Toxicity of Nanoemulsified Eugenia uniflora (Myrtaceae) Essential Oil to Spodoptera frugiperda (Lepidoptera: Noctuidae) and Selectivity to Trichogramma pretiosum (Hymenoptera: Trichogrammatidae)
Abstract
1. Introduction
2. Results
2.1. Chemical Characterization of the EO of E. uniflora
2.2. Obtaining and Characterizing the NEO of E. uniflora
2.3. Toxicity and Selectivity Bioassays of NEO
2.3.1. Toxicity of EO and NEO to S. frugiperda
2.3.2. Toxicity of NEO to T. pretiosum
3. Discussion
4. Materials and Methods
4.1. Collection and Chemical Analysis of the EO of E. uniflora
4.2. Breeding and Multiplication of S. frugiperda and T. pretiosum
4.3. Bioassays with S. frugiperda
4.3.1. Screening of Toxicity of E. uniflora EO for S. frugiperda
4.3.2. Estimation of the Lethal Concentration (LC25, 50 and 90) of E. uniflora EO for S. frugiperda via Spraying in Potter’s Tower
4.4. Obtaining and Characterization the Nanoemulsion (NEO) of EO of E. uniflora
4.5. Toxicity of Sprayed NEO of EO of E. uniflora on S. frugiperda via Potter’s Tower
4.5.1. Physiological Selectivity of NEO of E. uniflora for the Parasitoid T. pretiosum
4.5.2. Residual Effects of NEO on the Parasitism Capacity of T. pretiosum
4.6. Statistical Analysis
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| EO | Essential oil |
| EOs | Essential oils |
| NEO | Nanoemulsion of Eugenia uniflora essential oil |
| DLS | Dynamic Light Scattering |
| MAFM | Microelectrophoresis and Atomic Force Microscopy |
| PDI | Polydispersity Index |
| NW | Nanoemulsion White |
| SEM | Scanning Electron Microscope |
| IPM | Integrated Pest Management |
References
- Sombra, K.E.S.; Aguiar, C.V.S.; Oliveira, S.J.; Barbosa, M.G.; Zocolo, G.J.; Pastori, P.L. Potential pesticide of three EOs against Spodoptera frugiperda (J.E. Smith) (Lepdoptera: Noctuidae). Chil. J. Agric. Res. 2020, 80, 617–628. [Google Scholar] [CrossRef]
- Sun, X.-x.; Hu, C.-x.; Jia, H.-r.; Wu, Q.-l.; Shen, X.-j.; Zhao, S.-y.; Jiang, Y.-y.; Wu, K.-m. Case study on the first immigration of fall armyworm, Spodoptera frugiperda invading into China. J. Integr. Agric. 2021, 20, 664–672. [Google Scholar] [CrossRef]
- Rane, R.; Walsh, T.K.; Lenancker, P.; Gock, A.; Dao, T.H.; Nguyen, V.L.; Khin, T.N.; Amalin, D.; Chittarath, K.; Faheem, M.; et al. Complex multiple introductions drive fall armyworm invasions into Asia and Australia. Sci. Rep. 2023, 13, 660. [Google Scholar] [CrossRef]
- Tek, T.W.; Lastus, K.; William, J.; Thomas, W. Confirmation of Spodoptera frugiperda (Lepidoptera: Noctuidae) in Papua New Guinea by molecular diagnostics of mitochondrial DNA COI gene. BioInvasions Rec. 2023, 12, 103–116. [Google Scholar] [CrossRef]
- Xu, S.; Hu, X.; Liu, Y.; Wang, X.; Wang, Y.; Li, G.; Turlings, T.C.J.; Li, Y. The Threat of the Fall Armyworm to Asian Rice Production Is Amplified by the Brown Planthopper. Plant Cell Environ. 2024, 48, 1060–1072. [Google Scholar] [CrossRef]
- Paredes-Sánchez, F.A.; Rivera, G.; Bocanegra-García, V.; Martínez-Padrón, H.Y.; Berrones-Morales, M.; Niño-García, N.; Herrera-Mayorga, V. Advances in control strategies against Spodoptera frugiperda. A Review. Molecules 2021, 26, 5587. [Google Scholar] [CrossRef]
- Freitas, L.M.; Souza, B.H.S.; Ferreira, F.S.; Antunes, A.P.A.; Bruzi, A.T. Resistance of Bt and Non-Bt Soybean Cultivars Adapted to Novel Growing Regions of Brazil to Chrysodeixis includens and Spodoptera frugiperda. Neotrop. Entomol. 2024, 53, 1332–1342. [Google Scholar] [CrossRef]
- Togola, A.; Meseka, S.; Menkir, A.; Badu-Apraku, B.; Boukar, O.; Tamò, M.; Djouaka, R. Measurement of Pesticide Residues from Chemical Control of the Invasive Spodoptera frugiperda (Lepidoptera: Noctuidae) in a Maize Experimental Field in Mokwa, Nigeria. Int. J. Environ. Res. Public Health 2018, 15, 849. [Google Scholar] [CrossRef]
- Ross, S.; Yang, F.; Santiago-González, J.C.; Abdelgaffar, H.; Kerns, D.D.; Jurat-Fuentes, J.L.; Sun, Z.; Collett, D.; Kerns, D.L. Evaluation of GS-omega/kappa-Hxtx-Hv1a and Bt toxins against Bt-resistant and -susceptible strains of Helicoverpa zea (Boddie) and Spodoptera frugiperda (J.E. Smith). Pest Manag. Sci. 2025, 81, 3565–3572. [Google Scholar] [CrossRef]
- Oliveira, J.A.C.; Fernandes, L.A.; Figueiredo, K.G.; Corrêa, E.J.A.; Lima, L.H.; Alves, D.S.; Bertolucci, S.K.V.; Carvalho, G.A. Effects of Essential Oils on Biological Characteristics and Potential Molecular Targets in Spodoptera frugiperda. Plants 2024, 13, 1801. [Google Scholar] [CrossRef]
- Rosetti, M.K.P.; Alves, D.S.; Luft, I.C.; Pompermayer, K.; Scolari, A.S.; de Souza e Silva, G.T.; de Oliveira, M.S.; Vanegas, J.A.G.; Pacule, H.B.; Silva, G.H.; et al. Duguetia lanceolata A. St.-Hil. (Annonaceae) Essential oil: Toxicity against Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) and selectivity for the parasitoid Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). Agriculture 2023, 13, 488. [Google Scholar] [CrossRef]
- Querino, R.B.; Mendes, J.V.; Costa, V.A.; Zucchi, R.A. New species, notes and new records of Trichogramma (Hymenoptera: Trichogrammatidae) in Brazil. Zootaxa 2017, 4232, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Laurentis, V.L.; Ramalho, D.G.; Santos, N.A.; Carvalho, V.F.P.; Vacari, A.M.; Bortoli, S.A.; Veneziani, R.C.V.; Inácio, G.C.; Dami, B.G. Performance of Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) on eggs of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Sci. Rep. 2019, 9, 1156. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.C.M.; Pastori, P.L.; Coutinho, C.R.; Juvenal, S.Ó.; Aguiar, C.V.S. Natural parasitism of Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) in Neoleucinodes elegantalis (Lepidoptera: Crambidae) eggs on tomato (Solanales: Solanaceae) in the Northeast region, Brazil. Braz. J. Biol. 2020, 80, 474–475. [Google Scholar] [CrossRef]
- Carvalho, G.A.; Grützmacher, A.D.; Passos, L.C.; de Oliveira, R.L. Physiological and ecological selectivity of pesticides for natural enemies of insects. In Natural Enemies of Insect Pests in Neotropical Agroecosystems: Biological Control and Functional Biodiversity; Souza, B., Vázquez, L.L., Marucci, R.C., Eds.; Springer: Cham, Switzerland, 2019; pp. 469–478. Available online: https://iapps2010.me/2020/02/20/new-book-natural-enemies-of-insect-pests-in-neotropical-agroecosystems (accessed on 24 April 2023).
