Genetic Variation in Pulpwood Properties of Hybrid Larch Families and Their Progenies
Abstract
1. Introduction
2. Results
2.1. Comparison of Growth Traits Between F1 and F2 Generations
2.2. Comparison of Wood Property Traits Between F1 and F2 Generations
2.3. Comparison of Pulping Performance Traits Between F1 and F2 Generations
2.4. Principal Component Analysis of the F2 Generation and Comprehensive Evaluation Using the Membership Function Method in the F2 Generation
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Study Site
4.2. Materials
4.2.1. Measurement of Growth Traits
4.2.2. Measurement of Wood Property Traits
4.2.3. Measurement of Pulping Performance Traits
4.2.4. Calculation of Pulp Productivity Trait
4.2.5. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- You, Y.; Yan, P.; Zhang, H.; Zhang, D.; Liu, D.; Chen, B.; Zhang, L. Genetic variation analysis and superior family selection of hybrid larch (Larix spp.). J. Jiangsu For. Sci. Technol. 2019, 46, 36–41. [Google Scholar]
- Yang, S.W.; Wang, Q.Y.; Xia, D.A. Genetic Improvement of Larch (Larix spp.); Northeast Forestry University Press: Harbin, China, 1994. [Google Scholar]
- Yang, S.; Ju, Y.; Zhang, S.; Liu, G.; Meng, F.; Han, C. Study on heterosis of larch (Larix spp.). J. Northeast For. Univ. 1985, 13, 35–36. [Google Scholar]
- Wang, B.; Wang, J.; Chen, Z.; Wei, S. Cultivation and management of larch (Larix spp.) artificial commercial forests. Jilin For. Sci. Technol. 2002, 5, 46–47. [Google Scholar]
- Li, C.S.; Zhang, Q.Y.; Xuan, Z.L.; Li, L.; Xia, F. Study on growth process and economic benefits of Larix olgensis Henry artificial forests. Jilin For. Sci. Technol. 2014, 43, 31–32+46. [Google Scholar] [CrossRef]
- Li, W.W. Study on Growth and Pulpwood Properties of Larix olgensis Henry from Different Provenances; Northeast Forestry University: Harbin, China, 2009. [Google Scholar]
- 2023 Annual Report on China’s Paper Industry; China Paper Association: Beijing, China, 2024; pp. 6–17.
- National Forestry and Grassland Administration of the People’s Republic of China. The 7th national forest resources inventory and status of forest resources. For. Resour. Manag. 2010, 1, 1–8. [Google Scholar]
- Li, Y.; Suontama, M.; Burdon, R.D.; Dungey, H.S. Genotype by environment interactions in forest tree breeding: Review of methodology and perspectives on research and Application. Tree Genet. Genomes 2017, 13, 60. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Tong, L.; Wang, L.; Xue, L.; Luan, Q.; Jiang, J. Phenomic selection in slash pine multi-temporally using UAV-multispectral imagery. Front. Plant Sci. 2023, 14, 1156430. [Google Scholar] [CrossRef] [PubMed]
- Nelson, C.D.; Johnsen, K.H. Genomic and physiological approaches to advancing forest tree Improvement. Tree Physiol. 2008, 28, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Grattapaglia, D.; Silva-Junior, O.B.; Resende, R.T.; Cappa, E.P.; Müller, B.S.F.; Tan, B.; Isik, F.; Ratcliffe, B.; El-Kassaby, Y.A. Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding. Front. Plant Sci. 2018, 9, 1693. [Google Scholar] [CrossRef]
- Zhang, K.; Tong, Y.Y.; Zhang, D.Z. Research progress in superior variety breeding of Larix olgensis Henry. For. Technol. 2001, 4, 8–9. [Google Scholar]
- Deng, J.F.; Zhang, H.G.; Zhang, L.; Guan, C.; Zhang, L. Genetic variation and superior family selection of 17-year-old hybrid larch (Larix spp.). J. Northeast For. Univ. 2010, 38, 8–11. [Google Scholar] [CrossRef]
- Zhang, H.G.; Zhang, C.L.; Lan, S.B.; Kang, Y.K.; Pan, B.L. Heterosis analysis and family selection of larch (Larix spp.). J. Nanjing For. Univ. (Nat. Sci. Ed.) 2005, 29, 69–72. [Google Scholar] [CrossRef]
- Sun, X.M.; Zhang, S.G.; Zhou, D.Y.; Wang, X.D.; Ding, B.; Liu, S.M. Phenological variation and early selection among intraspecific, interspecific and interspecific hybrid families of larch (Larix spp.). Sci. Silvae Sin. 2008, 44, 77–84. [Google Scholar]
- Zhang, L.; Zhang, H.G.; Deng, J.F.; Guan, C.Y. Stability analysis of seedling height growth of hybrid larch (Larix spp.). J. Zhejiang For. Coll. 2010, 27, 706–712. [Google Scholar]
- Miao, X.F.; Zhang, H.G.; Hou, D.; Sun, Y.H.; Hao, J.F.; Xu, K.Y. Genetic variation and multi-site stability of hybrid larch (Larix spp.) families. J. Northeast For. Univ. 2018, 46, 1–8. [Google Scholar] [CrossRef]
- Roskilly, B.A.; Henry, M.R.; Aitken, S.N. Selective breeding for growth does not compromise drought resistance in western larch seedlings. For. Ecol. Manag. 2025, 596, 123064. [Google Scholar] [CrossRef]
- Gardner, R.A.W.; Little, K.M.; Arbuthnot, A. Wood and fibre productivity potential of promising new eucalypt species for coastal Zululand, South Africa. Aust. For. 2007, 70, 37–47. [Google Scholar] [CrossRef]
- Sun, W.; Yu, D.; Dong, M.; Zhao, J.; Wang, X.; Zhang, H.; Zhang, J. Evaluation of efficiency of controlled pollination based parentage analysis in a Larix gmelinii var. principis-rupprechtii Mayr. seed orchard. PLoS ONE 2008, 12, e0176483. [Google Scholar] [CrossRef]
- Hallingbäck, R.H.; Jansson, G. Genetic information from progeny trials: A comparison between progenies generated by open pollination and by controlled crosses. Tree Genet. Genomes 2013, 9, 731–740. [Google Scholar] [CrossRef]
- Hamilton, M.G.; Freeman, J.S.; Blackburn, D.P.; Downes, G.M.; Pilbeam, D.J.; Potts, B.M. Independent lines of evidence of a genetic relationship between acoustic wave velocity and kraft pulp yield in Eucalyptus globulus. Ann. For. Sci. 2017, 74, 17. [Google Scholar] [CrossRef]
- Gautam, Y. Study of Phenotypic and Genotypic Variance and Coefficient of Variance, Heritability, Phenotypic and Genotypic Correlation Coefficient Among Different Character’s in Tuberose. Int. J. Curr. Microbiol. Appl. Sci. 2024, 13, 117–125. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, H.; Zhang, L.; Zhu, H.; Guan, C. Genetic Variation and Multi-Trait Combined Selection for Pulpwood in Open-Pollinated Families of Hybrid Larch F2. Sci. Silvae Sin. 2011, 47, 31–39. [Google Scholar]
- Chen, J. Achievements and Development of Pulping Theory and Technology. China Pulp Pap. Ind. 1994, 2, 3–11. [Google Scholar]
- Yang, Y. (Ed.) Morphology and Structure of Plant Fibers; Self-compiled Lecture Notes; Nanjing Forestry University: Nanjing, China, 2007; 201p. [Google Scholar]
- Foelkel, C. Advances in Eucalyptus Fiber Properties & Paper Products. In Proceedings of the 3rd International Colloquium on Eucalypt Pulp, Belo Horizonte, Brazil, 4–7 March 2007. [Google Scholar]
- Downes, G.; Irene Hudson Fellow of the Royal Statistical Society Uk; Raymond, C.; Dean, G.; Michell, A.; Schimleck, L.; Evans, R.; Muneri, A. Sampling Plantation Eucalypts for Wood and Fibre Properties; CSIRO Publishing: Collingwood, Australia, 1997. [Google Scholar]
- Niemczyk, M.; Thomas, B.R. Growth parameters and resistance to Sphaerulina Musiva-induced canker are more important than wood density for increasing genetic gain from selection of Populus spp. hybrids for northern Climates. Ann. For. Sci. 2020, 77, 26. [Google Scholar] [CrossRef]
- Luo, J.; Arnold, R.J.; Aken, K. Genetic variation in growth and typhoon resistance in Eucalyptus pellita in south-western China. Aust. For. 2006, 69, 38–47. [Google Scholar] [CrossRef]
- Liu, Q.; Jin, G.; Zhang, R.; Chu, D.; Qin, G.; Zhou, Z. Provenance Variation and Provenance Zoning of Growth, Form Quality, and Wood Basic Density in 24-Year-Old Masson Pine. Sci. Silvae Sin. 2009, 45, 55–61. [Google Scholar]
- Li, D. Variation of Wood Density in Southern Type Poplar Clones and Its Relationship with Planting Density. Presented at the National Congress and the 9th Academic Symposium of the Wood Science Branch, Chinese Society of Forestry, Harbin, China, January 2004. [Google Scholar]
- Fukatsu, E.; Hiraoka, Y.; Matsunaga, K.; Tsubomura, M.; Nakada, R. Genetic relationship between wood properties and growth traits in Larix kaempferi obtained from a diallel mating Test. J. Wood Sci. 2014, 61, 10–18. [Google Scholar] [CrossRef]
- Shi, Y.C.; Song, L.; Liang, J.; Li, W. Effects of slope position and aspect on pulpwood properties of Larix olgensis Henry. J. Northeast For. Univ. 2011, 39, 30–41. [Google Scholar] [CrossRef]
- Bai, M.F.; Liu, S.Q.; Zhou, L. Study on tracheid morphological characteristics, microfibril angle and their radial variation of Larix gmelinii (Rupr.) Kuzen. J. Anhui Agric. Univ. 2009, 36, 189–193. [Google Scholar]
- Wu, H.; Zha, C.S.; Wang, C.G.; Liu, S.Q. Wood fiber morphological characteristics and variation of 12 poplar (Populus spp.) clones in plantations. J. Northeast For. Univ. 2011, 39, 8–10. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, S.; Chen, S.; Xia, D.; Yang, C.; Zhao, X. Genetic variation and superior provenances selection for wood properties of Larix olgensis at four trials. J. For. Res. 2022, 33, 1867–1879. [Google Scholar] [CrossRef]
- Shi, S.L.; Xie, X.L.; Hu, H.R.; Zhang, S.; Wang, J. Chemical composition and pulping properties of Larix kaempferi Carr. at different ages. Sci. Silvae Sin. 2006, 42, 90–94. [Google Scholar]
- Xu, C.B.; Cheng, Y.; Miao, H.; Liu, J.; Zhu, X. Discussion on wood properties and age of Larix kaempferi (Lamb.) Carr. as pulpwood. China Pulp Pap. 2020, 39, 21–26. [Google Scholar]
- Raymond, A.C. Genetics of Eucalyptus wood properties. Ann. For. Sci. 2002, 59, 525–531. [Google Scholar] [CrossRef]
- Wu, H.X.; Matheson, A.C. Genotype by environment interactions in an Australia-wide Pinus radiata diallel mating experiment: Implications for regionalized breeding. For. Sci. 2005, 51, 29–40. [Google Scholar] [CrossRef]
- Li, Y.X. Genetic Variation of Growth and Wood Properties in Progenies of Plus Trees of Larix olgensis Henry and Multi-Trait Joint Selection; Northeast Forestry University: Harbin, China, 2012. [Google Scholar]
- Luo, J.Z. Study on Genetic and Environmental Effects of Pulpwood Traits in Eucalyptus hybrid Clones; Nanjing Forestry University: Nanjing, China, 2012. [Google Scholar]
- Allier, A.; Lehermeier, C.; Charcosset, A.; Moreau, L.; Teyssèdre, S. Improving Short- and Long-Term Genetic Gain by Accounting for Within-Family Variance in Optimal Cross-Selection. Front. Genet. 2019, 10, 1006. [Google Scholar] [CrossRef]
- LY/T 2908-2017; Classification of Age Classes and Age Groups for Major Tree Species. National Technical Committee for Forest Resources Standardization of China: Beijing, China, 2017.
- GB/T 1933-2009; Test Method for Wood Density. National Forestry and Grassland Administration: Beijing, China, 2009.
- Zhang, H.; Zhang, Y.; Zhang, D.; Dong, L.; Liu, K.; Wang, Y.; Yang, C.; Chiang, V.L.; Tigabu, M.; Zhao, X. Progeny performance and selection of superior trees within families in Larix olgensis. Euphytica Int. J. Plant Breed. 2020, 216, 60. [Google Scholar] [CrossRef]
- Lei, X.; Wang, J.; Yang, C.; Liu, S.; Jiang, Y. Study on drought resistance of three woody plants during the seed germination. For. Eng. 2015, 31, 7–11. [Google Scholar] [CrossRef]




| Index | F2 | F1 | CK | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MS | F | P | PCV | GCV | h2 | MS | F | P | PCV | GCV | h2 | PCV | GCV | h2 | |
| H | 134.894 | 43.995 | <0.001 | 8.20% | 0.09% | 0.57 | 2.258 | 3.969 | 0.001 | 4.29% | 0.26% | 0.75 | 15.44% | 2.04% | 0.72 |
| DBH | 433.903 | 30.236 | <0.001 | 18.23% | 2.62% | 0.67 | 108.901 | 3.707 | 0.001 | 13.92% | 5.50% | 0.73 | 32.29% | 9.08% | 0.74 |
| V | 0.283 | 24.198 | <0.001 | 39.71% | 0.10% | 0.54 | 0.403 | 4.354 | <0.001 | 28.13% | 3.56% | 0.77 | 77.69% | 0.36% | 0.67 |
| Index | F2 | F1 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MS | F | P | PCV | GCV | h2 | MS | F | P | PCV | GCV | h2 | |
| BD | 0.012 | 3.52 | 0.004 | 11.60% | 0.14% | 0.72 | 0.003 | 1.134 | 0.387 | 11.32% | 0.71% | 0.12 |
| CC | 0.012 | 3.388 | 0.003 | 13.08% | 0.08% | 0.70 | 0.029 | 7.092 | <0.001 | 10.73% | 0.47% | 0.86 |
| HCC | 0.14 | 52.312 | 0.877 | 7.47% | 2.52% | 0.24 | 0.084 | 12.989 | 0.728 | 11.02% | 2.16% | 0.23 |
| TCC | 0.321 | 31.38 | <0.001 | 7.47% | 2.01% | 0.97 | 0.261 | 12.95 | <0.001 | 7.11% | 3.88% | 0.92 |
| LC | 0.01 | 11.566 | <0.001 | 13.18% | 0.23% | 0.91 | 0.007 | 11.529 | <0.001 | 12.34% | 0.22% | 0.91 |
| FL | 267,100.242 | 4.806 | <0.001 | 10.85% | 36.96% | 0.79 | 267,100.242 | 5.988 | <0.001 | 13.29% | 37.46% | 0.83 |
| FW | 40.768 | 5.061 | <0.001 | 11.61% | 9.26% | 0.80 | 40.768 | 4.415 | 0.001 | 13.45% | 19.10% | 0.77 |
| FL/W | 35.983 | 1.346 | 0.246 | 5.91% | 0.82% | 0.26 | 35.983 | 2.237 | 0.062 | 9.00% | 6.18% | 0.67 |
| ANOVA Index | F2 | F1 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MS | F | P | PCV | GCV | h2 | MS | F | P | PCV | GCV | h2 | |
| CPY | 0.01 | 1.641 | 0.098 | 6.36% | 0.45% | 0.39 | 3.773 | 1.408 | 0.009 | 3.59% | 1.80% | 0.29 |
| FPY | 0.01 | 1.966 | 0.04 | 6.23% | 0.47% | 0.49 | 2.512 | 1.588 | 0.194 | 4.03% | 0.64% | 0.37 |
| SRR | 0.001 | 1.45 | 0.221 | 14.30% | 1.39% | 0.31 | 0.489 | 1.127 | 0.377 | 7.04% | 1.87% | 0.11 |
| PP | 2.379 | 32.447 | <0.001 | 14.70% | 9.78% | 0.97 | 3.366 | 1.806 | 0.134 | 8.39% | 1.73% | 0.45 |
| Family | Abbreviations |
|---|---|
| L. kaempferi 5 × L. olgensis 78-3 | LK5 × LO78-3 |
| L. gmelinii 7 × L. kaempferi 77-2 | LG7 × LK77-2 |
| L. kaempferi 3 × L. gmelinii 2 | LK3 × LG2 |
| L. kaempferi 3 × L. gmelinii 9 | LK3 × LG9 |
| L. kaempferi 5 × L. olgensis 77-3 | LK5 × LO77-3 |
| L. kaempferi 5 × L. gmelinii 9 | LK5 × LG9 |
| L. kaempferi 12 × L. gmelinii 9 | LK12 × LG9 |
| Hybrid L. olgensis orchard seed | HLO |
| olgensis control | L CK |
| Xiaobeihu L. olgensis provenance | XBH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hu, N.; Huang, J.; Cao, G.; Yang, P.; Liu, H.; Li, C.; Zhang, W. Genetic Variation in Pulpwood Properties of Hybrid Larch Families and Their Progenies. Plants 2026, 15, 190. https://doi.org/10.3390/plants15020190
Hu N, Huang J, Cao G, Yang P, Liu H, Li C, Zhang W. Genetic Variation in Pulpwood Properties of Hybrid Larch Families and Their Progenies. Plants. 2026; 15(2):190. https://doi.org/10.3390/plants15020190
Chicago/Turabian StyleHu, Naizhong, Jiaqi Huang, Guanghao Cao, Panke Yang, Huanzhen Liu, Chunming Li, and Wenbo Zhang. 2026. "Genetic Variation in Pulpwood Properties of Hybrid Larch Families and Their Progenies" Plants 15, no. 2: 190. https://doi.org/10.3390/plants15020190
APA StyleHu, N., Huang, J., Cao, G., Yang, P., Liu, H., Li, C., & Zhang, W. (2026). Genetic Variation in Pulpwood Properties of Hybrid Larch Families and Their Progenies. Plants, 15(2), 190. https://doi.org/10.3390/plants15020190
