PubMed]
- Gualberto, J.M.; Newton, K.J. Plant mitochondrial genomes: Dynamics and mechanisms of mutation. Annu. Rev. Plant Biol. 2017, 68, 225–252. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Xie, Y.; Liu, Y.G.; Chen, L. Advances in understanding the molecular mechanisms of cytoplasmic male sterility and restoration in rice. Plant Reprod. 2017, 30, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Štorchová, H. The role of non-coding RNAs in cytoplasmic male sterility in flowering plants. Int. J. Mol. Sci. 2017, 18, 2429. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Zhang, D. Molecular control of male fertility for crop hybrid breeding. Trends Plant Sci. 2018, 23, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhao, S.; Li, S.; Grover, C.E.; Nie, H.; Wendel, J.F.; Hua, J. Plant mitochondrial genome evolution and cytoplasmic male sterility. Crit. Rev. Plant Sci. 2017, 36, 55–69. [Google Scholar] [CrossRef]
- Mishra, A.; Bohra, A. Non-coding RNAs and plant male sterility: Current knowledge and future prospects. Plant Cell Rep. 2018, 37, 177–191. [Google Scholar] [CrossRef]
- Fishman, L.; Sweigart, A.L. When two rights make a wrong: The evolutionary genetics of plant hybrid incompatibilities. Annu. Rev. Plant Biol. 2018, 69, 707–731. [Google Scholar] [CrossRef]
- Singh, S.; Dey, S.S.; Bhatia, R.; Kumar, R.; Behera, T.K. Current understanding of male sterility systems in vegetable Brassicas and their exploitation in hybrid breeding. Plant Reprod. 2019, 32, 231–256. [Google Scholar] [CrossRef]
- Rice, W.R. Nothing in genetics makes sense except in light of genomic conflict. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 217–237. [Google Scholar] [CrossRef]
- Dahan, J.; Mireau, H. The Rf and Rf-like PPR in higher plants, a fast-evolving subclass of PPR genes. RNA Biol. 2013, 10, 1469–1476. [Google Scholar] [CrossRef] [PubMed]
- Gaborieau, L.; Brown, G.G.; Mireau, H. The propensity of pentatricopeptide repeat genes to evolve into restorers of cytoplasmic male sterility. Front. Plant Sci. 2016, 7, 1816. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.R.; Klein, P.E.; Mullet, J.E.; Minx, P.; Rooney, W.L.; Schertz, K.F. Fertility restorer locus Rf1 of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12. Theor. Appl. Genet. 2005, 111, 994–1012. [Google Scholar] [CrossRef]
- Rizzolatti, C.; Bury, P.; Tatara, E.; Pin, P.A.; Rodde, N.; Bergès, H.; Budar, F.; Mireau, H.; Gielen, J.J.L. Map-based cloning of the fertility restoration locus Rfm1 in cultivated barley (Hordeum vulgare). Euphytica 2017, 213, 276. [Google Scholar] [CrossRef]
- Itabashi, E.; Iwata, N.; Fujii, S.; Kazama, T.; Toriyama, K. The fertility restorer gene, Rf2, for Lead Rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein. Plant J. 2010, 65, 359–367. [Google Scholar] [CrossRef]
- Bernhard, T.; Koch, M.; Snowdon, R.J.; Friedt, W.; Wittkop, B. Undesired fertility restoration in msm1 barley associates with two mTERF genes. Theor. Appl. Genet. 2019, 132, 1335–1350. [Google Scholar] [CrossRef]
- Hackauf, B.; Bauer, E.; Korzun, V.; Miedaner, T. Fine mapping of the restorer gene Rfp3 from an Iranian primitive rye (Secale cereale L.). Theor. Appl. Genet. 2017, 130, 1179–1189. [Google Scholar] [CrossRef]
- Matsuhira, H.; Kagami, H.; Kurata, M.; Kitazaki, K.; Matsunaga, M.; Hamaguchi, Y.; Hagihara, E.; Ueda, M.; Harada, M.; Muramatsu, A.; et al. Unusual and typical features of a novel restorer-of-fertility gene of sugar beet (Beta vulgaris L.). Genetics 2012, 192, 1347–1358. [Google Scholar] [CrossRef]
- Liu, F.; Cui, X.; Horner, H.T.; Weiner, H.; Schnable, P.S. Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maize. Plant Cell 2001, 13, 1063–1078. [Google Scholar] [CrossRef] [PubMed]
- Jaqueth, J.S.; Hou, Z.; Zheng, P.; Ren, R.; Nagel, B.A.; Cutter, G.; Niu, X.; Vollbrecht, E.; Greene, T.W.; Kumpatla, S.P. Fertility restoration of maize CMS-C altered by a single amino acid substitution within the Rf4 bHLH transcription factor. Plant J. 2020, 101, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Toriyama, K. Suppressed expression of Retrograde-Regulated Male Sterility restores pollen fertility in cytoplasmic male sterile rice plants. Proc. Natl. Acad. Sci. USA 2009, 106, 9513–9518. [Google Scholar] [CrossRef] [PubMed]
- Barkan, A.; Small, I. Pentatricopeptide repeat proteins in plants. Annu. Rev. Plant Biol. 2014, 65, 415–442. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, K.; Huang, W.; Liu, G.; Gao, Y.; Wang, J.; Huang, Q.; Ji, Y.; Qin, X.; Wan, L.; et al. The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162. Plant Cell 2012, 24, 109–122. [Google Scholar] [CrossRef]
- Small, I.D.; Schallenberg-Rüdinger, M.; Takenaka, M.; Mireau, H.; Ostersetzer-Biran, O. Plant organellar RNA editing: What 30 years of research has revealed. Plant J. 2019. [Google Scholar] [CrossRef]
- Welchen, E.; García, L.; Mansilla, N.; Gonzalez, D.H. Coordination of plant mitochondrial biogenesis: Keeping pace with cellular requirements. Front. Plant Sci. 2014, 4, 551. [Google Scholar] [CrossRef]
- Liu, F.; Schnable, P.S. Functional specialization of maize mitochondrial aldehyde dehydrogenase. Plant Physiol. 2002, 130, 1657–1674. [Google Scholar] [CrossRef][Green Version]
- Allen, J.O.; Fauron, C.M.; Minx, P.; Roark, L.; Oddiraju, S.; Lin, G.N.; Meyer, L.; Sun, H.; Kim, K.; Wang, C.; et al. Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics 2007, 177, 1173–1192. [Google Scholar] [CrossRef]
- Nan, G.L.; Zhai, J.; Arikit, S.; Morrow, D.; Fernandes, J.; Mai, L.; Nguyen, N.; Meyers, B.C.; Walbot, V. MS23, a master basic helix-loop-helix factor, regulates the specification and development of the tapetum in maize. Development 2017, 144, 163–172. [Google Scholar] [CrossRef]
- Fujii, S.; Kazama, T.; Yamada, M.; Toriyama, K. Discovery of global genomic re-organization based on comparison of two newly sequenced rice mitochondrial genomes with cytoplasmic male sterility-related genes. BMC Genom. 2010, 11, 209. [Google Scholar] [CrossRef]
- Kazama, T.; Itabashi, E.; Fujii, S.; Nakamura, T.; Toriyama, K. Mitochondrial ORF79 levels determine pollen abortion in cytoplasmic male sterile rice. Plant J. 2016, 85, 707–716. [Google Scholar] [CrossRef]
- Quesada, V. The roles of mitochondrial transcription termination factors (MTERFs) in plants. Physiol. Plant. 2016, 157, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Linder, T.; Park, C.B.; Asin-Cayuela, J.; Pellegrini, M.; Larsson, N.G.; Falkenberg, M.; Samuelsson, T.; Gustafsson, C.M. A family of putative transcription termination factors shared amongst metazoans and plants. Curr. Genet. 2005, 48, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, T.; Sugaya, H.; Katsuyama, T.; Honma, Y.; Matsui, K.; Matsuhira, H.; Kuroda, Y.; Kitazaki, K.; Kubo, T. How did a duplicated gene copy evolve into a restorer-of-fertility gene in a plant? The case of Oma1. R. Soc. Open Sci. 2019, 6, 190853. [Google Scholar] [CrossRef] [PubMed]
- Käser, M.; Kambacheld, M.; Kisters-Woike, B.; Langer, T. Oma1, a novel membrane-bound metallopeptidase in mitochondria with activities overlapping with the m-AAA Protease. J. Biol. Chem. 2003, 278, 46414–46423. [Google Scholar] [CrossRef] [PubMed]
- Head, B.; Griparic, L.; Amiri, M.; Gandre-Babbe, S.; van der Bliek, A.M. Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J. Cell Biol. 2009, 187, 959–966. [Google Scholar] [CrossRef]
- Ehses, S.; Raschke, I.; Mancuso, G.; Bemacchia, A.; Geimer, S.; Tondera, D.; Martinou, J.C.; Westermann, B.; Rugarli, E.I.; Langer, T. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J. Cell Biol. 2009, 187, 1023–1036. [Google Scholar] [CrossRef]
- Kitazaki, K.; Arakawa, T.; Matsunaga, M.; Yui-Kurino, R.; Matsuhira, H.; Mikami, T.; Kubo, T. Post-translational mechanisms are associated with fertility restoration of cytoplasmic male sterility in sugar beet (Beta vulgaris). Plant J. 2015, 83, 290–299. [Google Scholar] [CrossRef]
- Kubo, T.; Nishizawa, S.; Mikami, T. Alterations in organization and transcription of the mitochondrial genome of cytoplasmic male sterile sugar beet (Beta vulgaris L.). Mol. Gen. Genet. 1999, 262, 283–290. [Google Scholar] [CrossRef]
- Skippington, E.; Barkman, T.J.; Rice, D.W.; Palmer, J.D. Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes. Proc. Natl. Acad. Sci. USA 2015, 112, E3515–E3524. [Google Scholar] [CrossRef]
- Fujii, S.; Bond, C.S.; Small, I.D. Selection patterns on restorer-like genes reveal a conflict between nuclear and mitochondrial genomes throughout angiosperm evolution. Proc. Natl. Acad. Sci. USA 2011, 108, 1723–1728. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.; Tezuka, K.; Feng, Y.Y.; Kawamoto, T.; Takahashi, H.; Mori, K.; Akagi, H. Structural diversity and evolution of the Rf-1 locus in the genus Oryza. Heredity 2007, 99, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Melonek, J.; Stone, J.D.; Small, I. Evolutionary plasticity of restorer-of-fertility-like proteins in rice. Sci. Rep. 2016, 6, 35152. [Google Scholar] [CrossRef] [PubMed]
- Sykes, T.; Yates, S.; Nagy, I.; Asp, T.; Small, I.; Studer, B. In Silico Identification of candidate genes for fertility restoration in cytoplasmic male sterile perennial ryegrass (Lolium perenne L.). Genome Biol. Evol. 2017, 9, 351–362. [Google Scholar] [PubMed]
- Melonek, J.; Zhou, R.; Bayer, P.E.; Edwards, D.; Stein, N.; Small, I. High intraspecific diversity of Restorer-of-fertility-like genes in barley. Plant J. 2019, 97, 281–295. [Google Scholar] [CrossRef]
- Anisimova, I.N.; Alpatieva, N.V.; Karabitsina, Y.I.; Gavrilenko, T.A. Nucleotide sequence polymorphism in the RFL-PPR genes of potato. J. Genet. 2019, 98, 87. [Google Scholar] [CrossRef]
- Geddy, R.; Brown, G.G. Genes encoding pentatricopeptide repeat (PPR) proteins are not conserved in location in plant genomes and may be subject to diversifying selection. BMC Genom. 2007, 8, 130. [Google Scholar] [CrossRef]
- Marienfeld, J.R.; Unseld, M.; Brandt, P.; Brennicke, A. Mosaic open reading frames in the Arabidopsis thaliana mitochondrial genome. Biol. Chem. 1997, 378, 859–862. [Google Scholar] [CrossRef]
- Hammani, K.; Giegé, P. RNA metabolism in plant mitochondria. Trends Plant Sci. 2014, 19, 380–389. [Google Scholar] [CrossRef]
- Arakawa, T.; Ue, S.; Sano, C.; Matsunaga, M.; Kagami, H.; Yoshida, Y.; Kuroda, Y.; Taguchi, K.; Kitazaki, K.; Kubo, T. Identification and characterization of a semi-dominant restorer-of-fertility 1 allele in sugar beet (Beta vulgaris). Theor. Appl. Genet. 2019, 132, 227–240. [Google Scholar] [CrossRef]
- Arakawa, T.; Uchiyama, D.; Ohgami, T.; Ohgami, R.; Murata, T.; Honma, Y.; Hamada, H.; Kuroda, Y.; Taguchi, K.; Kitazaki, K.; et al. A fertility-restoring genotype of beet (Beta vulgaris L.) is composed of a weak restorer-of-fertility gene and a modifier gene tightly linked to the Rf1 locus. PLoS ONE 2018, 13, e0198409. [Google Scholar] [CrossRef] [PubMed]
- Kanomata, Y.; Kubo, T. Unpublished data; Hokkaido University: Sapporo, Japan, 2020. [Google Scholar]
- Migdal, I.; Skibior-Blaszczyk, R.; Heidorn-Czarna, M.; Kolodziejczak, M.; Garbiec, A.; Janska, H. AtOMA1 affects the OXPHOS system and plant growth in contrast to other newly identified ATP-independent proteases in Arabidopsis mitochondria. Front. Plant Sci. 2017, 8, 1543. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, T.; Kubo, T. Manuscript in preparation; Hokkaido University: Sapporo, Japan, 2020. [Google Scholar]
- Force, A.; Lynch, M.; Pickett, F.B.; Amores, A.; Yan, Y.-L.; Postlethwait, J. Preservation of duplicated genes by complementary, degenerative mutations. Genetics 1999, 151, 1531–1545. [Google Scholar] [PubMed]
- Ohgami, T.; Uchiyama, D.; Ue, S.; Yui-Kurino, R.; Yoshida, Y.; Kamei, Y.; Kuroda, Y.; Taguchi, K.; Kubo, T. Identification of molecular variants of the nonrestoring restorer-of-fertility 1 allele in sugar beet (Beta vulgaris L.). Theor. Appl. Genet. 2016, 129, 675–688. [Google Scholar] [CrossRef] [PubMed]
- Touzet, P.; Budar, F. Unveiling the molecular arms race between two conflicting genomes in cytoplasmic male sterility? Trends Plant Sci. 2004, 9, 568–570. [Google Scholar] [CrossRef] [PubMed]
- Touzet, P. Mitochondrial genome evolution and gynodioecy. In Mitochondrial Genome Evolution; Marechal-Drouard, L., Ed.; Academic Press: Oxford, UK, 2012; pp. 71–98. [Google Scholar]
- Tiffin, P.; Moeller, D.A. Molecular evolution of plant immune system genes. Trends Genet. 2006, 22, 662–670. [Google Scholar] [CrossRef]
- Kazama, T.; Nakamura, T.; Watanabe, M.; Sugita, M.; Toriyama, K. Suppression mechanism of mitochondrial ORF79 accumulation by Rf1 protein in BT-type cytoplasmic male sterile rice. Plant J. 2008, 55, 619–628. [Google Scholar] [CrossRef]
- Uyttewaal, M.; Arnal, N.; Quadrado, M.; Martin-Canadell, A.; Vrielynck, N.; Hiard, S.; Gherbi, H.; Bendahmane, A.; Budar, F.; Mireau, H. Characterization of Raphanus sativus pentatricopeptide repeat proteins encoded by the fertility restorer locus for Ogura cytoplasmic male sterility. Plant Cell 2008, 20, 3331–3345. [Google Scholar] [CrossRef]
- Huang, W.; Yu, C.; Hu, J.; Wang, L.; Dan, Z.; Zhou, W.; He, C.; Zeng, Y.; Yao, G.; Qi, J.; et al. Pentatricopeptide-repeat family protein RF6 functions with hexokinase 6 to rescue rice cytoplasmic male sterility. Proc. Natl. Acad. Sci. USA 2015, 112, 14984–14989. [Google Scholar] [CrossRef]
- Møller, I.M. A more general mechanism of cytoplasmic male sterility? Trends Plant Sci. 2001, 6, 560. [Google Scholar] [CrossRef]
Gene Product 1 | Post-transcriptional Mechanism in Mitochondria | R Gene-like CNV at the Locus | Direct Link with S-orf | References | |
---|---|---|---|---|---|
PPR protein | P-class | Yes | Yes | Yes | [34,35] |
SPL-DYW | Undetermined | Undetermined | Undetermined | [36,37] | |
GR protein | Yes | Undetermined | Undetermined | [38] | |
mTERF protein | Undetermined | Undetermined | Undetermined | [39,40] | |
OMA1-like protein | No | Yes | Yes | [41] | |
ALDH | No | No | No | [18,42] | |
bHLH | No | No | No | [43] | |
ACP-like protein | No | No | No | [44] |
Gene Name 2 | Protein Product to Bind with PreSATP6 | mRNA Detection | |||
---|---|---|---|---|---|
Tissue | Anther developmental stage | ||||
Meiosis | Tetrad | Microspore | |||
RF1-Oma1 | Yes (dominant allele)/ No (recessive allele) | Tapetum | + | + | - |
Meiocyte/Tetrads/ Microspore | + | +/- | - | ||
bvOma1 | No | Tapetum | - | - | + |
Meiocyte/Tetrads/ Microspore | - | - | + | ||
atOma1 | No | Tapetum | - | + | + |
Meiocyte/Tetrads/ Microspore | - | + | + |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubo, T.; Arakawa, T.; Honma, Y.; Kitazaki, K. What Does the Molecular Genetics of Different Types of Restorer-of-Fertility Genes Imply? Plants 2020, 9, 361. https://doi.org/10.3390/plants9030361
Kubo T, Arakawa T, Honma Y, Kitazaki K. What Does the Molecular Genetics of Different Types of Restorer-of-Fertility Genes Imply? Plants. 2020; 9(3):361. https://doi.org/10.3390/plants9030361
Chicago/Turabian StyleKubo, Tomohiko, Takumi Arakawa, Yujiro Honma, and Kazuyoshi Kitazaki. 2020. "What Does the Molecular Genetics of Different Types of Restorer-of-Fertility Genes Imply?" Plants 9, no. 3: 361. https://doi.org/10.3390/plants9030361
APA StyleKubo, T., Arakawa, T., Honma, Y., & Kitazaki, K. (2020). What Does the Molecular Genetics of Different Types of Restorer-of-Fertility Genes Imply? Plants, 9(3), 361. https://doi.org/10.3390/plants9030361