- Costa, M.A.; Farias, E.S.; Andrade, E.D.; Carvalho, V.C.; Carvalho, G.A. Lethal, sublethal and transgenerational effects of insecticides labeled for cotton on immature Trichogramma pretiosum. J. Pest Sci. 2023, 96, 119–127. [Google Scholar] [CrossRef]
- Pavela, R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crops Prod. 2015, 76, 174–187. [Google Scholar] [CrossRef]
- Rampelotti-Ferreira, F.T.; Coelho, A.; Parra, J.R.P.; Vendramim, J.D. Selectivity of plant extracts for Trichogramma pretiosum Riley (Hym.: Trichogrammatidae). Ecotoxicol. Environ. Saf. 2017, 138, 78–82. [Google Scholar] [CrossRef]
- Parreira, D.S.; Cruz, R.A.; Dimaté, F.A.R.; Batista, L.D.; Ribeiro, R.C.; Ferreira, G.A.R.; Zanuncio, J.C. Bioactivity of ten essential oils on the biological parameters of Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) adults. Ind. Crops Prod. 2019, 127, 11–15. [Google Scholar] [CrossRef]
- Sombra, K.E.S.; Pastori, P.L.; Aguiar, C.V.S.; André, T.P.P.; Oliveira, S.J.; Barbora, M.G.; Pratissoli, D. Selectivity of essential oils to the egg parasitoid Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). Rev. Ciênc. Agron. 2022, 53, e20207789. [Google Scholar] [CrossRef]
- Heinzmann, B.M.; Spitzer, V.; Simões, C.M.O. Óleos voláteis. In Farmacognosia do Produto Natural ao Medicamento; Simões, C.M.O., Ed.; Artmed: Porto Alegre, Brazil, 2017; pp. 310–337. [Google Scholar]
- Barradas, T.N.; Silva, K.G.H. Nanoemulsions of essential oils to improve solubility, stability and permeability: A review. Environ. Chem. Lett. 2021, 19, 1153–1171. [Google Scholar] [CrossRef]
- AnnaDurai, K.S.; Chandrasekaran, N.; Velraja, S.; Hikku, G.S.; Parvathi, V.D. Essential oil nanoemulsion: An emerging eco-friendly strategy towards mosquito control. Acta Trop. 2024, 257, 107290. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, K.; Anbalagan, T.; Marimuthu, M.; Mariappan, P.; Angappan, S.; Vaithiyanathan, S. Innovative formulation strategies for botanical- and essential oil-based insecticides. J. Pest Sci. 2024, 98, 1–30. [Google Scholar] [CrossRef]
- Pavoni, L.; Perinelli, D.R.; Bonacucina, G.; Cespi, M.; Palmieri, G.F. An Overview of Micro- and Nanoemulsions as Vehicles for Essential Oils: Formulation, Preparation and Stability. Nanomaterials 2020, 10, 135. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Babaei, A.; Oberoi, K.; Aayush, K.; Sharma, R.; Sharma, S. Essential Oil Nanoemulsion Edible Coating in Food Industry: A Review. Food Bioprocess Technol. 2022, 15, 2375–2395. [Google Scholar] [CrossRef]
- Carvalho, N.R.; Rodrigues, N.R.; Macedo, G.E.; Bristot, I.J.; Boligon, A.A.; de Campos, M.M.; Cunha, F.A.B.; Coutinho, H.D.; Klamt, F.; Merritt, T.J.S.; et al. Eugenia uniflora Leaf Essential Oil Promotes Mitochondrial Dysfunction in Drosophila melanogaster Through the Inhibition of Oxidative Phosphorylation. Toxicol. Res. 2017, 6, 526–534. [Google Scholar] [CrossRef]
- Govindarajan, M.; Rajeswary, M.; Senthilmurugan, S.; Vijayan, P.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Curzerene, trans-β-elemenone, and γ-elemene as Effective Larvicides against Anopheles subpictus, Aedes albopictus and Culex tritaeniorhynchus: Toxicity on non-target aquatic predators. Environ. Sci. Pollut. Res. Int. 2017, 25, 10272–10282. [Google Scholar] [CrossRef]
- Lobo, A.P.; da Câmara, C.A.G.; de Melo, J.P.R.; Moraes, M.M. Chemical composition and repellent activity of essential oils from the leaves of Cinnamomum zeylanicum and Eugenia uniflora against Diaphania hyalinata L. (Lepidoptera: Crambidae). J. Plant Dis. Prot. 2019, 126, 79–87. [Google Scholar] [CrossRef]
- Altoe, M.D.; Lima, J.D.; Potrich, M.; Battisti, L.; Lozano, E.R. Insecticidal and repellent effects of essential oil Eugenia uniflora L. (Myrtaceae) on Sitophilus zeamais Mots. (Coleoptera: Curculionidae). Int. J. Trop. Insect Sci. 2023, 43, 237–243. [Google Scholar] [CrossRef]
- Oliveira, J.A.C.; Bertolucci, S.K.V.; Carvalho, G.A.; Alves, D.S.; Ugucioni, J.C.; Fernandes, L.A. Nanoemulsão do óleo essencial de pitanga. Brazil Patent 10,2024,007294,4, 15 April 2024. [Google Scholar]
- Mapa. Manual de Procedimentos Para Registro de Agrotoxicos. 2012. Available online: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/agrotoxicos/arquivos/manual-de-procedimentos-para-registro-de-agrotoxicos.pdf (accessed on 26 May 2025).
- Abdelhameedm, M.F.; Asaad, G.F.; Ragab, T.I.M.; Ahmed, R.F.; El Gendy, A.E.-N.G.; Abd El-Rahman, S.S.; Elgamal, A.M.; Elshamy, A.I. Oral and Topical Anti-Inflammatory and Antipyretic Potentialities of Araucaria bidiwillii Shoot Essential Oil and Its Nanoemulsion in Relation to Chemical Composition. Molecules 2021, 26, 5833. [Google Scholar] [CrossRef]
- Sobeh, M.; Braun, M.S.; Krstin, S.; Youssef, F.S.; Ashour, M.L.; Wink, M. Chemical profiling of the essential oil of Syzygium aqueum, Syzygium samarangense and Eugenia uniflora and their discrimination using chemometric analysis. Chem. Biodivers. 2016, 11, 1537–1550. [Google Scholar] [CrossRef]
- Pinheiro, P.F.; Gonçalves, L.V.; Cricco, K.B.; Pinheiro, C.A.; Tuler, A.; Cunha, J.B.; Costa, A.V.; Pereira Júnior, O.S.; Ignacchiti, M.D.C. Chemical characterization and molluscicidal activity of essential oil from leaves of Eugenia uniflora L. on Lymnaea columella (Say, 1817) and Biomphalaria tenagophila (D’Orbigny, 1835). J. Essent. Oil Bear. Plants 2017, 20, 1482–1491. [Google Scholar] [CrossRef]
- Santos, J.F.S.; Rocha, J.E.; Bezerra, C.F.; Silva, M.K.N.; Matos, Y.M.L.S.; Freitas, T.S.; Santos, A.T.L.; Cruz, R.P.; Machado, A.J.T.; Rodrigues, T.H.S.; et al. Chemical composition, antifungal and potencial anti-virulence evaluation of Eugenia uniflora essential oil against Candida spp. Food Chem. 2018, 261, 233–239. [Google Scholar] [CrossRef]
- Boverhof, D.R.; Bramante, C.M.; Butala, J.H.; Clancy, S.F.; Lafranconi, M.; West, J.; Gordon, S.C. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul. Toxicol. Pharmacol. 2015, 73, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Hardy, A.; Benford, D.; Halldorsson, T.; Jeger, M.J.; Knutsen, H.K.; More, S.; Naegeli, H.; Noteborn, H.; Ockleford, C.; Ricci, A.; et al. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA J. 2018, 16, e05327. [Google Scholar] [CrossRef] [PubMed]
- Stenger, L.D.; Abati, R.; Pawlak, I.G.; Varpechoski, G.O.; Vismara, E.S.; Barbosa, L.R.; Wagner Junior, A.; Lozano, E.R.; Potrich, M. Toxicity of essential oil of Eugenia uniflora (L.) to Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae) and selectivity to the parasitoid Cleruchoides noackae (Lin & Hubert) (Hymenoptera: Mymaridae). Crop Prot. 2021, 147, 105693. [Google Scholar] [CrossRef]
- Potrich, M.; Alves, L.F.A.; Lozano, E.R.; Bonini, A.K.; Neves, P.M.O.J. Potential side effects of the entomopathogenic fungus Metarhizium anisopliae on the egg parasitoid Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) under controlled conditions. J. Econ. Entomol. 2017, 110, 2318–2324. [Google Scholar] [CrossRef]
- Parra, J.R.P. Criação massal de inimigos naturais. In Controle Biológico no Brasil com Parasitoides e Predadores na Agricultura Brasileira; Parra, J.R.P., Pinto, A.S., Nava, D.E., Oliveira, R.C., Diniz, A.J.F., Eds.; Fundação de Estudos Agrários Luiz de Queiroz: Piracicaba, Brazil, 2021; pp. 379–400. [Google Scholar]
- Sterk, G.; Hassan, S.A.; Baillod, M.; Bakker, F.; Bigler, F.; Blümel, S.; Bogenschütz, H.; Boller, E.; Bromand, B.; Brun, J.; et al. Results of the seventh joint pesticide testing programme carried out by the IOBC/WPRS—Working Group “Pesticides and Beneficial Organisms”. BioControl 1999, 44, 99–117. [Google Scholar] [CrossRef]
- Parra, J.R.P. Técnicas de Criação de Insetos Para Programas de Controle Biológico, 3rd ed.; FEALQ: Piracicaba, Brazil, 2001. [Google Scholar]
- Finney, D.J. Probit Analysis; Cambridge University Press: Cambridge, UK, 1971. [Google Scholar]
- Alves, E.; Leite, B.; Marucci, R.C.; Pascholati, S.F.; Lopes, J.R.S.; Andersen, P.C. Retention sites for Xylella fastidiosa in four sharpshooter vectors (Hemiptera: Cicadellidae) analyzed by scanning electron microscopy. Curr. Microbiol. 2008, 56, 531–538. [Google Scholar] [CrossRef]
- Stein, C.P.; Parra, J.R.P. Use of ultraviolet radiation to sterilize eggs of Anagasta kuehniella (Zeller, 1879), for studies with Trichogramma spp. An. Soc. Entomol. Brasil 1987, 16, 230–233. Available online: https://anais.seb.org.br/index.php/aseb/article/download/477/475 (accessed on 9 July 2025).
- Cônsoli, F.L.; Botelho, P.S.M.; Parra, J.R.P. Selectivity of insecticides to the egg parasitoid Trichogramma galloi Zucchi, 1988 (Hym., Trichogrammatidae). J. Appl. Entomol. 2001, 125, 37–43. [Google Scholar] [CrossRef]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-Response Analysis Using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 12 December 2020).



