Next Article in Journal
A Cyclic Nucleotide-Gated Channel, HvCNGC2-3, Is Activated by the Co-Presence of Na+ and K+ and Permeable to Na+ and K+ Non-Selectively
Previous Article in Journal
Seasonal Growth of Zygophyllum dumosum Boiss.: Summer Dormancy Is Associated with Loss of the Permissive Epigenetic Marker Dimethyl H3K4 and Extensive Reduction in Proteins Involved in Basic Cell Functions
Open AccessArticle

Polygonum multiflorum Extract Exerts Antioxidative Effects and Increases Life Span and Stress Resistance in the Model Organism Caenorhabditis elegans via DAF-16 and SIR-2.1

Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Plants 2018, 7(3), 60; https://doi.org/10.3390/plants7030060
Received: 19 June 2018 / Revised: 9 July 2018 / Accepted: 13 July 2018 / Published: 20 July 2018
Extracts of the Chinese plant Polygonum multiflorum (PME) are used for medicinal purposes as well as food supplement due to anti-aging effects. Despite of the common use of these food supplements, experimental data on physiological effects of PME and its underlying molecular mechanisms in vivo are limited. We used the model organism Caenorhabditis elegans to analyze anti-aging-effects of PME in vivo (life span, lipofuscin accumulation, oxidative stress resistance, thermal stress resistance) as well as the molecular signaling pathways involved. The effects of PME were examined in wildtype animals and mutants defective in the sirtuin-homologue SIR-2.1 (VC199) and the FOXO-homologue DAF-16 (CF1038). PME possesses antioxidative effects in vivo and increases oxidative stress resistance of the nematodes. While the accumulation of lipofuscin is only slightly decreased, PME causes a significant elongation (18.6%) of mean life span. DAF-16 is essential for the reduction of thermally induced ROS accumulation, while the resistance against paraquat-induced oxidative stress is dependent on SIR-2.1. For the extension of the life span, both DAF-16 and SIR-2.1 are needed. We demonstrate that PME exerts protective effects in C. elegans via modulation of distinct intracellular pathways. View Full-Text
Keywords: aging; life span-extending effects; insulin-signaling; Nrf2; stress resistance; Caenorhabditis elegans; Polygonum multiflorum extract aging; life span-extending effects; insulin-signaling; Nrf2; stress resistance; Caenorhabditis elegans; Polygonum multiflorum extract
Show Figures

Figure 1

MDPI and ACS Style

Saier, C.; Büchter, C.; Koch, K.; Wätjen, W. Polygonum multiflorum Extract Exerts Antioxidative Effects and Increases Life Span and Stress Resistance in the Model Organism Caenorhabditis elegans via DAF-16 and SIR-2.1. Plants 2018, 7, 60.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop