UAV NDVI-Based Vigor Zoning Predicts PR-Protein Accumulation and Protein Instability in Chardonnay and Sauvignon Blanc Wines
Abstract
1. Introduction
2. Results and Discussion
2.1. Spatial Variability of Vine Vigor Across Seasons and Cultivars
2.2. Relationship Between NDVI and Grape Maturity at Harvest
2.3. PR-Protein Accumulation and Bentonite Requirement According to Vine Vigor
2.4. Discriminatory Analysis Between Vigor Zones and Enological Parameters
3. Materials and Methods
3.1. Location
3.2. UAV Data Collection
3.3. Data Processing and Vigor Classification
3.3.1. Selection of Vegetation Index for Zoning
3.3.2. Vigor Zoning and Vine Selection
3.4. Grape Sampling, Maturity Assessment, and Micro-Vinification
3.4.1. Sampling for Maturity Correlation and Must Preparation
3.4.2. Micro-Vinification Protocol
3.5. Chemical Composition and Protein Stability Analysis
3.5.1. pH and Titratable Acidity
3.5.2. Polyphenol Content (GAE)
3.5.3. PR-Protein Quantification by Reversed-Phase HPLC
3.5.4. Protein Instability by Heat Test
3.5.5. Determination of Bentonite Requirement for Protein Stabilization
3.5.6. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ABA | Abscisic acid |
| CHM | Canopy height model |
| CWSI | Crop water stress index |
| DEM | Digital elevation model |
| DSM | Digital surface model |
| GNDVI | Green Normalized Difference Vegetation Index |
| LAI | Leaf area index |
| LDA | Linear Discriminant Analysis |
| NDRE | Normalized Difference Red Edge Index |
| NDVI | Normalized Difference Vegetation Index |
| PLS-DA | Partial Least Squares Discriminant Analysis |
| PR proteins | Pathogenesis-related proteins |
| SAVI | Soil-Adjusted Vegetation Index |
| UAV | Unmanned aerial vehicle |
References
- Pocock, K.F.; Hayasaka, Y.; McCarthy, M.G.; Waters, E.J. Thaumatin-like proteins and chitinases, the haze-forming proteins of wine, accumulate during ripening of grape (Vitis vinifera) berries and drought stress does not affect the final levels per berry at maturity. J. Agric. Food Chem. 2000, 48, 1637–1643. [Google Scholar] [CrossRef] [PubMed]
- Marangon, M.; Van Sluyter, S.C.; Neilson, K.A.; Chan, C.; Haynes, P.A.; Waters, E.J.; Falconer, R.J. Roles of grape thaumatin-like protein and chitinase in white wine haze formation. J. Agric. Food Chem. 2011, 59, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Kotawadekar, R. 9—Satellite data: Big data extraction and analysis. In Artificial Intelligence in Data Mining; Binu, D., Rajakumar, B.R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 177–197. Available online: https://www.sciencedirect.com/science/article/pii/B9780128206010000082 (accessed on 4 January 2026).
- Enoki, S.; Suzuki, S. Pathogenesis-Related Proteins in Grape. In Grape and Wine Biotechnology; InTechOpen: London, UK, 2016. [Google Scholar]
- Ndlovu, T.; Buica, A.; Bauer, F.F. Chitinases and thaumatin-like proteins in Sauvignon Blanc and Chardonnay musts during alcoholic fermentation. Food Microbiol. 2019, 78, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Le Bourse, D.; Conreux, A.; Villaume, S.; Lameiras, P.; Nuzillard, J.M.; Jeandet, P. Quantification of chitinase and thaumatin-like proteins in grape juices and wines. Anal. Bioanal. Chem. 2011, 401, 1545–1553. [Google Scholar]
- Pocock, K.F.; Waters, E.J. Protein haze in bottled white wines: How well do stability tests and bentonite fining trials predict haze formation during storage and transport? Aust. J. Grape Wine Res. 2006, 12, 212–220. [Google Scholar] [CrossRef]
- Pereira, C. Estabilizacion Proteica En Vinos Blancos: Estudios y Comparacion de Distitnas Alternativas Para Sauvinon Blanc [Internet]. Master’s Thesis, Universidad Nacional de Cuyo Facultad de Ciencias Agraria, Mendoza, Argentina, 2014. Available online: https://bdigital.uncu.edu.ar/objetos_digitales/8407/tesis-maestra-en-viticultura-y-enologa-pereira-carolina.pdf (accessed on 4 January 2026).
- McRae, J.M.; Barricklow, V.; Pocock, K.F.; Smith, P.A. Predicting protein haze formation in white wines. Aust. J. Grape Wine Res. 2018, 24, 504–511. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, L.; Wang, J.; Duan, C.; Sun, Y.; Kong, Q.; He, F. Research progress of protein haze in white wines. Food Sci. Hum. Wellness 2023, 12, 1427–1438. [Google Scholar] [CrossRef]
- Esteruelas, M.; Poinsaut, P.; Sieczkowski, N.; Manteau, S.; Fort, M.F.; Canals, J.M.; Zamora, F. Comparison of Methods for Estimating Protein Stability in White Wines. Am. J. Enol. Vitic. 2009, 60, 302–311. [Google Scholar] [CrossRef]
- Marangon, M.; Van Sluyter, S.C.; Haynes, P.A.; Waters, E.J. Grape and wine proteins: Their fractionation by hydrophobic interaction chromatography and identification by chromatographic and proteomic analysis. J. Agric. Food Chem. 2009, 57, 4415–4425. [Google Scholar] [CrossRef]
- Bin, T.; Harrison, R. Pathogenesis-Related Proteins in Wine and White Wine Protein Stabilization; Intech: London, UK, 2016; p. 13. [Google Scholar]
- Soubry, I.; Patias, P.; Tsioukas, V. Monitoring vineyards with UAV and multi-sensors for the assessment of water stress and grape maturity. J. Unmanned Veh. Syst. 2017, 50, 37–50. [Google Scholar] [CrossRef]
- Ferro, M.V.; Catania, P.; Miccichè, D.; Pisciotta, A.; Vallone, M.; Orlando, S. Assessment of vineyard vigour and yield spatio-temporal variability based on UAV high resolution multispectral images. Biosyst. Eng. 2023, 231, 36–56. [Google Scholar] [CrossRef]
- Ferrer, M.; Echeverría, G.; Pereyra, G.; Gonzalez, G.; Pan, D.; Manuel, J. Mapping vineyard vigor using airborne remote sensing: Relations with yield, berry composition and sanitary status under humid climate conditions. Precis. Agric. 2020, 21, 178–197. [Google Scholar] [CrossRef]
- Matese, A.; Capraro, F.; Primicerio, J.; Gualato, G.; Di Gennaro, S.F.; Agati, G. Mapping of vine vigor by UAV and anthocyanin content by a non destructive fluorescence technique. In Precision Agriculture’13; Wageningen Academic: Wageningen, The Netherlands, 2013; pp. 201–208. [Google Scholar]
- Dorin, B.; Reynolds, A.G.; Jollineau, M.; Lee, H.S.; Shemrock, A. Utilization of unmanned aerial vehicles for zonal winemaking in cool-climate Riesling vineyards. OENO One 2022, 56, 327–341. [Google Scholar] [CrossRef]
- Bramley, R.G.V. Precision Viticulture: Managing vineyard variability for improved quality outcomes. In Managing Wine Quality: Viticulture and Wine Quality; Woodhead Publishing Limited: Cambridge, UK, 2010; pp. 445–480. Available online: http://dx.doi.org/10.1533/9781845699284.3.445 (accessed on 4 January 2026).
- Hall, A. Remote sensing applications for viticultural terroir analysis. Elements 2018, 14, 185–190. [Google Scholar] [CrossRef]
- Cantürk, M.; Zabawa, L.; Pavlic, D.; Dreier, A.; Klingbeil, L.; Kuhlmann, H. UAV-Based individual plant detection and geometric parameter extraction in vineyards. Front. Plant Sci. 2023, 14, 1244384. [Google Scholar] [CrossRef]
- Pádua, L.; Marques, P.; Hruška, J.; Adão, T.; Peres, E.; Morais, R.; Sousa, J.J. Multi-Temporal vineyard monitoring through UAV-based RGB imagery. Remote Sens. 2018, 10, 1907. [Google Scholar] [CrossRef]
- Hall, A.; Lamb, D.W.; Holzapfel, B.P.; Louis, J.P. Within-season temporal variation in correlations between vineyard canopy and winegrape composition and yield. Precis. Agric. 2011, 12, 103–117. [Google Scholar] [CrossRef]
- Silva Costa, B.R.; Oldoni, H.; da Silva, T.M.M.; Farinassi, L.G.; Bognola, I.A.; Bassoi, L.H. How similar is the zoning of different vegetation indices: Defining the optimal framework for monitoring grapevines’ growth within vigorous vineyards. Sci. Hortic. 2023, 322, 112404. [Google Scholar] [CrossRef]
- Vera-Esmeraldas, A.; Pizarro-Oteíza, S.; Labbé, M.; Rojo, F.; Salazar, F. UAV-Based Spectral and Thermal Indices in Precision Viticulture: A Review of NDVI, NDRE, SAVI, GNDVI, and CWSI. Agronomy 2025, 15, 2569. [Google Scholar] [CrossRef]
- Santesteban, L.G. Precision viticulture and advanced analytics. A short review. Food Chem. 2019, 279, 58–62. [Google Scholar] [CrossRef]
- Singh, A.P.; Yerudkar, A.; Mariani, V.; Iannelli, L.; Glielmo, L. A Bibliometric Review of the Use of Unmanned Aerial Vehicles in Precision Agriculture and Precision Viticulture for Sensing Applications. Remote Sens. 2022, 14, 1604. [Google Scholar] [CrossRef]
- Berry, A.; Vivier, M.A.; Poblete-Echeverría, C. Evaluation of canopy fraction-based vegetation indices, derived from multispectral UAV imagery, to map water status variability in a commercial vineyard. Irrig. Sci. 2024, 43, 135–153. [Google Scholar] [CrossRef]
- Vélez, S.; Ariza-Sentís, M.; Valente, J. Mapping the spatial variability of Botrytis bunch rot risk in vineyards using UAV multispectral imagery. Eur. J. Agron. 2023, 142, 126691. [Google Scholar] [CrossRef]
- Meyers, J.M.; Dokoozlian, N.; Ryan, C.; Bioni, C.; Vanden Heuvel, J.E. A new, satellite NDVI-based sampling protocol for grape maturation monitoring. Remote Sens. 2020, 12, 1159. [Google Scholar] [CrossRef]
- Chanreaksa, C.; Khwantri, S.; Mahisorn, W.; Jetsada, P.; Cheerawat, N.; Eizo, T. Feasibiltiy study of evaluation brix of sugarcane using multispectral camera mounted on unmanned aerial vehicle. In Proceedings of the 11th Thai Society of Agricultural Engineering International Conference, Hua Hin, Thailand, 26–27 April 2018; pp. 26–27. [Google Scholar]
- Borgogno-Mondino, E.; Lessio, A.; Tarricone, L.; Novello, V.; de Palma, L. A comparison between multispectral aerial and satellite imagery in precision viticulture. Precis. Agric. 2018, 19, 195–217. [Google Scholar] [CrossRef]
- Zurita-Silva, A.; Díaz, I.; Verdugo, N.; Mejía, N. Desafíos de la Viticultura en un escenario de cambio climático. Campo Tecnol. 2020. [Google Scholar]
- Karakizi, C.; Oikonomou, M.; Karantzalos, K. Spectral discrimination and reflectance properties of various vine varieties from satellite, UAV and proximate sensors. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2015, 40, 31–37. [Google Scholar] [CrossRef]
- Galidaki, G.; Panagiotopoulou, L.; Vardoulaki, T. Use of UAV-Borne multispectral data and vegetation indices for discriminating and mapping three indigenous vine varieties of the Greek Vineyard. J. Cent. Eur. Agric. 2021, 22, 762–770. [Google Scholar] [CrossRef]
- Pádua, L.; Marques, P.; Adão, T.; Guimarães, N.; Sousa, A.; Peres, E.; Sousa, J.J. Vineyard variability analysis through UAV-based vigour maps to assess climate change impacts. Agronomy 2019, 9, 581. [Google Scholar] [CrossRef]
- Pádua, L.; Adão, T.; Sousa, A.; Peres, E.; Sousa, J.J. Individual Grapevine Analysis in a Multi-Temporal Context Using UAV-Based Multi-Sensor Imagery. Remote Sens. 2020, 2, 139. [Google Scholar] [CrossRef]
- Matese, A.; Di Gennaro, S.F.; Berton, A. Assessment of a canopy height model (CHM) in a vineyard using UAV-Based multispectral imaging. Int. J. Remote Sens. 2017, 38, 2150–2160. [Google Scholar] [CrossRef]
- Matese, A.; Di Gennaro, S.F. Practical applications of a multisensor UAV platform based on multispectral, thermal and RGB high resolution images in precision viticulture. Agriculture 2018, 8, 116. [Google Scholar] [CrossRef]
- Pelemo, O.J.; Afolabi, S.; Ogoliegbune, M.; Awosusi, M. Nitrogen Status and Canopy Density Detection of Vegetation Using Multispectral Data. J. Appl. Life Sci. Environ. 2021, 186, 156–165. [Google Scholar] [CrossRef]
- Ali, S.; Ganai, B.A.; Kamili, A.N.; Bhat, A.A.; Mir, Z.A.; Bhat, J.A.; Tyagi, A.; Islam, S.T.; Mushtaq, M.; Yadav, P.; et al. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol. Res. 2018, 212–213, 29–37. [Google Scholar] [CrossRef]
- Pocock, K.F.; Salazar, F.N.; Waters, E.J. The effect of bentonite fining at different stages of white winemaking on protein stability. Aust. J. Grape Wine Res. 2011, 17, 280–284. [Google Scholar] [CrossRef]
- Tahim, C.M.; Mansfield, A.K. Yeast assimilable nitrogen optimization for cool-climate riesling. Am. J. Enol. Vitic. 2019, 70, 127–138. [Google Scholar] [CrossRef]
- Casalta, E.; Cervi, M.F.; Salmon, J.M.; Sablayrolles, J.M. White wine fermentation: Interaction of assimilable nitrogen and grape solids: Interaction of assimilable nitrogen and grape solids on alcoholic fermentation under oenological conditions White wine fermentation: Interaction of assimilable nitrogen and grape solids: Interaction of assimilable nitrogen and grape solids on alcoholic fermentation under oenological conditions. Aust. J. Grape Wine Res. 2013, 19, 47–52. [Google Scholar]
- Zhao, Y.; Zhang, Z.; Li, W.; Li, W.; Shang, Q.; Du, J.; Wang, L. Effect of Protease Combined With Heat Treatment on the Stability of Proteins in Liqueur Wine. J. Food Biochem. 2024, 2024, 7630049. [Google Scholar] [CrossRef]
- Sui, Y.; Wollan, D.; McRae, J.M.; Muhlack, R.; Capone, D.L.; Godden, P.; Wilkinson, K.L. Chemical and Sensory Profiles of Sauvignon Blanc Wine Following Protein Stabilization Using a Combined Ultrafiltration/Heat/Protease Treatment. Front. Nutr. 2022, 9, 799809. [Google Scholar] [CrossRef]
- Sudisha, J.; Sharathchandra, R.G.; Amruthesh, K.N.; Kumar, A. Pathogenesis Related Proteins in Plant Defense Response; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Saboki, E.; Usha, S.; Singh, B. Pathogenesis Related (PR) Proteins in Plant Defense Mechanism. Sci. Against Microb. Pathog. 2011, 2, 1043–1054. [Google Scholar]
- Salazar, P.C.; Reyes, M.M. Efectos del cambio climatico en la vitivinicultura y alternativas para asegurar la sustentabilidad y calidad del viñedo en el Valle Central. In Preparando la Agricultura para el Cambio Climático; Ministerio de Agricultura, Gobierno de Chile: Santiago, Chile, 2020. [Google Scholar]
- Agisoft, L.L.C.; St Petersburg, R. Agisoft Metashape [Internet]. Available online: https://www.agisoft.com/ (accessed on 5 May 2024).
- Gong, C.; Buddenbaum, H.; Retzla, R.; Udelhoven, T. An Empirical Assessment of Angular Dependency for RedEdge-M in Sloped Terrain Viticulture. Remote Sens. 2019, 11, 2561. [Google Scholar] [CrossRef]
- Dobrowski, S.Z.; Ustin, S.L.; Wolpert, J.A. Remote estimation of vine canopy density in vertically shoot-positioned vineyards: Determining optimal vegetation indices. Aust. J. Grape Wine Res. 2002, 8, 117–125. [Google Scholar] [CrossRef]
- Boiarskii, B. Comparison of NDVI and NDRE Indices to Detect Differences in Vegetation and Chlorophyll Content. J. Mech. Contin. Math. Sci. 2019, 4, 20–29. [Google Scholar] [CrossRef]
- Huete, A.R.; Hua, G.; Qi, J.; Chehbouni, A.; van Leeuwen, W.J.D. Normalization of multidirectional red and NIR reflectances with the SAVI. Remote Sens. Environ. 1992, 41, 143–154. [Google Scholar] [CrossRef]
- Martínez, Á.; Gómez-Miguel, V.D. Vegetation index cartography as a methodology complement to terroir zoning for use in precision viticulture. OENO One 2017, 51, 289–301. [Google Scholar] [CrossRef]
- Baluja, J.; Diago, M.P.; Balda, P.; Zorer, R.; Meggio, F.; Morales, F.; Tardaguila, J. Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrig. Sci. 2012, 30, 511–522. [Google Scholar] [CrossRef]
- Lamb, D.W.; Weedon, M.M.; Bramlwy, R.G.V. Using remote sensing to predict grape phenolics and colour at harvest in a Cabernet Sauvignon vineyard: Timing observations against vine phenology and optimising image resolution. Aust. J. Grape Wine Res. 2004, 10, 46–54. [Google Scholar] [CrossRef]
- Salazar, F.N.; Marangon, M.; Labbé, M.; Lira, E.; Rodríguez-Bencomo, J.J.; López, F. Comparative study of sodium bentonite and sodium-activated bentonite fining during white wine fermentation: Its effect on protein content, protein stability, lees volume, and volatile compounds. Eur. Food Res. Technol. 2017, 243, 2043–2054. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965. Available online: https://api.semanticscholar.org/CorpusID:86645261 (accessed on 4 January 2026).
- Lee, E.J.; Nomura, N.; Patil, B.S.; Yoo, K.S. Measurement of total phenolic content in wine using an automatic Folin-Ciocalteu assay method. Int. J. Food Sci. Technol. 2014, 49, 2364–2372. [Google Scholar] [CrossRef]
- Bajčan, D.; Harangozo, Ľ.; Hrabovská, D.; Bončíková, D. Optimizing conditions for spectrophotometric determination of total polyphenols in wines using Folin-Ciocalteu reagent. J. Microbiol. Biotechnol. Food Sci. 2021, 2021, 1271–1280. [Google Scholar]
- Salazar, F.N.; López, F.; Chiffelle, I.; López, R.; Peña-Neira, A. Evaluation of pathogenesis-related protein content and protein instability of seven white grape (Vitis vinifera L.) clones from Casablanca Valley, Chile. Eur. Food Res. Technol. 2012, 234, 509–515. [Google Scholar] [CrossRef]
- Cosme, F.; Fernandes, C.; Ribeiro, T.; Filipe-Ribeiro, L.; Nunes, F.M. White wine protein instability: Mechanism, quality control and technological alternatives for wine stabilisation—An overview. Beverages 2020, 6, 19. [Google Scholar] [CrossRef]






| Chardonnay | Sauvignon Blanc | |||||||