| N° | Compound | RRI a | RRI b | Area (%) c ± SD |
|---|---|---|---|---|
| E. uniflora (Commercial) | ||||
| 1 | β-Myrcene | 991 | 988 | 1.00 ± 0.14 |
| 2 | (Z)-β-Ocimene | 1036 | 1032 | 1.64 ± 0.03 |
| 3 | (E)-β-Ocimene | 1045 | 1044 | 4.17 ± 0.54 |
| 4 | σ-Elemene | 1336 | 1335 | 1.15 ± 0.09 |
| 5 | β–Elemene | 1390 | 1389 | 4.95 ± 0.39 |
| 6 | (E)-Caryophyllene | 1416 | 1417 | 4.27 ± 0.38 |
| 7 | γ-Elemene | 1432 | 1434 | 2.53 ± 0.20 |
| 8 | Germacrene D | 1478 | 1480 | 5.03 ± 0.38 |
| 9 | Curzerene | 1497 | 1499 | 34.07 ± 1.93 |
| 10 | δ-Cadinene | 1522 | 1522 | 1.42 ± 0.09 |
| 11 | Germacrene B | 1554 | 1559 | 9.51 ± 0.53 |
| 12 | Spathulenol | 1575 | 1577 | 1.13 ± 0.07 |
| 13 | Viridiflorol | 1581 | 1592 | 0.73 ± 0.03 |
| 14 | Selina-1,3,7(11)-trien-8-one | 1631 | 1632 | 10.51 ± 0.11 |
| 15 | Caryophylla-4(12),8(13)-dien-5α-ol | 1634 | 1639 | 1.20 ± 0.07 |
| 16 | Atractilone | 1658 | 1657 | 1.33 ± 0.11 |
| 17 | Germacrone | 1694 | 1693 | 2.90 ± 0.12 |
| 18 | Selina-1,3,7(11)-trien-8-one epoxide | 1743 | 1747 | 2.56 ± 0.02 |
| Monoterpenes hydrocarbons | 6.81 | |||
| Sesquiterpenes hydrocarbons | 28.86 | |||
| Oxygenated sesquiterpenes | 54.43 | |||
| Total (%) | 90.10 | |||
| Treatment | N | p | LC25 (mg/mL) | LC50 (mg/mL) | LC90 (mg/mL) |
|---|---|---|---|---|---|
| EO E. uniflora | 100 | 0.05 | 18.15 (9.29–34.62) | 36.05 (25.87–52.44) | 133.85 (85.85–208.39) |
| Temperature | Storage Period | ||
|---|---|---|---|
| 1 Day (nm) | 15 Days (nm) | 30 Days (nm) | |
| 4 °C | 27.36 ± 1.04 aA | 28.13 ± 1.03 aA | 19.1 ± 0.47 bB |
| 25 °C | 26.06 ± 0.82 bA | 22.70 ± 0.75 cB | 31.13 ± 0.90 aA |
| 40 °C | 23.86 ± 0.76 bB | 29.23 ± 0.98 aA | 18.00 ± 0.60 cB |
| Treatment | Egg-Larva | Pupa | ||||||
|---|---|---|---|---|---|---|---|---|
| Emergence | Reduction | Sex Ratio | Parasitism | Emergence | Reduction | Sex Ratio | Parasitism | |
| Generation F1 | ||||||||
| NW | 97.30 ± 2.53 aA | - | 0.445 aA | 27.00 ± 2.28 bB | 86.20 ± 2.87 aA | 2.60 | 0.442 aA | 17.80 ± 3.56 aA |
| NEO | 94.00 ± 1.52 aA | 3.40 | 0.728 bB | 21.70 ± 3.27 bB | 88.50 ± 2.35 aA | - | 0.645 bB | 16.20 ± 3.26 aA |
| Generation F2 | ||||||||
| NW | 71.50 ± 2.50 bA | 20.02 | 0.538 aA | - | 66.20 ± 3.62 bA | 12.90 | 0.593 aA | - |
| NEO | 89.40 ± 2.91 bA | - | 0.494 aA | - | 76.00 ± 2.25 bA | - | 0.517 aA | - |
| Treatment | Contact 12 h After Treatment | Contact 24 h After Treatment | Contact 48 h After Treatment | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Parasitism | Reduction | Emergence | Sex Ratio | Parasitism | Reduction | Emergence | Sex Ratio | Parasitism | Reduction | Emergence | Sex Ratio | |
| Generation F0 | ||||||||||||
