Plant Responses to Hypoxia: Signaling and Adaptation
1. Introduction
2. Advances in Hypoxia Sensing and Responses
3. Future Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Damage and Losses from Climate-Related Disasters in Agricultural Sectors; Food and Agricultural Organization of United States. Retrieved from FAO, 2016 I6486EN/1/11.16. Available online: http://www.fao.org/3/a-i6486e.pdf (accessed on 2 December 2020).
- Pucciariello, C. Molecular mechanisms supporting rice germination and coleoptile elongation under low oxygen. Plants 2020, 9, 1037. [Google Scholar] [CrossRef]
- Ma, M.; Cen, W.; Li, R.; Wang, S.; Luo, J. The molecular regulatory pathways and metabolic adaptation in the seed germination and early seedling growth of rice in response to low O2 stress. Plants 2020, 9, 1363. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-S.; Ou, S.-L.; Yang, C.-Y. The seedlings of different japonica rice varieties exhibit differ physiological properties to modulate plant survival rates under submergence stress. Plants 2020, 9, 982. [Google Scholar] [CrossRef] [PubMed]
- Yemelyanov, V.V.; Chirkova, T.V.; Shishova, M.F.; Lindberg, S.M. Potassium efflux and cytosol acidification as primary anoxia-induced events in wheat and rice seedlings. Plants 2020, 9, 1216. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, T.; Colmer, T.D.; Pedersen, O.; Nakazono, M. Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress. Plant Physiol. 2018, 176, 1118–1130. [Google Scholar] [CrossRef] [Green Version]
- Yamauchi, T.; Tanaka, A.; Tsutsumi, N.; Inukai, Y.; Nakazono, M. A role for auxin in ethylene-dependent inducible aerenchyma formation in rice roots. Plants 2020, 9, 610. [Google Scholar] [CrossRef]
- Ejiri, M.; Sawazaki, Y.; Shiono, K. Some accessions of amazonian wild rice (Oryza glumaepatula) constitutively form a barrier to radial oxygen loss along adventitious roots under aerated conditions. Plants 2020, 9, 880. [Google Scholar] [CrossRef]
- Buraschi, F.B.; Mollard, F.P.O.; Grimoldi, A.A.; Striker, G.G. Eco-physiological traits related to recovery from complete submergence in the model legume Lotus japonicus. Plants 2020, 9, 538. [Google Scholar] [CrossRef] [Green Version]
- Loreti, E.; Perata, P. The many facets of hypoxia in plants. Plants 2020, 9, 745. [Google Scholar] [CrossRef]
- Licausi, F.; Kosmacz, M.; Weits, D.A.; Giuntoli, B.; Giorgi, F.M.; Voesenek, L.A.C.J.; Perata, P.; Van Dongen, J.T. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 2011, 479, 419–422. [Google Scholar] [CrossRef]
- Gibbs, D.J.; Lee, S.C.; Md Isa, N.; Gramuglia, S.; Fukao, T.; Bassel, G.W.; Correia, C.S.; Corbineau, F.; Theodoulou, F.L.; Bailey-Serres, J.; et al. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 2011, 479, 415–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juntawong, P.; Butsayawarapat, P.; Songserm, P.; Pimjan, R.; Vuttipongchaikij, S. Overexpression of Jatropha curcas ERFVII2 transcription factor confers low oxygen tolerance in transgenic Arabidopsis by modulating expression of metabolic enzymes and multiple stress-responsive genes. Plants 2020, 9, 1068. [Google Scholar] [CrossRef] [PubMed]
- Shukla, V.; Lombardi, L.; Pencik, A.; Novak, O.; Weits, D.A.; Loreti, E.; Perata, P.; Giuntoli, B.; Licausi, F. Jasmonate signalling contributes to primary root inhibition upon oxygen deficiency in Arabidopsis thaliana. Plants 2020, 9, 1046. [Google Scholar] [CrossRef] [PubMed]
- Voesenek, L.A.C.J.; Sasidharan, R. Ethylene–and oxygen signalling–drive plant survival during flooding. Plant Biol. 2013, 15, 426–435. [Google Scholar] [CrossRef]
- Sasidharan, R.; Voesenek, L.A.C.J. Ethylene-mediated acclimations to flooding stress. Plant Physiol. 2018, 169, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Hartman, S.; van Dongen, N.; Renneberg, D.M.; Welschen-Evertman, R.A.; Kociemba, J.; Sasidharan, R.; Voesenek, L.A.C.J. Ethylene differentially modulates hypoxia responses and tolerance across Solanum species. Plants 2020, 9, 1022. [Google Scholar] [CrossRef]
- Hong, C.P.; Wang, M.C.; Yang, C.Y. NADPH oxidase RbohD and ethylene signaling are involved in modulating seedling growth and survival under submergence stress. Plants 2020, 9, 471. [Google Scholar] [CrossRef] [Green Version]
- Lothier, J.; Diab, H.; Cukier, C.; Limami, A.M.; Tcherkez, G. Metabolic responses to waterlogging differ between roots and shoots and reflect phloem transport alteration in Medicago truncatula. Plants 2020, 9, 1373. [Google Scholar] [CrossRef]
- Song, X.; Li, Y.; Cao, X.; Qi, Y. MicroRNAs and their regulatory roles in plant–environment interactions. Ann. Rev. Plant Biol. 2019, 70, 489–525. [Google Scholar] [CrossRef]
- Sepúlveda-García, E.B.; Pulido-Barajas, J.F.; Huerta-Heredia, A.A.; Peña-Castro, J.M.; Liu, R.; Barrera-Figueroa, B.E. Differential expression of maize and teosinte microRNAs under submergence, drought, and alternated stress. Plants 2020, 9, 1367. [Google Scholar] [CrossRef]
- Castro-Duque, N.E.; Chávez-Arias, C.C.; Restrepo-Díaz, H. Foliar glycine betaine or hydrogen peroxide sprays ameliorate waterlogging stress in cape gooseberry. Plants 2020, 9, 644. [Google Scholar] [CrossRef] [PubMed]
- Gil-Monreal, M.; Royuela, M.; Zabalza, A. Hypoxic treatment decreases the physiological action of the herbicide IMAZAMOX on Pisum sativum roots. Plants 2020, 9, 981. [Google Scholar] [CrossRef] [PubMed]
- Salvatierra, A.; Toro, G.; Mateluna, P.; Opazo, I.; Ortiz, M.; Pimentel, P. Keep calm and survive: Adaptation strategies to energy crisis in fruit trees under root hypoxia. Plants 2020, 9, 1108. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loreti, E.; Striker, G.G. Plant Responses to Hypoxia: Signaling and Adaptation. Plants 2020, 9, 1704. https://doi.org/10.3390/plants9121704
Loreti E, Striker GG. Plant Responses to Hypoxia: Signaling and Adaptation. Plants. 2020; 9(12):1704. https://doi.org/10.3390/plants9121704
Chicago/Turabian StyleLoreti, Elena, and Gustavo G. Striker. 2020. "Plant Responses to Hypoxia: Signaling and Adaptation" Plants 9, no. 12: 1704. https://doi.org/10.3390/plants9121704