|---|---|---|---|---|---|---|---|---|
| Índex | 2023 | 2024 | 2023 | 2024 | ||||
| r | R2 | r | R2 | r | R2 | r | R2 | |
| NDVI | −0.85 | 0.73 | −0.71 | 0.51 | −0.76 | 0.57 | −0.78 | 0.61 |
| GNDVI | −0.77 | 0.59 | −0.69 | 0.47 | −0.61 | 0.37 | −0.61 | 0.38 |
| NDRE | −0.70 | 0.49 | −0.71 | 0.51 | −0.47 | 0.23 | −0.62 | 0.39 |
| SAVI | −0.31 | 0.09 | 0.32 | 0.1 | −0.75 | 0.57 | −0.43 | 0.18 |
| OSAVI | −0.50 | 0.24 | −0.61 | 0.38 | −0.75 | 0.57 | −0.52 | 0.27 |
| MSAVI | −0.29 | 0.08 | −0.56 | 0.31 | −0.73 | 0.54 | −0.43 | 0.18 |
| Protein Instability (ΔNTU) | Bentonite Dosage (mg/L) | ||||
|---|---|---|---|---|---|
| 2023 | 2024 | 2023 | 2024 | ||
| Chardonnay | Vigor Zone | ||||
| Zone A | 0.69 ± 0.02 a | 1.31 ± 0.17 a | 200 a | 150 a | |
| Zone B | 18.24 ± 0.25 b | 1.41 ± 0.15 a | 750 b | 150 a | |
| Zone C | 25.32 ± 0.69 c | 3.46 ± 0.13 b | 1100 c | 300 b | |
| Sauvignon Blanc | |||||
| Zona A | 8.43 ± 0.34 a | 48.80 ± 0.59 a | 750 a | 1100 a | |
| Zone B | 29.84 ± 1.43 b | 56.12 ± 0.24 b | 1100 b | 1100 a | |
| Zone C | 54.30 ± 0.33 c | 72.58 ± 0.70 c | 1500 c | 1500 b | |
| Variety | Vigor Zone | Total, PR (mg L−1) | |
|---|---|---|---|
| 2023 | 2024 | ||
| Vigor zone | |||
| Chardonnay | High | 37.37 ± 0.68 a | 25.97 ± 1.06 a |
| Medium | 58.90 ± 1.13 b | 36.03 ± 1.36 b | |
| Low | 73.87 ± 4.64 c | 47.03 ± 3.86 c | |
| Sauvignon Blanc | High | 49.47 ± 5.56 a | 55.00 ± 1.49 a |
| Medium | 76.93 ± 2.90 b | 83.44 ± 1.98 b | |
| Low | 96.50 ± 3.01 c | 108.40 ± 4.45 c | |
| Spectral Index | Formula | Reference |
|---|---|---|
| NDVI | ((NIR − RED))/((NIR + RED)) | [52] |
| NDRE | (NIR − RedEdge)/(NIR + RedEdge) | [53] |
| GNDVI | (NIR − Green)/(NIR + Green) | [31] |
| SAVI | ((NIR−Red)/(NIR + Red + L)) × (1 + L) | [54] |
| MSAVI | [55] | |
| OSAVI | (NIR − Red)/(NIR + Red + 0.16) | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Vera-Esmeraldas, A.; Galleguillos, M.; Labbé, M.; Cáceres-Mella, A.; Rojo, F.; Salazar, F. UAV NDVI-Based Vigor Zoning Predicts PR-Protein Accumulation and Protein Instability in Chardonnay and Sauvignon Blanc Wines. Plants 2026, 15, 243. https://doi.org/10.3390/plants15020243
Vera-Esmeraldas A, Galleguillos M, Labbé M, Cáceres-Mella A, Rojo F, Salazar F. UAV NDVI-Based Vigor Zoning Predicts PR-Protein Accumulation and Protein Instability in Chardonnay and Sauvignon Blanc Wines. Plants. 2026; 15(2):243. https://doi.org/10.3390/plants15020243
Chicago/Turabian StyleVera-Esmeraldas, Adrián, Mauricio Galleguillos, Mariela Labbé, Alejandro Cáceres-Mella, Francisco Rojo, and Fernando Salazar. 2026. "UAV NDVI-Based Vigor Zoning Predicts PR-Protein Accumulation and Protein Instability in Chardonnay and Sauvignon Blanc Wines" Plants 15, no. 2: 243. https://doi.org/10.3390/plants15020243
APA StyleVera-Esmeraldas, A., Galleguillos, M., Labbé, M., Cáceres-Mella, A., Rojo, F., & Salazar, F. (2026). UAV NDVI-Based Vigor Zoning Predicts PR-Protein Accumulation and Protein Instability in Chardonnay and Sauvignon Blanc Wines. Plants, 15(2), 243. https://doi.org/10.3390/plants15020243