| NW | 19.50 ± 1.82 bB | - | - | - | 11.80 ± 1.40 aB | - | - | - | 11.70 ± 1.54 aB | - | - | - |
| NEO | 3.16 ± 1.37 aA | 83.80 | - | - | 1.02 ± 0.42 aA | 91.40 | - | - | 2.18 ± 0.86 aA | 81.40 | - | - |
| Generation F1 | ||||||||||||
| NW | 21.00 ± 1.77 bA | - | 85.00 ± 1.29 bB | 0.399 aA | 12.40 ± 2.75 aA | - | 86.40 ± 1.02 bB | 0.474 aA | 10.10 ± 2.79 aA | - | 83.10 ± 1.31 aB | 0.940 bB |
| NEO | 18.40 ± 2.12 aA | 12.40 | 61.10 ± 3.26 aA | 0.389 aA | 8.80 ± 4.10 bA | 29.03 | 68.10 ± 0.81 bA | 0.333 aA | 5.76 ± 2.49 bA | 42.97 | 60.10 ± 1.67 aA | 0.500 aA |
| Generation F2 | ||||||||||||
| NW | - | - | 77.00 ± 1.40 bA | 0.934 aA | - | - | 55.40 ± 2.61 bA | 0.930 aA | - | - | 38.40 ± 2.17 aB | 0.930 aA |
| NEO | - | - | 84.20 ± 1.40 bA | 0.913 aA | - | - | 43.10 ± 4.38 aA | 1.00 aA | - | - | 48.10 ± 3.05 aA | 1.00 aA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Oliveira, J.A.C.; Figueiredo, K.G.; Fernandes, L.A.; Carvalho, V.C.; Alves, D.S.; Ugucioni, J.C.; Oliveira, J.L.; P. Carvalho, H.W.; Bertolucci, S.K.V.; Carvalho, G.A. Toxicity of Nanoemulsified Eugenia uniflora (Myrtaceae) Essential Oil to Spodoptera frugiperda (Lepidoptera: Noctuidae) and Selectivity to Trichogramma pretiosum (Hymenoptera: Trichogrammatidae). Plants 2026, 15, 248. https://doi.org/10.3390/plants15020248
Oliveira JAC, Figueiredo KG, Fernandes LA, Carvalho VC, Alves DS, Ugucioni JC, Oliveira JL, P. Carvalho HW, Bertolucci SKV, Carvalho GA. Toxicity of Nanoemulsified Eugenia uniflora (Myrtaceae) Essential Oil to Spodoptera frugiperda (Lepidoptera: Noctuidae) and Selectivity to Trichogramma pretiosum (Hymenoptera: Trichogrammatidae). Plants. 2026; 15(2):248. https://doi.org/10.3390/plants15020248
Chicago/Turabian StyleOliveira, Júlia A. C., Karolina G. Figueiredo, Letícia A. Fernandes, Vinícius C. Carvalho, Dejane S. Alves, Julio C. Ugucioni, Jhones L. Oliveira, Hudson W. P. Carvalho, Suzan K. V. Bertolucci, and Geraldo A. Carvalho. 2026. "Toxicity of Nanoemulsified Eugenia uniflora (Myrtaceae) Essential Oil to Spodoptera frugiperda (Lepidoptera: Noctuidae) and Selectivity to Trichogramma pretiosum (Hymenoptera: Trichogrammatidae)" Plants 15, no. 2: 248. https://doi.org/10.3390/plants15020248
APA StyleOliveira, J. A. C., Figueiredo, K. G., Fernandes, L. A., Carvalho, V. C., Alves, D. S., Ugucioni, J. C., Oliveira, J. L., P. Carvalho, H. W., Bertolucci, S. K. V., & Carvalho, G. A. (2026). Toxicity of Nanoemulsified Eugenia uniflora (Myrtaceae) Essential Oil to Spodoptera frugiperda (Lepidoptera: Noctuidae) and Selectivity to Trichogramma pretiosum (Hymenoptera: Trichogrammatidae). Plants, 15(2), 248. https://doi.org/10.3390/plants15020248

